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STRESS-DEPENDENT FINITE GROWTH IN SOFT ELASTIC
TISSUES
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Abstract—Growth and remodeling in tissues may be modulated by mechanical factors such as stress. For
example, in cardiac hypertrophy, alterations in wall stress arising from changes in mechanical loading lead
to cardiac growth and remodeling. A general continuum formulation for finite volumetric growth in soft
elastic tissues is therefore proposed. The shape change of an unloaded tissue during growth is described by
a mapping analogous to the deformation gradient tensor. This mapping is decomposed into
a transformation of the local zero-stress reference state and an accompanying elastic deformation that
ensures the compatibility of the total growth deformation. Residual stress arises from this elastic
deformation. Hence, a complete kinematic formulation for growth in general requires a knowledge of the
constitutive law for stress in the tissue. Since growth may in turn be affected by stress in the tissue, a general
form for the stress-dependent growth law is proposed as a relation between the symmetric growth-rate
tensor and the stress tensor. With a thick-walled hollow cylinder of incompressible, isotropic hyperelastic
material as an example, the mechanics of left ventricular hypertrophy are investigated. The results show
that transmurally uniform pure circumferential growth, which may be similar to eccentric ventricular
hypertrophy, changes the state of residual stress in the heart wall. A model of axially loaded bone is used to
test a simple stress-dependent growth law in which growth rate depends on the difference between the stress

due to loading and a predetermined growth equilibrium stress.

INTRODUCTION

Growth and remodeling are fundamental mechanical
processes both in the normal development of tissues
and in various pathological conditions. Mechanical
quantities such as the stress and strain in the tissue
can modulate its growth. For example, cardiac and
vascular hypertrophy are thought to be due, at least in
part, to increased wall stress (Fung, 1990; Grossman,
1980). It is also well known that growth and remodel-
ing in long bone are affected by the state of stress in
the limb (Carter and Hayes, 1977; Cowin, 1983, 1986;
Guo and Cowin, 1992). Indeed, considerable progress
has been made in developing models of growth and
remodeling in bone and cartilage. Cowin (1985) de-
veloped an analytical description of the microstruc-
tural evolution of fibrous tissues and bone in terms of
a fabric tensor. They made theoretical predictions for
diaphyseal surface remodeling and internal remodel-
ing of bones (Cowin and Firoozbakhsh, 1981). More
recently, Firoozbakhsh and Aleyaasin (1989) studied
the effects of stress concentrations in internal bone
remodeling, and Guo and Cowin (1992) studied sur-
face growth under torsional loading. Hart (1990) de-
veloped a finite element analysis for adaptive elastic
materials and studied the time course of strain-in-
duced surface remodeling. Harrigan and Hamilton
(1992) determined the conditions required for the
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stability of strain energy based laws for bone remodel-
ing. In contrast to the extensive work on bones, very
little has been done on modeling the relationship
between stress, strain and growth in soft tissues, prob-
ably because they usually exhibit large elastic defor-
mations under physiological loading and because soft
tissues, unlike bones, may be residually stressed.
One of the first applications of continuum mechan-
ics to the study of growth in deformable tissues was
a model of homogeneous stress-dependent growth for
linearly elastic materials developed by Hsu (1968).
Later, a continuum description of finite growth kin-
ematics was formulated by Skalak (1981) and Skalak
et al. (1982). They examined volumetric growth,
growth by accretion on surfaces and growth fields
with discontinuities. Skalak (1981) pointed out that if
the growth strain is incompatible, for example if the
growth of the different cells comprising a body occurs
in such a manner that the continuity of the body is
compromised, continuity may be maintained by an
elastic stress. Therefore, residual stress occurs as a re-
sult of the elastic deformation required to keep all
cells continuous with each other without introducing
gaps or superpositions. The fundamental importance
of residual stress in intact tissues was demonstrated by
Fung (1990) in blood vessels. The presence of a resid-
ual stress field can be identified if deformation occurs
when cuts are made in the unloaded tissue. Using this
experimental approach, Fung and coworkers have
shown the existence of residual stress in arteries
(Choung and Fung, 1986; Liu and Fung, 1988), veins
(Xie et al., 1991), ventricular myocardium (Omens and
Fung, 1990) and trachea (Han and Fung, 1991). The
deformation that returns the cut state of the tissue to
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the residually stressed, intact state defines the ‘residual
strain’. Fung (1990) suggests that changes in the resid-
ual strain reveal the effects of nonuniform growth and
remodeling. He measured changes in residual strain in
blood vessels by measuring the opening angles that
resulted when rings dissected from blood vessels were
cut across the wall relieving circumferential residual
stress. Remodeling after infrarenal aortic banding in
the rat correlated with significant changes in residual
strain.

Stress in a tissue may not only be caused or altered
by growth, but it may also affect the growth itself.
Grossman (1980) proposed that cardiac hypertrophy
and normal cardiac growth develop in response to
increased hemodynamic loading and altered sys-
tolic and diastolic wall stresses. He suggested that the
resulting patterns of hypertrophy reflect the nature of
the stress changes. A variety of laws for growth as
a function of stress, strain or strain energy have been
proposed for bone (Cowin, 1983). For soft tissues,
Fung (1990) proposed an equation for the mass rate of
growth as a function of some suitable measure of the
stress. In his formulation, growth or resorption occur
so that the stress due to loading in the tissue returns to
one of three equilibrium states. Around one of these
equilibrium states, if loading stress is high, then
growth occurs to reduce stress. If the stress is lower
than the equilibrium state, then resorption takes
place. However, if the stress is too high or too low, one
of the other two equilibrium states governs growth. In
this case, high stresses may lead to resorption as
may occur, for example, around a stress concentration
in bone. Similar ideas have also been proposed by
Pauwels (1980) for bone, However, growth is a three-
dimensional process whose rate is only fully described
by a tensor measure and not a single scalar growth
rate. Since the stress is also a tensor in the three-
dimensional body, a general formulation for stress-
dependent growth requires a tensorial constitutive
relation. The form of this relation and the conditions
restricting it have not been previously described.

