living matter lab
(Difference between revisions)
(kinematics of the human heart)
(continuum mechanics of the heart)
 
(40 intermediate revisions by one user not shown)
Line 24: Line 24:
  
 
|}
 
|}
</div>
 
<div class="spacer">&nbsp;</div>
 
  
 
==goals==
 
==goals==
  
although the basic concepts of continuum mechanics have been established more than five decades ago, the 21st century faces many new and exciting potential applications of continuum mechanics that go way beyond the standard classical theory. when applying continuum mechanics to these challenging new phenomena, it is important to understand the main three ingredients of continuum mechanics: the kinematic equations, the balance equations and the constitutive equations. after a brief repetition of the relevant equations in tensor algebra and analysis, this class will introduce the basic concepts of small strain kinematics. within the framework of large deformations, we will then discuss the balance equations for mass, momentum, moment of momentum, energy and entropy. while all these equations are general and valid for any kind of material, the last set of equations, the constitutive equations, specifies particular subclasses of materials. in particular, we will focus on isotropic and anisotropic hyperelasticity. finally, we will briefly address variational principles that characterize the governing equations.
+
although the basic concepts of continuum mechanics have been established more than five decades ago, the 21st century faces many new and exciting potential applications of continuum mechanics that go way beyond the standard classical theory. when applying continuum mechanics to these challenging new phenomena, it is important to understand the main three ingredients of continuum mechanics: the kinematic equations, the balance equations and the constitutive equations. after a brief repetition of the relevant equations in tensor algebra and analysis, this class will introduce the basic concepts of small strain kinematics. we will then discuss the balance equations for mass, momentum, moment of momentum, energy and entropy. while all these equations are general and valid for any kind of material, the last set of equations, the constitutive equations, specifies particular subclasses of materials. in particular, we will focus on isotropic and anisotropic hyperelasticity. finally, we will briefly address variational principles that characterize the governing equations. throughout this class, we will discuss the mechanics of the heart with its strains, fiber stretches, stresses, forces, and constitutive equations, to illustrate how continuum mechanics can be applied to relevant clinical problems.
  
==kinematics of the human heart==
+
==continuum mechanics of the heart==
 +
 
 +
special thanks to wolf, john, and neil for the hands on wet lab as introduction to [http://biomechanics.stanford.edu/me338_09/me338_h02.pdf homework 02]
  
 
<html>
 
<html>
Line 37: Line 37:
 
     <table>
 
     <table>
 
         <tr>
 
         <tr>
         <td><img src="cardiac/01.jpg">  
+
         <td><img src="cardiac09/02.jpg">  
         <td><img src="cardiac/02.jpg">
+
         <td><img src="cardiac09/04.jpg">
         <td><img src="cardiac/03.jpg">
+
         <td><img src="cardiac09/07.jpg">
         <td><img src="cardiac/04.jpg">
+
         <td><img src="cardiac09/17.jpg">
 
         </tr>
 
         </tr>
 
         <tr>
 
         <tr>
         <td><img src="coauthors/0.jpg">
+
         <td><img src="cardiac09/12.jpg">  
         <td><img src="coauthors/14.jpg">
+
         <td><img src="cardiac09/01.jpg">
         <td><img src="coauthors/8.jpg">
+
         <td><img src="cardiac09/06.jpg">
         <td><img src="coauthors/4.jpg">
+
         <td><img src="cardiac09/10.jpg">
        <td><img src="coauthors/3.jpg">
+
 
         </tr>
 
         </tr>
 
         <tr>     
 
         <tr>     
         <td><img src="coauthors/19.jpg">
+
         <td><img src="cardiac09/05.jpg">  
         <td><img src="coauthors/13.jpg">
+
         <td><img src="cardiac09/11.jpg">
        <td><img src="coauthors/11.jpg">
+
         <td><img src="cardiac09/08.jpg">
         <td><img src="coauthors/6.jpg">
+
         <td><img src="cardiac09/09.jpg">
         <td><img src="coauthors/16.jpg">
+
 
