living matter lab
(Difference between revisions)
(syllabus)
(syllabus)
Line 40: Line 40:
 
| thu || sep || 25 || introduction to brain mechanics || [http://biomechanics.stanford.edu/me334_14/me334_s02.pdf s02] ||   
 
| thu || sep || 25 || introduction to brain mechanics || [http://biomechanics.stanford.edu/me334_14/me334_s02.pdf s02] ||   
 
|-
 
|-
| tue || sep || 30 || project example - growing skin || [http://biomechanics.stanford.edu/me334_14/me334_s03.pdf s03]||  
+
| tue || sep || 30 || dissecting brains || [http://biomechanics.stanford.edu/me334_14/me334_s03.pdf s03]||  
 
|-
 
|-
| thu || oct || 02 || kinematics - growing brains || [http://biomechanics.stanford.edu/me334_14/me334_s04.pdf s04] ||   
+
| thu || oct || 02 || brain anatomy - student presentations || [http://biomechanics.stanford.edu/me334_14/me334_s04.pdf s04] ||   
 
|-
 
|-
| tue || oct || 07 || basic kinematics - large deformation and growth ||  [http://biomechanics.stanford.edu/me334_14/me334_s05.pdf s05] ||  
+
| tue || oct || 07 || brain mechanics in 1d – elasticity of neurons ||  [http://biomechanics.stanford.edu/me334_14/me334_s05.pdf s05] ||  
 
|-
 
|-
| thu || oct || 09 || kinematics - growing hearts || [http://biomechanics.stanford.edu/me334_14/me334_s06.pdf s06] ||   
+
| thu || oct || 09 || brain mechanics in 3d – elasticity of the brain || [http://biomechanics.stanford.edu/me334_14/me334_s06.pdf s06] ||   
 
|-
 
|-
| tue || oct || 14 || balance equations - closed and open systems || [http://biomechanics.stanford.edu/me334_14/me334_s07.pdf s07] ||
+
| tue || oct || 14 || brain mechanics in 3d – viscoelasticity of the brain || [http://biomechanics.stanford.edu/me334_14/me334_s07.pdf s07] ||
 
|-
 
|-
| thu || oct || 16 || balance equations - wound healing  || [http://biomechanics.stanford.edu/me334_14/me334_s08.pdf s08] ||   
+
| thu || oct || 16 || brain mechancis in 3d – poroelasticity of the brain  || [http://biomechanics.stanford.edu/me334_14/me334_s08.pdf s08] ||   
 
|-
 
|-
| tue || oct || 21 || basic constitutive equations - growing muscle  || [http://biomechanics.stanford.edu/me334_14/me334_s09.pdf s09] ||
+
| tue || oct || 21 || brain growth in 1d – axonal growth  || [http://biomechanics.stanford.edu/me334_14/me334_s09.pdf s09] ||
 
|-
 
|-
| thu || oct || 23 || basic constitutive equations - growing tumors || [http://biomechanics.stanford.edu/me334_14/me334_s10.pdf s10] ||  
+
| thu || oct || 23 || brain growth in 2d – morphogenesis || [http://biomechanics.stanford.edu/me334_14/me334_s10.pdf s10] ||  
 
|-
 
|-
| tue || oct || 28 || volume growth - finite elements for growth - theory ||  [http://biomechanics.stanford.edu/me334_14/me334_s11.pdf s11]||  
+
| tue || oct || 28 || brain growth in 3d – physiology and pathology  ||  [http://biomechanics.stanford.edu/me334_14/me334_s11.pdf s11]||  
 
|-
 
|-
| thu || oct || 30 || volume growth - finite elements for growth - matlab || [http://biomechanics.stanford.edu/me334_14/me334_s12.pdf s12] ||  
+
| thu || oct || 30 || brain growth in 3d – pathologies || [http://biomechanics.stanford.edu/me334_14/me334_s12.pdf s12] ||  
 
|-
 
|-
| tue || nov || 04 || basic constitutive equations - growing bones  ||  [http://biomechanics.stanford.edu/me334_14/me334_s13.pdf s13] ||  
+
| tue || nov || 04 || brain growth in 3d – brain tumors  ||  [http://biomechanics.stanford.edu/me334_14/me334_s13.pdf s13] ||  
 
|-
 
|-
| thu || nov || 06 || density growth - finite elements for growth  || [http://biomechanics.stanford.edu/me334_14/me334_s14.pdf s14] ||
+
| thu || nov || 06 || brain fluid mechanics – hydrocephalus    || [http://biomechanics.stanford.edu/me334_14/me334_s14.pdf s14] ||
 
|-
 
|-
| tue || nov || 11 || density growth - growing wounds || [http://biomechanics.stanford.edu/me334_14/me334_s15.pdf s15] ||  
+
| tue || nov || 11 || brain dynamics in 1d - axonal injury  || [http://biomechanics.stanford.edu/me334_14/me334_s15.pdf s15] ||  
 