A general continuum formulation for growth must
therefore allow for the possibility of residual stress
arising from growth, and should not rely on the exist-
ence of a global zero-stress state. Moreover, since the
kinematics of growth cannot always be separated
from the stress in the tissue, the constitutive law for
stress in the tissue will generally be required. The
purpose of this paper is to develop a general three-
dimensional theory for the continuum mechanics of
finite volumetric growth in soft elastic tissues. This
theory may be useful for studying the relationship
between stress and normal tissue growth or patho-
logic growth such as cardiac hypertrophy.

METHODS

In this section, the kinematics of finite growth are
introduced using the notation of finite deformations.
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In general, the shape change that occurs during the
growth of an unloaded body is due to two processes:
(1) material may be added or removed, changing the
local stress-free reference state of the tissue; (2) an
elastic deformation may be required to accommodate
this change in tissue configuration and volume in
order to make the total growth deformation compat-
ible (i.e. so that the material can undergo the growth
without introducing discontinuities in- the body). Re-
sidual stress arises from the elastic part of the total
deformation. Therefore, in our description of growth
kinematics, the total shape change during growth is
decomposed into these two parts: the change in tissue
stress-free reference state and the elastic deformation.
The dependence of the growth rate tensor on the
stress tensor is also examined in this section and
a general constitutive law for stress-dependent growth
is formulated. Finally, we give two examples of finite
growth in three-dimensional elastic bodies with pos-
sible applications to ventricular hypertrophy and con-
nective tissue.

To analyze the kinematics of growth, we define the
volumetric growth of a soft elastic tissue as the change
in the local zero-stress state of the body without
requiring that there exists a corresponding global
zero-stress state. Let B(t,y) denote a stress-free body at
time t5. We will see later that the analysis generalizes
directly for the case when B(t,) is not stress-free when
itis unloaded. The body may change in shape, density
and material properties with time as it grows and
remodels in the absence of any external loads. Let it
grow into a new stress-free state, B(t,). The mass rate
of growth per unit tissue volume V at a point is
defined by

d(p¥)
M=, 1
"= @
If p, the mass density, is constant with time then
dv
n= — 2
h=p— 2
Conservation of mass (Spencer, 1980) requires that
0
m=—a‘t—’+div(p V), ®)

where v is the growth velocity vector (Skalak et al.,
1982), which represents the rate and direction of
motion at each point in the tissue during growth.
Skalak suggested that velocity fields are useful for
describing growth because they embody the continu-
ous growth rate rather than discrete changes. Cowin
(1983), Cowin and Firoozbakhsh (1981) and Luo et al.
(1991) used growth velocities to describe surface re-
modeling in bone as a function of strain. If density is
constant with time and position then

h=pdivv. @)

Density is considered here to be constant in time and
position because we assume that material properties
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do not change with growth alone. This assumption
was also adopted by Hsu (1968) and others (Cowin
and Firoozbakhsh, 1981; Guo and Cowin, 1992; Mat-
theck and Huber-Betzer, 1991). We consider the
growth to consist of the addition or removal of the
same tissue material. Hence, from equations (1) and
(4), the rate of unit tissue volume change is

dv .
a—=d1v v=trD,, (%)

where D, is the rate of growth tensor, which is analog-
ous to the rate of deformation tensor in continuum
mechanics (Spencer, 1980); it is the symmetric part of
the gradient of the growth velocity field. The trace of
D, is the rate of volumetric growth or dilation. The
tensor D, has the advantage that growth rate func-
tions can be described without an initial reference
configuration, which may be difficult to define experi-
mentally. Alternatively, the growth rate may be de-
scribed by an equivalent Lagrangian measure, the rate
of growth stretch tensor U,, which is referred to
a defined reference state. The growth stretch tensor U,
can be obtained simply by integrating UE in time. The
relation between the rate tensors D, and U, is given in
Appendix B.

The growth stretch tensor U, is related to the
growth deformation gradient tensor F, by the right
polar decomposition*

F,=R,U,, 6)

where R, is the rotation part of the growth deforma-
tion. The growth deformation gradient F, is analog-
ous to the deformation gradient tensor in continuum
mechanics (Spencer, 1980). Its components are given
in Appendix A. To formulate a problem, U, may be
specified and integrated in time to obtain U,. It will be
seen below that R, may be chosen to equal the ident-
ity tensor so that U,=F, without loss of generality.

Let the Cauchy stress tensor T in the original elastic
body B(t,) be given by the function T:

T=T(C), )

where C=FTF is the right Cauchy-Green deforma-
tion tensor referred to material coordinates in the
original body. Following volumetric growth with no
change in the elastic response of the tissue, the stress
in the grown body is given in terms of deformation
components referred to the original material coordin-
ates by

T=T(F;TCF; ). (8)

The preceding description establishes the kin-
ematics of the local change in the zero-stress reference
state. We now consider how growth affects the state of
stress in the body. Even in the absence of external
loads, the state of stress in a grown body may be

*Right as opposed to left because it leads naturally to the
Lagrangian formulation.
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altered by the introduction of residual stress during
growth. This arises because there is no requirement
that the growth deformation gradient F, corresponds
to a compatible displacement field, i.e. the change in
local zero-stress state during growth need not be
continuous from point to point. For example, a cell
may grow independently of its neighbors. Later we see
that there are also smooth growth fields that are not
compatible. Hence, if we require that the tissue re-
mains intact and continuous as it grows, the observed
growth deformation in the absence of external loads
may not be the same as F, defined above. As shown in
Fig. 1, the deformation defined by F, describes the
growth from the original zero-stress reference state
B(ty) to a new locally stress-free state B(t,), which
may differ from the observed intact grown state B'(t, ).
The part of the total growth deformation that maps
B(t,) to the unloaded state B'(z,) is an elastic defor- .
mation F, that ensures the continuity of the body.

From the preceding discussion, the overall ob-
served growth deformation F., that maps B(t,) to
B'(t,) is then given by

F.,=F.F,. ©)

Itis now evident why R, in equation (6) can be chosen
to be the identity without loss of generality; any rota-
tional part of F, can be incorporated into the elastic
part of the total growth deformation.