         </tr>
 
         </tr>
         <tr>  
+
         <tr>            
         <td><img src="coauthors/10.jpg">
+
         <td><img src="cardiac09/13.jpg">  
         <td><img src="coauthors/17.jpg">
+
         <td><img src="cardiac09/15.jpg">
         <td><img src="coauthors/2.jpg">
+
         <td><img src="cardiac09/16.jpg">
         <td><img src="coauthors/15.jpg">
+
         <td><img src="cardiac09/14.jpg">  
        <td><img src="coauthors/9.jpg">       
+
 
 
         </tr>
 
         </tr>
 
     </table>
 
     </table>
Line 93: Line 91:
 
| tue || jan || 27 || balance equations I - contact fluxes ||  [http://biomechanics.stanford.edu/me338_09/me338_n07.pdf n07]      ||  
 
| tue || jan || 27 || balance equations I - contact fluxes ||  [http://biomechanics.stanford.edu/me338_09/me338_n07.pdf n07]      ||  
 
|-
 
|-
| thu || jan || 29 || balance equations II - concept of stress || [http://biomechanics.stanford.edu/me338_09/me338_n08.pdf n08]  || [http://biomechanics.stanford.edu/me338_09/me338_h02.pdf h02]
+
| thu || jan || 29 || balance equations II - concept of stress || [http://biomechanics.stanford.edu/me338_09/me338_n08.pdf n08]  ||
 
|-
 
|-
| tue || feb || 03 || balance equations III - mass, momentum  || [http://biomechanics.stanford.edu/me338_09/me338_n09.pdf n09]  ||  
+
| tue || feb || 03 || balance equations III - mass, momentum  || [http://biomechanics.stanford.edu/me338_09/me338_n09.pdf n09]  || [http://biomechanics.stanford.edu/me338_09/me338_h02.pdf h02]
 
|-
 
|-
 
| thu || feb || 05 || balance equations IV - angular momentum, energy || [http://biomechanics.stanford.edu/me338_09/me338_n10.pdf n10] ||   
 
| thu || feb || 05 || balance equations IV - angular momentum, energy || [http://biomechanics.stanford.edu/me338_09/me338_n10.pdf n10] ||   
 
|-
 
|-
| tue || feb || 10 || balance equations V - entropy, master balance law || [http://biomechanics.stanford.edu/me338_09/me338_n11.pdf n11]  || [http://biomechanics.stanford.edu/me338_09/me338_h03.pdf h03]
+
| tue || feb || 10 || balance equations V - entropy, master balance law || [http://biomechanics.stanford.edu/me338_09/me338_n11.pdf n11]  ||  
 
|-
 
|-
 
| thu || feb || 12 || constitutive equations I - linear equations || [http://biomechanics.stanford.edu/me338_09/me338_n12.pdf n12]  ||  
 
| thu || feb || 12 || constitutive equations I - linear equations || [http://biomechanics.stanford.edu/me338_09/me338_n12.pdf n12]  ||  
 
|-
 
|-
| tue || feb || 17 || constitutive equations II - hyperelasticity || [http://biomechanics.stanford.edu/me338_09/me338_n13.pdf n13] ||  
+
| tue || feb || 17 || constitutive equations II - hyperelasticity || [http://biomechanics.stanford.edu/me338_09/me338_n13.pdf n13] || [http://biomechanics.stanford.edu/me338_09/me338_h03.pdf h03]
 
|-
 
|-
| thu || feb || 19 || constitutive equations III - isotropic elasticity|| [http://biomechanics.stanford.edu/me338_09/me338_n14.pdf n14] || [http://biomechanics.stanford.edu/me338/me338_h04.pdf project]
+
| thu || feb || 19 || constitutive equations III - isotropic elasticity|| [http://biomechanics.stanford.edu/me338_09/me338_n14.pdf n14] || [http://biomechanics.stanford.edu/me338_09/me338_h04.pdf project]
 
