living matter lab
(Difference between revisions)
(me309 - finite element analysis in mechanical designl)
(syllabus)
 
(39 intermediate revisions by one user not shown)
Line 1: Line 1:
==me309 - finite element analysis in mechanical designl==
+
==me309 - finite element analysis in mechanical design==
  
 
<div>
 
<div>
Line 7: Line 7:
 
|-  
 
|-  
 
|  
 
|  
me309 - [[finite elements in mechanical design]] <br>
+
[http://biomechanics.stanford.edu/People ellen kuhl] - ekuhl.at.stanford.edu <br>
 
+
[http://stbl.stanford.edu/Marc_Levenston marc levenston] - levenston.at.stanford.edu <br>
[http://biomechanics.stanford.edu/People ekuhl.at.stanford.edu] <br>
+
[mailto:bhargav@stanford.edu addala bhargav] - bhargav.at.stanford.edu <br>
[http://stbl.stanford.edu/Marc_Levenston levenston.at.stanford.edu]<br>
+
[mailto:kimnk@stanford.edu namkeun kim] - kimnk.at.stanford.edu <br>
[mailto:bhargav@stanford.edu addala bhargav.at.stanford.edu]<br>
+
  
 
winter 2008 <br>
 
winter 2008 <br>
 
tue thu 9:30-10:45 <br>
 
tue thu 9:30-10:45 <br>
530-127
+
530-127<br>
 +
 
 +
this course has originally been developed by <br>
 +
[http://me.stanford.edu/me_profile.php?sunetid=sheppard sheri shepard]
 +
 
 
|}
 
|}
 +
</div>
 +
<div class="spacer">&nbsp;</div>
  
 
==goals==
 
==goals==
  
 
+
basic concepts of finite elements, with applications to problems confronted by mechanical designers. linear static, modal, and thermal formulations; nonlinear and dynamic formulations. students implement simple element formulations. application of a commercial finite element code in analyzing design problems. issues: solution methods, modeling techniques features of various commercial codes, basic problem definition. Individual projects focus on the interplay of analysis and testing in product design and development. prerequisite: math103, or equivalent. recommended: me80, or equivalent in structural and/or solid mechanics; some exposure to principles of heat transfer.
  
 
==grading==
 
==grading==
  
* 30 % homework - 3 homework assignments, 10% each <br>
+
* 50 % homework - 4 homework assignments, 12.5% each <br>
* 30 % midterm - open notes, with calculators, no books <br>
+
* 30 % midterm - open book, open notes <br>
* 40 % project - oral presentations graded by the class, written part graded by us
+
* 20 % project - final homework project
  
 
==syllabus==
 
==syllabus==
 
copyright ron kwon, ellen kuhl, chris jacobs, stanford, fall 2007
 
  
 
{| class="wikitable" style="text-align:center; width: 100%"
 
{| class="wikitable" style="text-align:center; width: 100%"
 
|-
 
|-
! day !! date !! !! topic !! notes !!  
+
! day !! date !! !! topic !! notes !! hw !!
 
|-
 
|-
| tue || sep || 25 || introduction I - cell biology || [http://biomechanics.stanford.edu/me339/me339_s01.pdf s01] || jacobs
+
| tue || jan || 08 || introduction || [http://biomechanics.stanford.edu/me309/me309_c00.pdf c00] [http://biomechanics.stanford.edu/me309/me309_c01.pdf c01] || || kuhl
|-
+
|-  
| thu || sep || 27 || introduction II - cytoskeletal biology || [http://biomechanics.stanford.edu/me339/me339_s02.pdf s02] || kwon
+
| thu || jan || 10 || 1d bar elements || [http://biomechanics.stanford.edu/me309/me309_c02.pdf c02] || [http://biomechanics.stanford.edu/me309/me309_h01.pdf h01] || kuhl
|-
+
| tue || oct || 02 || introduction III - mechanics || [http://biomechanics.stanford.edu/me339/me339_s03.pdf s03] || kuhl  
+
|-
+
| thu || oct || 04 || biopolymers I - bending & buckling || [http://biomechanics.stanford.edu/me339/me339_s04.pdf s04] || kuhl
+
|-
+
| tue || oct || 09 || first homework - biopolymers || [http://biomechanics.stanford.edu/me339/me339_h01.pdf h01] || [http://biomechanics.stanford.edu/me339/me339_h01s.pdf solution]
+
 