Since B(t,) is the new zero-stress reference config-

uration, the state of stress in B'(t,) must be
T=T(FTF,). (10)

If the body is in equilibrium in the absence of external
loads, then the stress given by equation (10) is a resid-

ual stress T. Therefore, incompatible growth fields

B(t,) B'(t,)
T=0 E T=T

B
N

v

B(t))
T=0

Fig. 1. Three states in finite growth of a stress-free tissue: (a)
the original zero-stress reference state B(ty); (b) the grown
zero-stress B(ty ); (c) the observed intact and unloaded grown
state B'(t;) with residual stress T. The growth deformation
gradient F, maps B(t,) into B(t;). However, F; may not be
compatible so B(z,) is shown as a collection of discontinuous
and superimposed material. So that the overall growth
deformation is compatible, the elastic deformation F. is
required to map B(t,) into the intact grown state B'(t,). F,
gives rise to the residual stress ’g‘ in B'(ty). The overall growth
deformation is then the composition given by equation (9).
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lead to residual stress that arises as a direct result of
the elastic deformations required to maintain continu-
ity of the body. Clearly, the analysis of finite growth
kinematics in an elastic tissue will, in general, require
that the constitutive law for stress in the tissue be
known. When growth occurs under conditions of ex-
ternal loading, F, also includes the elastic deforma-
tion due to the load. When the original undeformed
reference state is residually stressed, the above ana-
lysis generalizes directly provided that the mapping
that describes the local stress-free state at each point
in the reference body is known, even though that
mapping will not be compatible. The problem then
becomes the same as that of a subsequent growth
deformation referred to a previously grown state. If
this local stress-free configuration of the reference
residu%lly stressed body is not known, but the residual

stress T is, then the analysis will require a form for the
constitutive law that is valid for a residual stress field.
For the case of finite elastic deformations, a valid
general form is not presently known. However, Hoger
(1993) has presented a constitutive law for residually
stressed elastic bodies that undergo small strains and
arbitrary rotations.

In general, growth may depend on the state of stress
in the tissue at each point. To describe stress-depend-
ent growth, we require a constitutive law for the
mathematical form of the growth tensor as a function
of the stress tensor. Since the growth deformation F,
does not include a rotation, the growth law may be
formulated by writing the growth stretch U, as a func-
tion of the Cauchy stress T:

U=, (T), (11)
where fJg is a tensor-valued function that maps sym-
metric tensors into symmetric tensors. In most cases
det Ug#1,

Another, perhaps more physiological, approach to
the formulation of stress-dependent growth functions
is to write the growth rate as a function of the stress.
This would admit a growth law of the type described
by Fung (1990). Recall that the rate of volume change
at a point is given by the trace of the growth rate
tensor D, [equation (5)]. However, a complete de-
scription of the growth rate requires all the compo-
nents of D,. Thus, the growth function may take the
form

D, =D,(T), (12a)

where ﬁg is a symmetric function that maps symmet-
ric tensors into symmetric tensors. Since U, and D,
are related by equations (B1) and (B2), equation (12a)
can be written as

U, =0,(T), (12b)

where fIg is also a symmetric valued function of sym-

metric tensors, ) .
A formulation in terms of U, is easier to integrate
than one in terms of D, since integrating U, provides
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U, (=F,). The growth stretch tensor U, is invertible
and positive-definite. .

If, as suggested by Fung, there exists a stress state T
corresponding to growth equilibrium, then it is well
motivated to define the growth rate tensor to be zero
when the stress is at the growth equilibrium state, i.e.

~ %
D,=D,(T-RTR") (13a)

and

U,=U,(T-RTRY) (13b)
In these equatiogs, the rotation R is required to en-
sure that T and T are measured in the same frame of
reference, as required by observer independence (Gur-
tin, 1981).

Two models were used to study independently how
growth leads to residual stress and how stress may
determine the growth pattern of a tissue. For the first
case, a growth displacement field is specified in an
unloaded cylindrical tube and the residual stress fields
that result from different growth fields are examined.
In the second example, a loaded specimen is used to
study stress-dependent growth using a simple law.
The basic equations of this boundary value problem
are given in Appendix C.

Residual stress arising from growth

A hollow cylindrical tube model composed of an
incompressible isotropic elastic material is used to
illustrate how circumferential growth gives rise to
a transmural distribution of residual stress that would
cause the cylinder to change shape when cut. Circum-
ferential growth serves as a first approximation for
eccentric ventricular hypertrophy, a clinical term that
describes ventricular enlargement in response to chro-
nic volume overload (elevated filling pressure). The
residual stress present in the cylinder after growth is
calculated assuming that growth strains generate
stresses similar to those of loading so that a constitut-
ive equation for an isotropic material can be used. To
obtain the growth deformation F, we prescribe the
following growth displacement field:

?=Ky(R)O, (14)

A point P in the original stress-free configuration
B(ty) has the coordinates (R, ©, Z). F, maps the orig-
inal state B(t,) into the new locally stress-free state
B(t,), in which P has coordinates (p, @, {). The term
Ky(R) is a circumferential growth stretch ratio that
depends on the radius, but for simplicity we use a con-
stant which is sufficient to introduce a nonuniform
residual stress. A value K,> 1.0 simulates growth, and
when K< 1.0 resorption occurs. This displacement
field is incompatible since ¢ is not unique at @ =0, 2.
The incompatibility can be seen in F ig. 2, where the
locally stress-free state B(t,) is shown when K,=0.9
and Ky=1.1. When K,=0.9 there is discontinuity in

