ME338A
CONTINUUM MECHANICS

lecture notes 07

tuesday, january 27th, 2009
3 Balance equations

3.1 Basic ideas

• until now:
 kinematics, i.e. characterization of deformation of a material body \(B \) without studying its physical cause

• now:
 balance equations, i.e. general statements that characterize the cause of cause of the motion of any body \(B \)
basic strategy

• isolation of an arbitrary subset \bar{B} of the body B

• characterization of the influence of the remaining body $B \setminus \bar{B}$ on \bar{B} through phenomenological quantities, i.e. the contact mass flux r, the contact stress t_σ, the contact heat flux q

• definition of basic physical quantities, i.e. the mass m, the linear momentum I, the moment of momentum D and the energy E of subset \bar{B}

• postulate of balance of these quantities renders global balance equations for subset \bar{B}

• localization of global balance equations renders local balance equations at point $x \in \bar{B}$
3.1.1 Concept of mass flux

the contact mass flux \(r_n \) at a point \(x \) is a scalar of the unit [mass/time/surface area]

the contact mass flux \(r_n \) characterizes the transport of matter normal to the tangent plane to an imaginary surface passing through this point with normal vector \(n \)

definition of contact heat flux \(q_n \) in analogy to Cauchy’s postulate, lemma and theorem originally introduced for the momentum flux in §3.1.2

Cauchy’s postulate

\[
 r_n = r_n(x, n) \quad (3.1.1)
\]

Cauchy’s lemma

\[
 r_n(x, n) = -r_n(x, -n) \quad (3.1.2)
\]

Cauchy’s theorem

the contact mass flux \(r_n \) can be expressed as linear function of the surface normal \(n \) and the mass flux vector \(r \)

\[
 r_n = r \cdot n \quad (3.1.3)
\]
Mass flux vector

the vector field \mathbf{r} is called mass flux vector

$$\mathbf{r} = r_i \mathbf{e}_i$$ \hspace{1cm} (3.1.4)

Cauchy’s theorem

$$r_n = \mathbf{r} \cdot \mathbf{n}$$ \hspace{1cm} (3.1.5)

index representation

$$r_n = (r_i \mathbf{e}_i) \cdot (n_j \mathbf{e}_j) = r_i n_j \delta_{ij} = r_i n_i$$ \hspace{1cm} (3.1.6)

gameometric interpretation

the coordinates r_i characterize the transport of matter through the planes parallel to the coordinate planes

in classical closed system continuum mechanics (here) the mass flux vector vanishes identically

examples of mass flux: transport of chemical reactants in chemomechanics or cell migration in biomechanics
3.1.2 Concept of stress

traction vector

\[t_\sigma = \lim_{\Delta a \to 0} \frac{\Delta f}{\Delta a} = \frac{df}{da} \] \hspace{1cm} (3.1.7)

interpretation as surface force per unit surface area

Cauchy’s postulate

the traction vector \(t_\sigma \) at a point \(x \) can be expressed exclusively in terms of the point \(x \) and the normal \(n \) to the tangent plane to an imaginary surface passing through this point

traction vector

\[t_\sigma = t_\sigma(x, n) \] \hspace{1cm} (3.1.8)

Cauchy’s lemma

the traction vectors acting on opposite sides of a surface are equal in magnitude and opposite in sign

\[t_{\sigma_1}(x, n_1) = -t_{\sigma_2}(x, n_2) \] \hspace{1cm} (3.1.9)
generalization with $n = n_1 = -n_2$ and $t_\sigma = t_{\sigma 1}$

$$t_\sigma (x, n) = -t_\sigma (x, -n) \quad (3.1.10)$$

Cauchy's theorem

the traction vector t_σ can be expressed as a linear map of the surface normal n mapped via the transposed stress tensor σ^t

$$t_\sigma = \sigma^t \cdot n \quad (3.1.11)$$

accordingly with $n = n_1 = -n_2$ and $t_\sigma = t_{\sigma 1}$

$$t_{\sigma 1} = \sigma^t \cdot n_1 = \sigma^t \cdot n = t_\sigma$$
$$t_{\sigma 2} = \sigma^t \cdot n_2 = -\sigma^t \cdot n = -t_\sigma \quad (3.1.12)$$

Cauchy tetraeder

balance of momentum (pointwise)

$$t_\sigma (n) \, da = -t_\sigma (n_i) \, da_i = t_\sigma (e_i) \, da_i = t_{\sigma i} \, da_i \quad (3.1.13)$$

surface theorem, area fractions from Gauss theorem

$$nda = -n_i da_i = e_i da_i \quad \frac{da_i}{da} = e_i \cdot n = \cos \angle (e_i, n) \quad (3.1.14)$$
traction vector as linear map of surface normal

\[t_\sigma(n) = t_\sigma \frac{da_i}{da} = t_\sigma i \cos \angle(e_i, n) = t_\sigma i [e_i \cdot n] = [t_\sigma i \otimes e_i] \cdot n \]

(3.1.15)

compare \(t_\sigma(n) = \sigma^t \cdot n \)

interpretation of second order stress tensor as \(\sigma^t = t_\sigma i \otimes e_i \)

Stress tensor

Cauchy stress (true stress)

\[\sigma^t = t_\sigma i \otimes e_i = \sigma_{ji} e_j \otimes e_i \quad \sigma = e_i \otimes t_\sigma i = \sigma_{ij} e_i \otimes e_j \]

(3.1.16)

Cauchy theorem

\[t_\sigma = \sigma^t \cdot n \]

(3.1.17)

index representation

\[t_\sigma = \sigma_{ji} e_j \otimes e_i \cdot n_k e_k = \sigma_{ji} n_k \delta_{ik} e_j = \sigma_{ji} n_i e_j = t_j e_j \]

(3.1.18)
matrix representation of tensor coordinates of σ_{ij}

$$[\sigma_{ij}] = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{bmatrix} = \begin{bmatrix} t_{\sigma_1}^t \\ t_{\sigma_2}^t \\ t_{\sigma_3}^t \end{bmatrix} \quad (3.1.19)$$

diagram: geometric interpretation

with traction vectors on surfaces

$$t_{\sigma_1} = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \end{bmatrix}^t$$

$$t_{\sigma_2} = \begin{bmatrix} \sigma_{21} & \sigma_{22} & \sigma_{23} \end{bmatrix}^t \quad (3.1.20)$$

$$t_{\sigma_3} = \begin{bmatrix} \sigma_{31} & \sigma_{32} & \sigma_{33} \end{bmatrix}^t$$

first index ... surface normal
second index ... direction (coordinate of traction vector)
diagonal entries ... normal stresses
non–diagonal entries .. shear stresses