|-
 
|-
| tue || oct || 09 || biopolymers II - statistical mechanics || [http://biomechanics.stanford.edu/me339/me339_s050607.pdf s05] || kwon
+
| tue || jan || 15 || ansys - introduction (in terman 104) || [http://biomechanics.stanford.edu/me309/me309_c03a.pdf t01] [http://biomechanics.stanford.edu/me309/me309_c03b.pdf t02] [http://biomechanics.stanford.edu/me309/me309_c03c.pdf t03]  || || bhargav
 
|-
 
|-
| thu || oct || 11 || biopolymers III - gaussian chain || [http://biomechanics.stanford.edu/me339/me339_s050607.pdf s06]  || kwon
+
| thu || jan || 17 || 1d bar elements || [http://biomechanics.stanford.edu/me309/me309_c04.pdf c04]  || || kuhl
 
|-
 
|-
| tue || oct || 16 || biopolymers IV -  freely jointed chain & wormlike chain || [http://biomechanics.stanford.edu/me339/me339_s050607.pdf s07]  || kwon
+
| tue || jan || 22 || 1d beam elements || [http://biomechanics.stanford.edu/me309/me309_c05.pdf c05]  || || kuhl
 
|-
 
|-
| thu || oct || 18 || second homework - biopolymers || [http://biomechanics.stanford.edu/me339/me339_h02.pdf h02] || [http://biomechanics.stanford.edu/me339/me339_h02s.pdf solution]  
+
| thu || jan || 24 || 1d beam elements || [http://biomechanics.stanford.edu/me309/me309_c05.pdf c06]|| [http://biomechanics.stanford.edu/me309/me309_h02.pdf h02] || kuhl
 
|-
 
|-
| thu || oct || 18 || cytoskeletal mechanics I - filopodia - fiber bundle model || [http://biomechanics.stanford.edu/me339/me339_s0809.pdf s08] || kwon
+
| tue || jan || 29 || 2d trianglular elements || m03  || h05 || levenston
 
|-
 
|-
| tue || oct || 23 || cytoskeletal mechanics II - red blood cells - six and four fold network model ||  [http://biomechanics.stanford.edu/me339/me339_s0809.pdf s09] || kwon
+
| thu || jan || 31 || ansys - modeling || m03  ||  || levenston
 
|-
 
|-
| thu || oct || 25 || biomembranes I - pipette aspiration || [http://biomechanics.stanford.edu/me339/me339_s10.pdf s10] ||  kwon
+
| tue || feb || 05 || 2d quadrilaterial elements || m04 ||  ||
 
|-
 
|-
| tue || oct || 30 || cytoskeletal mechanics III - muscle cells - tensegrity model || || kuhl 
+
| thu || feb || 07 || isoparametric concept || m04 || h03,h04 ||
 
|-
 
|-
| thu || oct || 01 || third homework - cytoskeleton || [http://biomechanics.stanford.edu/me339/me339_h03.pdf h03] ||  
+
| tue || feb || 12 || stress calculation - error analysis || m05 ||  ||
 
|-
 
|-
| thu || nov || 01 || biomembranes II - soap bubbles & cell membranes || [http://biomechanics.stanford.edu/me339/me339_s12.pdf s12] ||  kuhl
+
| thu || feb || 14 || stress calculation - error analysis || m06 ||  ||
 
|-
 
|-
| tue || nov || 06 || biomembranes III - tension, shear & bending || [http://biomechanics.stanford.edu/me339/me339_s13.pdf s13] ||  kuhl 
+
| tue || feb || 19 || thermal analysis || m08 ||  ||
 
|-
 
|-
| thu || nov || 08 || mechanotransduction I || [http://biomechanics.stanford.edu/me339/me339_s141516.pdf s14] ||  jacobs
+
| thu || feb || 21 || thermal analysis || m08 ||  ||
 
|-
 
|-
| tue || nov || 13 || mechanotransduction II || [http://biomechanics.stanford.edu/me339/me339_s141516.pdf s15] ||  jacobs
+
| tue || feb || 26 || modeling errors - validation || m09 ||  ||
 