P=R, {=Z
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A) K0 =0.9

Locally stress-free state

o\

before circumferential resorption

————

Be

Locally stress-free state
after circumferential resorption

Grown unloaded state
with residual stress

A

E

B) K, =11

Locally stress-free state
before circumferential growth

5\

——————
S

Locally stress-free state
after circumferential growth

Grown unloaded state
with residual stress

4

/x

Fig. 2. Cylindrical models of the left ventricle in the zero-stress state after uniform circumferential growth:
(A) resorption (K, = 0.9); (B) growth (K, =1.1). The original zero-stress is a hollow cylinder (B(t,)). Note that
the grown state B(t,) is stress-free and discontinuous in both cases. In the case of resorption, to achieve an
intact grown state, an elastic deformation that takes the grown open configuration into a closed cylinder is
required. This elastic deformation, in turn, will give rise to residual stress. After uniform circumferential
resorption the B(ty) state will appear as shown in panel B. This state is stress-free but it shows
a superposition of material. To achieve an intact configuration, an elastic deformation that opens the
cylinder to prevent any superposition is required. As before, this elastic deformation will also give rise to
residual stress in the final grown state.

the cylinder which is not permissible if the total
growth deformation is to be compatible. When
Ky=1.1 there is a superposition of material which
should not occur in a compatible deformation. The
displacement field of equation (14) defines the follow-
ing growth deformation gradient:

1 0 0
F,=0 2K, o (15)
R
0 0 1

In order that the overall growth deformation field is
compatible, an additional elastic deformation is re-
quired that will be used in the constitutive equation

for the material to determine the residual stress that
must satisfy equilibrium and the zero traction bound-
ary condition. A displacement of the form

r=r(p), 6=’70(P)(P’ Z=¢zZ, (16)

which maps the state B(t,) to the final grown state of
the intact body B'(t,) in which P has coordinates
(r, 0, z), gives rise to the elastic deformation

dr(p)
5, 0 °
F=| 0 Ly ol a7
P
0 0 ¢
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An appropriate choice of 1e(p) allows the overall
growth deformation F, F, to be compatible by restor-
ing continuity of displacements at ®=0,2x. For the
case when K, is a constant, the simplest choice is
Ns=1/Ky. The elastic deformation also allows for
some axial change in length via the parameter &,
The incompressibility constraint is only applied to
F, so that the third principal invariant of C is unity,

ie.
orr 2
Iy={—- =1,
3 (app“la)

which can be integrated to obtain an expression for
the net grown radius, r.

From equation (7) with C=FZ, F,,, the stress be-
comes a function of F,. Lagrangian strain compo-
nents referred to the coordinates in state B(t;) cal-
culated from E=%(FIF,~I) are given by

1] /RK,\?
Fm| () -1
1 r \?
E@[(ﬁ;) ‘1]’

E“=%(82 - 1).

(18

19)

For this example, we adopt the form for the
stress-strain relationship used by Gueccione et al.
(1991) for resting passive ventricular myocardium.
They used the strain energy function suggested by
Choung and Fung (1986):

W=s@e2-1), (20)
where c is a constant and Q is a function of the three
principal strain components that defines the material

symmetry of the tissue under consideration. For an
isotropic material, Q is

0=2by(E,p+E,,+Ey), 21

where b, is a constant. The stress is then obtained
from

ow oW
Ty=3FisFjr (ﬂ"’ﬁ)*ﬂ&m (22)

where p is the hydrostatic pressure that enters into the
constitutive equation as a Lagrange multiplier.
The equilibrium equations are

d_Tn_'+ Trr"" T00=

& 0, 23)
7, T,
h+2_;9=o, (24)
dr r
AT T 2
dr r

However, since the zero traction boundary condition
at the inner and outer walls was used, only equation
(23) has to be solved. Integrating this equation gives
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T T T,
Trr"_‘Jv -ﬂgﬁdr+Trrlr=rp (26)

where T,, at r=r, is the radial stress at the outer
grown wall and was specified as zero. The internal
pressure is equal to —7,, at r=r;. The model is
solved by specifying the grown inner radius ry and
solving for the final value of inner radius that gives
zero transmural pressure. Transmural residual stress
distributions are then calculated for the grown state.

Stress-dependent growth

In this example, we analyze stress-dependent
growth in the absence of residual stress by considering
a simple homogeneous stress-field. Since reliable data
on stress-dependent soft tissue growth are not avail-
able, we solve a rectangular model of bone tissue
subjected to compressive stress and small strains but
without assuming infinitesimal linear elasticity. The
block grows in external dimensions as a linear func-
tion of the difference between the loading stress and
a preestablished no-growth equilibrium state of stress.

We assume elastic properties for tissue from the
diaphysial region of human femur with a Young’s
modulus along the long axis (z-axis) estimated to be
184 GPa (Cowin, 1983). The block is compressed
along its long axis with the two other dimensions
corresponding to the radial (x-axis) and circumferen-
tial (y-axis) directions (Fig. 3). Since the problem is
homogeneous, there is no residual stress (Hoger, 1986;
Hsu, 1968). The original specimen B (to) was subjected
to compressive loading that gave rise to the deformed
state characterized by the elastic deformation gradi-
ent F.. If the corresponding axial stress is different
from the growth equilibrium stress, then the tissue
grows or resorbs along its x and y dimensions until
equilibrium is restored.

The elastic deformation gradient that arises from
compressive loading is given by

Vi
F.= 0 0|, (27)

where 1 is the stretch ratio (< 1) in the axial direc-
tion. Although the shortening specified was only 0.1%
(43=0.999), we developed this example using finite
deformation theory for generality. Strains are com-
puted from

E=}(F{F.~]) (28)

and the axial stress due to loading is computed from

oW
=F. |— |FT, 29
T F( aE) 9)
with the strain energy W given by
W=Cl (E22cx+E3'y+Efz (30)
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B)

Fig. 3. A block of bone with material properties from the diaphysial region of human femur was subject to

compression along its long axis (Young’s modulus of 18.4 GPa along the z-axis). Upon compression, it

grows along the radial (x-axis) and circumferential (y-axis) directions as a linear function of the difference
between the applied stress and a predetermined no-growth equilibrium stress.

so that

T.2=2c, Ezzezez’ (31)

where 2¢; corresponds to the Young’s modulus along
the long axis.