|-
 
|-
 
| tue || feb || 24 || midterm prep ||  ||
 
| tue || feb || 24 || midterm prep ||  ||
Line 111: Line 109:
 
| thu || feb || 26 || midterm ||    ||
 
| thu || feb || 26 || midterm ||    ||
 
|-
 
|-
| tue || mar || 03 || intro nonlinear continuum mechanics - finite strain kinematics || ||
+
| tue || mar || 03 || intro nonlinear continuum mechanics - finite strain kinematics || [http://biomechanics.stanford.edu/me338_09/me338_n15.pdf n15]  ||  
 
|-
 
|-
| thu || mar || 05 || intro nonlinear continuum mechanics - stress measures  || ||
+
| thu || mar || 05 || intro nonlinear continuum mechanics - stress measures  || [http://biomechanics.stanford.edu/me338_09/me338_n16.pdf n16]  ||  
 
|-
 
|-
| tue || mar || 10 ||  intro nonlinear continuum mechanics - constitutive equations  ||     ||
+
| tue || mar || 10 ||  intro nonlinear continuum mechanics - constitutive equations  ||[http://biomechanics.stanford.edu/me338_09/me338_n17.pdf n17]  ||  
 
|-
 
|-
| thu || mar || 12 || journal club - final project discussion ||     ||
+
| thu || mar || 12 || journal club - final project discussion || [http://biomechanics.stanford.edu/me338_09/me338_h04.pdf n18]  ||
 
|}
 
|}
  
 
==final project==
 
==final project==
here's last year's  [http://biomechanics.stanford.edu/me338/me338_h04.pdf final project], a paper review of your choice, you can choose between rubber mechanics, biomechanics, geomechanics and growth mechanics <br>
+
the [http://biomechanics.stanford.edu/me338_09/me338_h04.pdf final project] of this class is the review of a recently submitted manuscript that introduces a new constitutive model for passive cardiac muscle tissue <br>
  
[http://biomechanics.stanford.edu/me338/me338_project01.pdf (1)] boyce mc, arruda em: constitutive models of rubber elasticity: a review, rubber chemistry and technology 73, 504-533, 2000 <br>
+
holzapfel ga, ogden rw: constitutive modelling of passive myocardium. a structurally-based framework for material characterization, philosophical transactions of the royal society a, accepted for publication, 2009
[http://biomechanics.stanford.edu/me338/me338_project02.pdf (2)] holzapfel ga: biomechanics of soft tissues, in: handbook of material behavior, academic press, 2000 <br>
+
[http://biomechanics.stanford.edu/me338/me338_project03.pdf (3)] jeremic b, runesson k, sture s: finite deformation analysis of geomaterials, international journal for numerical and analytical methods in geomechanics 25, 809-840, 2001 <br>
+
[http://biomechanics.stanford.edu/me338/me338_project04.pdf (4)] rodriguez ek, hoger a, mc culloch ad: stress-dependent finite growth in soft elastic tissues, journal of biomechanics 27, 455-467, 1994
+
  
 
==suggested reading==
 
==suggested reading==
Line 150: Line 145:
 
liu is: continuum mechanics, springer, 2002 <br>
 
liu is: continuum mechanics, springer, 2002 <br>
 
reddy jn: an introduction to continuum mechanics, cambridge university press, 2007 <br>
 
reddy jn: an introduction to continuum mechanics, cambridge university press, 2007 <br>
 +
...