|-
 
|-
| thu || nov || 15 || midterm ||  [http://biomechanics.stanford.edu/me339/me339_m01.pdf m01] ||  
+
| thu || feb || 28 || special topics in finite element analysis ||  || ||
 
|-
 
|-
| tue || nov || 27 || mechanotransduction III || [http://biomechanics.stanford.edu/me339/me339_s141516.pdf s16] || jacobs
+
| tue || mar || 04 || midterm ||  ||   ||
 
|-
 
|-
| thu || nov || 29 || class projects - preparation, no class ||  ||
+
| thu || mar || 06 || special topics in finite element analysis ||  ||   ||
 
|-
 
|-
| tue || dec || 04 || class projects - oral presentations I || ||  
+
| tue || mar || 11 || special topics in finite element analysis ||   ||  ||
 
|-
 
|-
| thu || dec || 06 || class projects - oral presentations II  ||  ||  
+
| thu || mar || 13 || special topics in finite element analysis ||  ||  ||
 
|-
 
|-
| fri || dec || 14 || class projects - written projects due ||  ||  
+
| fri || mar || 14 || final projects due ||  ||  ||
 
|-
 
|-
 
|}
 
|}
Line 88: Line 85:
 
==additional reading==
 
==additional reading==
  
(1) boal d: mechanics of the cell, cambridge university press, cambridge, 2002 <br>
+
(1) cook rd: finite element modeling for stress analysis, john wiley & sons, 1995 <br>
(2) howard j: mechanics of motor proteins and the cytoskeleton, sinauer associates, sunderland, 2001 <br>
+
(2) buchanan gr: schaum's outline of finite element analysis, mc graw hill, 1994 <br>
(3) alberts b et al.: molecular biology of the cell, garland science, taylor & francis, new york, 2002
+
(3) logan dl.: a first course in the finite element method, cengage engineering, 2006

Latest revision as of 23:38, 13 February 2008

Contents

[edit] me309 - finite element analysis in mechanical design

Fem02.jpg
Fem01.jpg

ellen kuhl - ekuhl.at.stanford.edu
marc levenston - levenston.at.stanford.edu
addala bhargav - bhargav.at.stanford.edu
namkeun kim - kimnk.at.stanford.edu

winter 2008
tue thu 9:30-10:45
530-127

this course has originally been developed by
sheri shepard

 

[edit] goals

basic concepts of finite elements, with applications to problems confronted by mechanical designers. linear static, modal, and thermal formulations; nonlinear and dynamic formulations. students implement simple element formulations. application of a commercial finite element code in analyzing design problems. issues: solution methods, modeling techniques features of various commercial codes, basic problem definition. Individual projects focus on the interplay of analysis and testing in product design and development. prerequisite: math103, or equivalent. recommended: me80, or equivalent in structural and/or solid mechanics; some exposure to principles of heat transfer.

[edit] grading

  • 50 % homework - 4 homework assignments, 12.5% each
  • 30 % midterm - open book, open notes
  • 20 % project - final homework project

[edit] syllabus

day date topic notes hw
tue jan 08 introduction c00 c01 kuhl
thu jan 10 1d bar elements c02 h01 kuhl
tue jan 15 ansys - introduction (in terman 104) t01 t02 t03 bhargav
thu jan 17 1d bar elements c04 kuhl
tue jan 22 1d beam elements c05 kuhl
thu jan 24 1d beam elements c06 h02 kuhl
tue jan 29 2d trianglular elements m03 h05 levenston
thu jan 31 ansys - modeling m03 levenston
tue feb 05 2d quadrilaterial elements m04
thu feb 07 isoparametric concept m04 h03,h04
tue feb 12 stress calculation - error analysis m05
thu feb 14 stress calculation - error analysis m06
tue feb 19 thermal analysis m08
thu feb 21 thermal analysis m08
tue feb 26 modeling errors - validation m09
thu feb 28 special topics in finite element analysis
tue mar 04 midterm
thu mar 06 special topics in finite element analysis
tue mar 11 special topics in finite element analysis
thu mar 13 special topics in finite element analysis
fri mar 14 final projects due

[edit] additional reading

(1) cook rd: finite element modeling for stress analysis, john wiley & sons, 1995
(2) buchanan gr: schaum's outline of finite element analysis, mc graw hill, 1994
(3) logan dl.: a first course in the finite element method, cengage engineering, 2006