The no-growth equilibrium state is cleﬁned by
a growth equilibrium value for axial stress T,,. At any
given time t, the components of the rate of growth
tensor U, are given by

who used growth constants of —0.5 mmtime~! in
their strain-dependent growth formulation. We
divided this growth rate constant by the Young’s
modulus to obtain a constant for stress-dependent
growth and then normalized it by a characteristic
length of 1 mm to describe growth stretch rates per
unit stress. Our growth rate constants (K, and K,)
were —0.27 time™! GPa™*.

The growth stretch ratios with respect to the un-
grown stress-free reference state at time 0 are then

A=K [T..()-T..], (32a) given by
At +de)=A,(t)+ A, dt, (33a)
b =K, [T, 0)-T..1, (32b) A (t+dt)= Ay (&) + £, dt. (33b)
Equations (32) can be used to write the rate of growth tensor U,:
KoL)~ 101 0
U 0= 0 KT ~T.] 0 (34
0 0
The tensor U, can then be integrated in time to yield U; (=F, since R, =identity):
P O BT 0 0
F,(t+dt)= 0 K [T 0-T.]d+F, (5 0 |, (35)
0 0 F,..(t)

where K, and K, are constants. The no-growth equi-
librium axial stress T,, is —4.5 MPa (Firoozbakhsh

and Aleyaasin, 1989). K, and K, have equal values for
this example and were obtained from Luo et al. (1991),

where the time period dt corresponds to an arbitrary
increment in time corresponding to one iteration and
where F,(t+dt) is the growth deformation gradient
referred to the original stress-free state of time 0.
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In each iteration, the axial stress calculated from
the prescribed compressive strain is computed and the
tissue is allowed to grow accordingly. In successive
time steps, the axial strain is adjusted so that the
applied axial force remains constant. As the cross-
sectional area grows, the elastic stress is reduced, the
block shortens less, and the growth rate falls. To
observe the progress of growth, the unloaded dimen-
sions were plotted at each time step.

RESULTS

The hollow tube model illustrates how circumferen-
tial growth can give rise to a transmural distribution
of residual stress that would cause the cylinder to
change shape when cut. With K,=0.9 (resorption),
¢=1.0and initial internal and external radii of 2.0 and
3.0 cm, the grown radii satisfying equilibrium were
1.76 and 2.76 cm, respectively. The transmural resid-
ual stresses in Fig. 4(A) show zero radial stress T,, at
the outer and inner walls since the cylinder was un-
loaded. Circumferential stress Ty increases nonlin-

A)

Kﬂ =09 circumferential

radjal

Stress (kPa)
g

20 22 24 26 a8
Undeformed radius (cm)

0.4+

Ky=11

0.3+

0.2

Stress (KPa)

0.0- radial

-0.1

2.0 22 24 2.6 28 3.0
Undeformed radivs (cm)

circumferential

Fig. 4. Plots of residual stress vs undeformed radius for
a hollow cylinder after uniform circumferential resorption
(A) and uniform circumferential growth (B). In both cases
radial stress is zero at both boundaries since the cylinder is
unloaded. When the circumferential growth stretch ratio
K,=09 (resorption), circumferential residual stress is
compressive in the inner wall and tensile in the outer wall.
Referring to Fig. 2(A) this is as expected, since this
distribution can be interpreted as the result of an elastic
deformation that ‘bends’ the open cylinder to form a closed
residually stressed cylinder without any discontinuities.
When K;=1.1 (growth) the circumferential residual stress is
compressive in the outer wall and tensile in the inner half.
This is also the expected distribution when the locally
stress-free state is as diagrammed in Fig. 2(B).

early from compression in the inner layers to tension
in the epicardium. The neutral axis is closer to the
inner boundary. This distribution is similar to the
solution of the flexure problem when an open arc is
closed into a circle. Indeed it is equivalent to the
solution for an arc with an opening angle of (1 — K,) 2
(Guccione et al., 1991).

With Ky=1.1 (growth) and £=1.0, the grown inner
and outer radii were 2.25 and 3.25 cm, respectively. In
this case, the transmural stress gradients reversed
from those from resorption [Fig. 4(B)]. The circum-
ferential residual stress is compressive in the outer
layers and tensile in the inner half of the wall. This
distribution is such that it would give rise to a nega-
tive opening angle (closing) if circumferential residual
stress were relieved.

In both cases, the axial stress T,, was also nonzero.
The resultant of this stress determines whether the
cylinder would stretch or shorten. The solution of this
model with a fixed length is a simplifying approxima-
tion. In a fully three-dimensional solution, the axial
residual strain that eliminates this stress would be
nonhomogeneous precluding analytic solution.
Nevertheless, the resulting axial force in this model,
when no changes in length were allowed, was close to
zero. The axial deformation that minimized the axial
resultant was less than 1% of the length. This approx-
imation does not affect the validity of our observa-
tions regarding the circumferential residual stress
since the problem of interest is two-dimensional.

To demonstrate how stress-dependent growth can
be incorporated into a model of tissue growth, the
growth of a rectangular bone block subjected to stress
was modeled. In this example, all stresses arose from
loading and there was no residual stress involved. The
initial compressive axial stress due to 0.1% shortening
was about four times the growth equilibrium stress of
—4.5 MPa and decreased with time as the specimen
grew asymptotically reaching the equilibrium value
[Fig. 5(a)]. Although a small deformation was im-
posed (0.1% shortening), the model parameters speci-
fied led to large growth deformations (100%) [Fig.
5(b)]. The time constants for both variables were also
different. Whereas the axial stress took 201 time units
to reach 50% of the asymptotic value, the growth of
the x and y dimensions took 241 time units. In both
cases, the rate of change of these values was highest
immediately after the load was applied.