Latest revision as of 20:20, 9 March 2010

Contents

me338A - continuum mechanics

Cm04b.jpg
Cm03b.jpg
me338A - continuum mechanics 09

ellen kuhl, serdar goktepe,
fawad muzaffar, olivier lacroix

winter 2009
tue thu 11:00-12:15
530-127

syllabus and set of notes

goals

although the basic concepts of continuum mechanics have been established more than five decades ago, the 21st century faces many new and exciting potential applications of continuum mechanics that go way beyond the standard classical theory. when applying continuum mechanics to these challenging new phenomena, it is important to understand the main three ingredients of continuum mechanics: the kinematic equations, the balance equations and the constitutive equations. after a brief repetition of the relevant equations in tensor algebra and analysis, this class will introduce the basic concepts of small strain kinematics. we will then discuss the balance equations for mass, momentum, moment of momentum, energy and entropy. while all these equations are general and valid for any kind of material, the last set of equations, the constitutive equations, specifies particular subclasses of materials. in particular, we will focus on isotropic and anisotropic hyperelasticity. finally, we will briefly address variational principles that characterize the governing equations. throughout this class, we will discuss the mechanics of the heart with its strains, fiber stretches, stresses, forces, and constitutive equations, to illustrate how continuum mechanics can be applied to relevant clinical problems.

continuum mechanics of the heart

special thanks to wolf, john, and neil for the hands on wet lab as introduction to homework 02

grading

  • 30 % homework - 3 homework assignments, 10% each
  • 40 % midterm - closed book, closed notes, one single letter format page of notes
  • 30 % final project - written evaluation of a manuscript and its discussion in class

syllabus

day date topic notes hw
tue jan 06 tensor calculus I - vector algebra n01
thu jan 08 tensor calculus II - tensor algebra n02
tue jan 13 tensor calculus III - tensor analysis n03
thu jan 15 tensor calculus IV - tensor analysis n04
tue jan 20 kinematics I - motion n05 h01
thu jan 22 kinematics II - strain n06
tue jan 27 balance equations I - contact fluxes n07
thu jan 29 balance equations II - concept of stress n08
tue feb 03 balance equations III - mass, momentum n09 h02
thu feb 05 balance equations IV - angular momentum, energy n10
tue feb 10 balance equations V - entropy, master balance law n11
thu feb 12 constitutive equations I - linear equations n12
tue feb 17 constitutive equations II - hyperelasticity n13 h03
thu feb 19 constitutive equations III - isotropic elasticity n14 project
tue feb 24 midterm prep
thu feb 26 midterm
tue mar 03 intro nonlinear continuum mechanics - finite strain kinematics n15
thu mar 05 intro nonlinear continuum mechanics - stress measures n16
tue mar 10 intro nonlinear continuum mechanics - constitutive equations n17
thu mar 12 journal club - final project discussion n18

final project

the final project of this class is the review of a recently submitted manuscript that introduces a new constitutive model for passive cardiac muscle tissue

holzapfel ga, ogden rw: constitutive modelling of passive myocardium. a structurally-based framework for material characterization, philosophical transactions of the royal society a, accepted for publication, 2009

suggested reading

... this is the book we will use in class...
holzapfel ga: nonlinear solid mechanics, a continuum approach for engineering, john wiley & sons, 2000

... and here are some other cool books for additional reading...
murnaghan fd: finite deformation of an elastic solid, john wiley & sons, 1951
eringen ac: nonlinear theory of continuous media, mc graw-hill, 1962
truesdell c, noll, w: the non-linear field theories of mechanics, springer, 1965
eringen ac: mechanics of continua, john wiley & sons, 1967
malvern le: introduction to the mechanics of a continuous medium, prentice hall, 1969
oden jt: finite elements of nonlinear continua, dover reprint, 1972
chadwick p: continuum mechanics - concise theory and problems, dover reprint, 1976
ogden, rw: non-linear elastic deformations, dover reprint, 1984
maugin ga: the thermodynamics of plasticity and fracture, cambridge university press, 1992
spencer ajm: continuum mechanics, dover reprint, 1992
robers aj: one-dimensional introduction to continuum mechanics, world scientific, 1994
bonet j, wood rd: nonlinear continuum mechanics for fe analysis, cambridge university press, 1997
silhavy m: the mechanics and thermodynamics of continuous media, springer, 1997
haupt p: continuum mechanics and theory of materials, springer, 2000
podio-guidugli p: a primer in elasticity, kluwer academic press, 2000
liu is: continuum mechanics, springer, 2002
reddy jn: an introduction to continuum mechanics, cambridge university press, 2007

...