|-
 
|-
| thu || nov || 13 || everything grows! - midterm summary ||  [http://biomechanics.stanford.edu/me334_14/me334_s16.pdf s16]  ||  
+
| thu || nov || 13 || neurosurgery - brain doctors ||  [http://biomechanics.stanford.edu/me334_14/me334_s16.pdf s16]  ||  
 
|-
 
|-
| tue || nov || 18 || midterm || [http://biomechanics.stanford.edu/me334_14/me334_s17.pdf s17]    ||  
+
| tue || nov || 18 || brain dynamics in 3d - traumatic brain injury || [http://biomechanics.stanford.edu/me334_14/me334_s17.pdf s17]    ||  
 
|-
 
|-
| thu || nov || 20 || volume growth - growing hearts || [http://biomechanics.stanford.edu/me334_14/me334_s18.pdf s18] ||  
+
| thu || nov || 20 || brain dynamics in 3d – shaken baby syndrome || [http://biomechanics.stanford.edu/me334_14/me334_s18.pdf s18] ||  
 
|-
 
|-
 
| tue || dec || 02 || final projects - discussion, presentation, evaluation || [http://biomechanics.stanford.edu/me334_14/me334_s19.pdf s19]  ||
 
| tue || dec || 02 || final projects - discussion, presentation, evaluation || [http://biomechanics.stanford.edu/me334_14/me334_s19.pdf s19]  ||

Revision as of 22:33, 10 September 2014

Contents

fall 14 - me334 - mechanics of the brain

Brain2014a.jpg
Brain2014b.jpg

me 337 - mechanics of the brain 14

ellen kuhl
office hours tue 2:00-3:00, durand 217
course syllabus

fall 2014
tue thu 11:00-12:15
530-127

goals

understanding the role of mechanics in brain development, physiology, and pathology. mechanics of brain cells: neurons, mechanobiology, mechanotransduction. mechanics of brain tissue: experimental testing, constitutive modeling, computational modeling. mechanics of brain development: gyrification, cortical folding, axon elongation, lissencephaly, polymicrogyria. mechanics of traumatic brain injury: high impact loading, neural injury. mechanics of brain tumors, brain cancer, tumor growth, altered cytoskeletal mechanics. mechanics of neurological disorders: autism, dementia, schizophrenia. mechanics of brain surgery.

grading

  • 20 % dissection - presentation and written report, 10% each
  • 30 % homework - three homework assignments, 10% each
  • 20 % project presentation - graded by the class
  • 30 % project report - graded by instructor

syllabus

day date topic slides homework
tue sep 23 introduction to brain anatomy s01
thu sep 25 introduction to brain mechanics s02
tue sep 30 dissecting brains s03
thu oct 02 brain anatomy - student presentations s04
tue oct 07 brain mechanics in 1d – elasticity of neurons s05
thu oct 09 brain mechanics in 3d – elasticity of the brain s06
tue oct 14 brain mechanics in 3d – viscoelasticity of the brain s07
thu oct 16 brain mechancis in 3d – poroelasticity of the brain s08
tue oct 21 brain growth in 1d – axonal growth s09
thu oct 23 brain growth in 2d – morphogenesis s10
tue oct 28 brain growth in 3d – physiology and pathology s11
thu oct 30 brain growth in 3d – pathologies s12
tue nov 04 brain growth in 3d – brain tumors s13
thu nov 06 brain fluid mechanics – hydrocephalus s14
tue nov 11 brain dynamics in 1d - axonal injury s15
thu nov 13 neurosurgery - brain doctors s16
tue nov 18 brain dynamics in 3d - traumatic brain injury s17
thu nov 20 brain dynamics in 3d – shaken baby syndrome s18
tue dec 02 final projects - discussion, presentation, evaluation s19
thu dec 04 final projects - discussion, presentation, evaluation s20
fri dec 05 final project reports due

matlab files

finally... here's the matlab code for brain folding

additional reading

(1) taber l. biomechanics of growth, remodeling, and morphogenesis, appl mech rew 48, 487-545, 1995
(2) kuhl e, menzel a, steinmann p. computational modeling of growth - a critical review, a classification and two new consistent approaches, computational mechanics 32, 71-88, 2003
(3) rodriguez ek, hoger a, mc culloch a. stress-dependent finite growth in soft elastic tissues, j biomechanics 27, 455-467, 1994
(4) kuhl e, maas r, himpel g, menzel a. computational modeling of arterial wall growth - attempts towards patient-specific simulations based on computer tomography, biomech model mechanobio 6, 321-331, 2007
(5) göktepe s, abilez oj, parker kk, kuhl e. a multiscale model for eccentric and concentric cardiac growth through sarcomerogenesis.j theor bio 265: 433-442, 2010
(6) ambrosi d, ateshian ga, arruda em, cowin sc, dumais j, goriely a, holzapfel ga, humphrey jd, kemkemer r, kuhl e, olberding je, taber la, garikipati k. perspectives on biological growth and remodeling.j mech phys solids 59: 863-883, 2011
(7) zöllner am, buganza tepole A, kuhl e. on the biomechanics and mechanobiology of growing skin. j theor bio 297, 166-175, 2012
(8) menzel a, kuhl e. frontiers in growth and remodeling. mech res comm 42,1-14, 2012