DISCUSSION

In this paper, we have presented a general con-
tinuum formulation for finite volumetric growth in
soft elastic tissues in which residual stress arises nat-
urally and growth may be dependent on the state of
stress in the tissue. The shape change of an unloaded
tissue during growth is described by a mapping ana-
logous to the deformation gradient tensor. This map-
ping is decomposed into a transformation of the local
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Fig. 5. Results from a stress-dependent growth simulation
on an axially (z-axis) loaded bone block. A load leading to
0.5% shortening was imposed and growth occurred to
reduce the state of stress to a predetermined equilibrium
state. The top panel shows the time course of axial stress as it
decreases asymptotically towards the no-growth equilibrium
stress of 4.5 MPa. The lower panel shows the growth ratios
for the x and y dimensions.

zero-stress reference state and an accompanying elas-
tic deformation that ensures the compatibility of the
total growth deformation. Residual stress arises from
this elastic deformation. Intuitively, residual stress
arises from the part of the total growth deformation
that is responsible for accommodating the newly
grown tissue to prevent discontinuities in the grown
state of the body. This theory was used to develop
a model] that illustrates how uniform circumferential
growth, as may occur in eccentric hypertrophy, may
reduce the residual stress in the ventricular wall.

A second model was developed to illustrate stress-
dependent growth. Since growth may be influenced by
the state of stress and strain in the tissue, a complete
continuum formulation of growth mechanics should
include the relationship between the growth and stress
or strain arising from loading. However, in soft tis-
sues, strain-dependent growth laws like those used for
bone (Cowin, 1983; Cowin and Firoozbakhsh, 1981)
have the disadvantage that many reference states for
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the finite strain are possible. If the local stress-free
state is chosen as the reference state for strain, then
this reference state changes with growth. If some orig-
inal reference state of the body is used, then the strain
at growth equilibrium may change. For example,
a hypertrophied state of the heart may be at growth
equilibrium, yet it will be strained with respect to an
original growth equilibrium reference state. Later, if
increased loading causes further hypertrophy, a new
growth equilibrium state may again be reached at
a different strain. Therefore, since we define growth by
the change in the zero-stress reference state, we have
chosen a formulation in which growth is stress-de-
pendent rather than strain-dependent. The stress de-
pendence of growth rate was derived by defining both
the Eulerian rate of growth tensor D, and its Lagran-
gian equivalent, the rate of growth stretch U,. A def-
inition for stress-dependent growth rate in linearly
elastic materials had been previously formulated by
Hsu (1968) in terms of stress and stress rate.

The theory suggests several experimental ap-
proaches. One is to measure the total growth defor-
mation F.,. For example, Omens and Covell (1991)
used biplane radiography of metal markers to
measure the transmural distribution of three-dimen-
sional growth strains in the end-diastolic state of the
left ventricle during volume overload hypertrophy. If
F., is measured, then educated proposals for F, may
be formulated. The validity of the proposed growth
field can then be tested by seeing if the elastic part of
the total deformation satisfies equilibrium under the
existing loading conditions. Alternatively, it is also
possible to measure F, if a locally stress-free state can
be obtgined in a practical way. In the case of the
passive rat heart, a satisfactory approximation of the
stress-free state was obtained by Omens and Fung
(1990), who made a radial cut across the free wall of an
equatorial slice of the left ventricle to relieve circum-
ferential residual stress. The slice sprang open with
a mean opening angle of about 45°, The ‘residual
strain’ describing the deformation from the zero-stress
state to the intact state was measured by analyzing the
motion of small markers on the tissue surface and is
equivalent to F, in our model. More recently, Costa
et al. (1993) successfully measured the three-dimen-
sional residual strains that are relieved in the free wall
of the canine left ventricle when a segment of the
myocardium with implanted radiopaque markers was
excised. Once the stress-free state is known, its evolu-
tion can be measured in specimens studied at different
stages of growth so that a time-dependent form for F,
can be proposed. This has been done by Rodriguez
et al. (1993) for the rat heart in a model of concentric
hypertrophy arising from pressure overload hyper-
trophy induced by surgical banding of the ascending
aorta. The changes in shape of the stress-free state
were measured at 3,7, 14 and 21 days after banding.
Taber et al. (1993) measured residual strains in the
ventricle of the Hamburger—-Hamilton stage 16-24
(2.5-4.5 days of incubation) chick embryo. They
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showed significant changes in residual stress with car-
diac development during morphogenesis. A limitation
of this experimental approach is that a unique global
stress-free state may not exist. The cutting experi-
ments in soft tissues reveal the presence of residual
stress but, in general, the true stress-free state may not
be obtainable by one or even many cuts or by
a unique set of cuts. For example, Takamizawa and
Hayashi (1987) examined the zero-stress state that
would result in a thick-walled pressure vessel if the
strain under load was assumed to be uniform across
the wall. A unique global stress-free state could be
found for a cylindrical geometry under the uniform
strain hypothesis, but there was no such state for
a sphere. This, however, is not a limitation of our
theory, which does not rely on the existence of a glo-
bal zero-stress state. Indeed, it may be possible to use
our model to estimate how much of the residual stress
arising from growth would be relieved by one or more
cuts.

If changes in the time course of growth deformation
and tissue stress can be estimated, then a stress-de-
pendent growth law for the intact tissue may be pro-
posed in the form of equations (12) or (13). Another
approach is to study morphological and cellular cha-
nges in cell or tissue culture preparations subjected to
known mechanical loading (Sadoshima er al., 1992,
Terracio et al., 1990). Nonconfluent cell culture prep-
aration may be best for identifying the stress-depend-
ent growth relations since, as the culture becomes
confluent, residual stress may arise from the interac-
tion between cells.

If any two combinations of the growth F,, the
residual elastic deformation F, or the total growth
F.; are known and are nonsingular, then the third
quantity can be found from equation (9). One restric-
tion is that F, consists only of stretch so that any
rotation in F., must reside in F.. However, if only
Fg is known, then many combinations of the growth
and elastic deformations may be possible because
a certain growth state may arise from more than one
growth path.

For the growth deformation with gradient F,, the
ratio, at a point, of material volumes after and before
growth is the determinant. If the deformation is
isochoric (ie. volume preserving), then the determi-
nant is unity. If material is added it is greater than
one, and if it is being removed (due to resorption) it is
less than one. A difficulty arises in the situation where
resorption of existing material or creation of new
material occurs at a point. For a given material vol-
ume element, resorption may reduce the volume to
zero. In this case, det F;=0. Conversely, when new
material particles appear, det F; may tend to infinity
in local regions. These situations introduce singular-
ities in the growth strain field. To overcome this we
consider a region P of the body over which the aver-
age of det F is larger than zero and less than infinity
since not all particles in the region are disappearing or
appearing at the same instant. An alternative ap-
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proach may be to make use of the theory of distrib-
uted dislocations to describe growth. Kroner (1958)
used dislocation theory to examine the problem of
‘extra mass’ in a single crystal in the form of a hollow
ring, After an increase in internal mass due to heating
or atomic diffusion the ring opened when cut. Fur-
thermore, as proposed by Skalak (1981), using dislo-
cation theory to study growth leads naturally to the
concept of incompatibility. The relation between in-
compatibility and dislocation density has been well
established in the literature (Gairola, 1979; Nabarro,
1987). The incompatibility of a growth field can be
expressed in terms of an incompatibility tensor and
dislocation density in terms of a dislocation density
tensor (Gairola, 1979).

A common example of discontinuous growth is the
case where volume is added by accretion or depos-
ition onto a surface, such as occurs in bones, branches,
shells and horns. In soft tissues, wound healing and
scar formation may be similar in this respect. Skalak
et al. (1982) treated the problem of describing the
motion of points growing from a surface by introduc-
ing a second time variable. These points do not have
an original position in the reference configuration and
the additional time variable describes the time elapsed
from the moment of their creation at the growth
surface. For those points originally present in the
reference configuration, the secondary time variable
and the primary time variable are equivalent. Cowin
(1983) formulated a theory of bone surface growth in
terms of the growth velocity of the external surface of
a bone.

In general, material added to an external surface
may affect the state of stress in the newly grown
material as well as the existing material. In fact, in
different situations the state of stress is changed in
different ways. For example, material added to the
surface of a seashell may not give rise to residual stress
in the existing material and the whole shell may re-
main stress-free after growth. On the other hand,
a branch growing horizontally is affected by bending
stresses, Finite element modeling studies by Mattheck
and Huber-Betzer (1991) have shown that the distri-
bution of stress on a branch can be optimized by
specific patterns of surface growth. Tree branches
grow by accretion to their outer surfaces. In soft
tissues such as skin, surface scar formation may affect
the stress in deeper layers.

We used two examples of our formulation to illus-
trate separately how residual stress arises from
growth and how stress from loading may affect
growth patterns. The first example was motivated by
experimental work on residual stress in passive ven-
tricular myocardium. The model showed that circum-
ferential growth or resorption in a cylindrical tube
leads to circumferential residual stress in the wall,
Omens and Fung (1990) measured compressive resid-
ual strains at the inner wall of the rat left ventricle and
tensile residual strain in the outer wall. A correspond-
ing stress distribution is found if a stress-free arc is
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closed by bending it into a circular tube (Guccione
et al., 1991). The residual stress distribution arising in
the circumferential resorption problem showed pre-
cisely the same pattern. Although it is not clear from
this analysis how the residual stress arises in the
normal myocardium, it suggests that circumferential
growth, which may occur in eccentric ventricular hy-
pertrophy, may reduce the residual stress and opening
angle of the left ventricular wall. This remains to be
tested experimentally.

Our second example simulates a bone sample in-
creasing in size by homogeneous growth in a manner
analogous to interstitial growth. From a biological
perspective, this is a limitation of the example since
interstitial bone growth has been described mainly by
changes in density and trabecular architecture. If in-
compatible interstitial growth occurred in bone, resid-
ual stress would arise according to our theory. The
stresses could be significant due to the relative high
elastic stiffness of bone. That volumetric bone growth
occurs primarily by surface apposition may be be-
cause the same changes in shape cannot be achieved
by interstitial growth without resulting in undesirable
residual stresses.

The second example uses parameters based on ex-
perimental studies of bone remodeling and it is gener-
alized for the case of finite elasticity. An example using
bone was selected in the absence of sufficient experi-
mental work on stress-dependent soft tissue growth.
Finite deformation analysis was retained for general-
ity. The example illustrates the application of
a growth law in which growth is a linear function of
the difference between the stress arising from loading
and a preestablished no-growth equilibrium stress.
Model parameters were based on the linear strain-
dependent growth law used by Cowin (1983). To our
knowledge, an external remodeling law of this form
has not been previously used in the literature on bone
remodeling. The rate of change of bone density (inter-
nal remodeling) has been expressed as a function of
the difference of a loaded-state strain energy and an
equilibrium strain energy (Harrigan and Hamilton,
1992). Changes in density have also been expressed as
a function of the state of stress with respect to the
stress existing at a specific reference density (Firooz-
bakhsh and Aleyaasin, 1989) but not in the form of
a difference between the stress in the loaded state and
the equilibrium state. External remodeling has been
expressed by Cowin (Cowin, 1983; Cowin and Firooz-
bakhsh, 1981) by relating the growth velocity of an
external surface to the difference in strain arising from
loading and a preestablished equilibrium strain. The
increase in size of the bone block in this example is of
the same relative magnitude and qualitatively com-
parable to predictions by Cowin and coworkers, who
modeled diaphyseal surface remodeling in long bone
under compression (Cowin and Firoozbakhsh, 1981).
This simple law may offer an alternative approach to
the modeling of this phenomenon. The simple form of
the presently applied law may also be a useful starting
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point for a model of soft tissue growth such as stress-
induced hypertrophy. For example, Grossman (1980)
has suggested that myocyte fiber diameter and ven-
tricular wall thickness in ventricular pressure over-
load increase in response to increased systolic wall
stress. Alternative forms may include different growth
rates in different directions.

An example of how the analytical concepts pres-
ented so far may be helpful is the study of the mechan-
ics of cardiac morphogenesis. In the developing em-
bryo, the heart begins as an unfused cylinder that
eventually closes to form the cardiac tube (Manasek,
1983). In this original state, the heart may possibly be
stress-free. As cells multiply, they become confluent
and form tissues; in the developing heart, the tube
fuses into a cylinder and continues to grow. Existing
tissue has to accommodate growing and multiplying
cells and this introduces residual stress (Taber et al.,
1993). As the growing tissue develops, its development
will be influenced by the load and pressures it has to
support. Stalsberg (1970) showed that normal devel-
opment of the cardiac tube is affected when external
mechanical factors have been altered, and Manasek
(1983) described how changes also occur when the
internal support offered by the cardiac jelly is affected.
This suggests that loads and internal pressure arising
from the pumping activity are required for normal
morphogenesis to take place. To study this, a general
formulation of stress-dependent growth is now avail-
able.

In cardiac hypertrophy, growth occurs in mature
tissue with an existing distribution of residual stress,
Growth is also different from that in morphogenesis,
where hyperplasia as well as hypertrophy take place.
Ventricular hypertrophy also includes remodeling,
where the material characteristics of the added tissue
may or may not be similar to those of the existing one.
In cardiac morphogenesis, the material properties and
symmetry may be changing as the heart grows. Car-
diac hypertrophy may also be of different types and
the stress dependence of growth is unlikely to be the
same for volume overload as it is for pressure over-
load. Modeling studies in which different growth for-
mulations are used will allow us to determine which
formulation can most realistically predict the ob-
served growth patterns in a heart undergoing hyper-
trophy.

Hsu (1968) recognized that homogeneous growth
could not introduce residual stress without the inter-
ference of external factors and that only restricted
forms of growth fields are permissible in a body with-
out introducing residual stress. However, he did not
identify this restriction as corresponding to compati-
bility of the growth deformation and limited his
models to homogeneous isotropic growth in bodies of
rectangular geometry and axial growth in a cylin-
drical bar, conditions under which no residual stress is
induced. The compatibility problem, and how it gives
rise to residual stress, was first summarized by Skalak
(1981) as follows:
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... ‘the growth strain field is assumed to be com-
patible at any time and therefore stress-free. If in-
stead a growth tensor is considered to be arbitrarily
specified by the growth process, the first question to
consider is whether or not any internal stresses will
be generated. The answer is that no stresses will be
necessary if the specified tensor growth strains are
compatible. If they are not compatible, then inter-
nal stresses are required in the final state to main-
tain continuity of the body.’

This first insight into how residual stress arises has
now been expanded into a general formulation; yet
still to be developed is an explicit form for a constitut-
ive relation for the finite deformation of an elastic
body that incorporates the state of residual stress.
Any constitative relation defined for the stress in
a body after growth must consider not only the defor-
mation arising from the loads applied but also the
residual stress in the grown state. The stress tensor for
residually stressed elastic bodies under small deforma-
tions and arbitrary rotations that has been proposed
by Hoger (1993) is an example of recent advances
towards this direction.

Of all these issues to be considered in the improve-
ment of our formulation, the highest priority is the
requirement for experimental data to develop an ap-
propriate form of a constitutive law for growth. This
theory will be of most value to researchers and clini-
cians, so that they can study and predict growth
patterns, once the morphology of growth can be de-
scribed as a function of loading and specific growth
laws established.
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APPENDIX A

Consider a body B with the three states of growth defined
by B(to), B(t;) and B'(r,). A point P in B(t,) has coordinates
{Xg}, in B(t,) it has coordinates {%} and in B'(t) it has
coordinates {x;}. We can now explicitly write the growth
deformation gradients defined in the present formulation as

Ola
[Fg]=§=f"g,,,, (A1)
R
63(,'
[Fe] = P 2 = FE,,’ (Az)
ax;
[F,] =X, =Feg,p- (A3)
R

Using indicial notation we can write the final composition of
F. and F given by equation (9) as

F"ﬂik = FeuFﬂak' (A4)
The stress tensor of equation (10) can be written as
- ~ ax; 5x,
Tj=T;(Cyp)=T} EY:{‘)_X,, , (A5)
= aXR aXs
Ty=Ty| — Cps—
Voo ( N ™ Oy )
. [0Xg 0x; Ox; 0X
=7, "—-———*——l>. (A6)
Ofa 0X g 0Xs 0y

The growth rates given by equations ( 12a), (12b), (13a) and
(13b) are, respectively, given in indicial notation by

Dy, = Dy,,(Ty), (A7)

Bir

U,
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D,

B.x

U,
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=U,,,(T), (A8)
~ %*

= Dg,R (Tij_Rik Ty Ru), (A9)
= *

= Ug,,( (Tij‘Rik Ty Ru)- (A10)

APPENDIX B

RELATIONS BETWEEN THE RATE OF DEFORMATION

TENSORS D, AND U,

The rate tensors D, and U, are related by

Dy=3(U, U; 1 +U; 1 ). (B1)
The inverse is given by Hoger and Carlson (1984):
ng————{—U:DgU:+11 (Ui D, Us"”UaDa Uf)
Ii1,~1,
+(I%+12)USDEUB+2(U§ D,+D,U3?)
—I3(D,Uy—U,D,)+ 1, I, B}, (B2)

where 1,1, and I; are the principal invariants of U,. '

APPENDIX C

FORMULATION OF A BOUNDARY VALUE PROBLEM

To use the present growth formulation in a boundary
value problem, we assume that B(ty) is known and the
material properties can be experimentally determined.
A form for F, can then be postulated, and it may be stress-
dependent since stresses are believed to affect remodeling
and growth in soft tissues. In this case F, = F,(T) where the
dependence on ¢, is implicit and the stress in this expression
is related to the loading that the body experiences. The
grown state B'(t;) and its residual stresses may not be known )
but may be obtainable by a sglution of a boundary value

problem for the residual stress T. This boundary value prob-
lem takes the form

0
divT =0. (Cl)

[
Since from equation (10), T=T(FTF,), then from equa-
tion (9)

since

0 ~
T=T(F;TFLF,,F; 1) (C2)

F.=F,F;'. (©3)

0
Here T="T(t,) is subject to the traction-free boundary condi-

tion

0
Tn=0 on 4B’ (C4)




