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a b s t r a c t

Skin displays an impressive functional plasticity, which allows it to adapt gradually to environmental

changes. Tissue expansion takes advantage of this adaptation, and induces a controlled in situ skin

growth for defect correction in plastic and reconstructive surgery. Stretches beyond the skin’s

physiological limit invoke several mechanotransduction pathways, which increase mitotic activity

and collagen synthesis, ultimately resulting in a net gain in skin surface area. However, the interplay

between mechanics and biology during tissue expansion remains unquantified. Here, we present a

continuum model for skin growth that summarizes the underlying mechanotransduction pathways

collectively in a single phenomenological variable, the strain-driven area growth. We illustrate the

governing equations for growing biological membranes, and demonstrate their computational solution

within a nonlinear finite element setting. In displacement-controlled equi-biaxial extension tests, the

model accurately predicts the experimentally observed histological, mechanical, and structural features

of growing skin, both qualitatively and quantitatively. Acute and chronic elastic uniaxial stretches are

25% and 10%, compared to 36% and 10% reported in the literature. Acute and chronic thickness changes

are �28% and �12%, compared to �22% and �7% reported in the literature. Chronic fractional weight

gain is 3.3, compared to 2.7 for wet weight and 3.3 for dry weight reported in the literature. In two

clinical cases of skin expansion in pediatric forehead reconstruction, the model captures the clinically

observed mechanical and structural responses, both acutely and chronically. Our results demonstrate

that the field theories of continuum mechanics can reliably predict the mechanical manipulation of thin

biological membranes by controlling their mechanotransduction pathways through mechanical over-

stretch. We anticipate that the proposed skin growth model can be generalized to arbitrary biological

membranes, and that it can serve as a valuable tool to virtually manipulate living tissues, simply by

means of changes in the mechanical environment.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Human skin is a remarkable organ that can be stretched to
manyfold its original size, while remaining phenotypically similar
to its initial state, without any reported malignant transformation
(Beauchenne et al., 1989; De Filippo and Atala, 2002). To enable this
incredible expansion, skin is a highly specialized mechanorespon-
sive interface, characterized through a network of interrelated
cascades involving extracellular, membrane, cytosolic, cytoskeletal,
and nuclear mechanisms (Silver et al., 2003). When skin is stretched

beyond its physiological limit, these mechanisms act in concert
to restore the homeostatic equilibrium state. In this regulatory
process, transmembrane mechanosensors in the form of stretch-
activated ion channels, integrins, growth factor receptors, and
G-protein-coupled receptors play a key role in translating extra-
cellular events into intracellular signals (Jaalouk and Lammerding,
2009; Wong et al., 2011), see Fig. 1.

Stretch-activated ion channels open in response to elevated
membrane strains, allowing positively charged calcium ions ðCa2þ

Þ

and other cations to enter the cell. Changes in the intracellular
calcium concentration are known to regulate intracellular signaling
and cytoskeletal remodeling (Silver et al., 2003). Integrins are
receptors that mediate attachment between a cell and the extra-
cellular matrix (Simpson et al., 2011). They play a central role in force
transmission across the cell membrane, triggering targets such as
nitric oxide (NO) signaling, mitogen-associated protein kinases
(MAPK), Rho GTPases, and phosphoinositol-3-kinase (PI3K). Growth
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factor receptors bind to growth factors outside the cell, thereby
turning on several receptor mediated pathways inside the cell, such
as nitric oxide (NO) signaling and mitogen-associated protein kinases
(MAPK) (Jaalouk and Lammerding, 2009). Mitogen-associated protein
kinase signaling pathways convey information to effectors, coordinate
incoming information from other signaling cascades, amplify signals,
and initiate a variety of response patterns. G-protein-coupled recep-
tors are seven-transmembrane proteins, which can potentially be
activated by mechanical stretch outside the cell to initiate mechan-
otransduction pathways inside the cell through second messengers
such as nitric oxide (NO) signaling and phosphoinositol-3-kinase
(PI3K). Last, intracellular strain can induce conformational changes
in the cytoskeleton itself. These changes may affect the binding
affinities to specific molecules and thereby activate additional signal-
ing pathways (Langevin et al., 2005).

In summary, mechanical activation initiates multiple signaling
pathways, which can have a substantial overlap and crosstalk.
However, since mechanically induced signaling pathways may
be shared with classical receptor-mediated pathways, they are
typically difficult to study in isolation. It is clear, however, that all
these signaling pathways converge to activate transcription
factors, which stimulate gene expression and other nuclear events
(Wong et al., 2011). Overall, the underlying principle is that
stretch invokes a cascade of events that trigger increased mitotic
activity and increased collagen synthesis, which ultimately result
in increased skin surface area to restore the homeostatic equili-
brium state (Takei et al., 1998).

Taking advantage of mechanotransduction is a powerful
approach to endogenously engineer new skin. Since it was first
introduced in the mid 1950s (Neumann, 1959), the controlled
mechanical manipulation of skin has opened a whole new frontier
in reconstructive surgery. Today tissue expansion is widely used
to repair birth defects (Arneja and Gosain, 2007), correct burn
injuries (Argenta et al., 1983), and reconstruct breasts after tumor
removal (Radovan, 1982). It is the ideal strategy to grow skin
that matches the color, texture, hair bearance, and thickness of
the surrounding healthy skin, while minimizing scars and risk
of rejection (Rivera et al., 2005).

Tissue expansion is an iterative procedure of controlled over-
stretch, progressive skin growth, and gradual restoration of the
homeostatic equilibrium state, repeated in several weekly inter-
vals (Gosain et al., 2001). To grow skin in a desired location, the
surgeon dissects a subcutaneous pocket between the dermis and
the hypodermis (Gosain et al., 2009), in which he places the
expander. The expander is successively filled with saline solution
by a remote injection port, see Fig. 2. By visual inspection of skin
color, capillary refill, and palpation of the expanded skin, the
surgeon heuristically determines the amount of filling (Rivera
et al., 2005). Once enough new skin is produced, typically after a
period of multiple weeks, the device is removed, and the new skin
is used to repair the adjacent defect zone. Although tissue
expansion is a common surgical procedure today, there are no
scientific guidelines for optimal device selection. Accordingly, the
appropriate choice of expander shape, expander size, expander
location, filling volume, and filling timing remains almost exclu-
sively based on the surgeon’s experience and personal preference
(LoGiudice and Gosain, 2003).

The first quantitative model for growing skin was proposed
only a few years ago, and has unfortunately not received a lot of
attention to date (Socci et al., 2007). Motivated by this first study
on axisymmetric skin growth, conceptually similar to an axisym-
metric model for growing cell walls (Goriely and Tabor, 2003), we
have recently established a prototype model for growing biological
membranes to predict skin growth in a general three-dimensional
setting (Buganza Tepole et al., 2011). The model is based on the
continuum framework of finite growth (Rodriguez et al., 1994),
originally developed for the isotropic volumetric growth of biolo-
gical solids (Ambrosi and Mollica, 2002; Epstein and Maugin,
2000; Lubarda and Hoger, 2002). Its key kinematic feature is the
multiplicative decomposition of the deformation gradient into a
reversible elastic part and an irreversible growth part (Garikipati,
2009; Lubarda, 2004), a concept that was adopted from finite
plasticity (Lee, 1969). Over the past decade, continuum growth
theories have been rapidly developed and intensely refined to
characterize isotropic (Ciarletta and Ben Amar, in press; Goriely
and BenAmar, 2007; Kuhl et al., 2007), transversely isotropic
(Rausch et al., 2011; Taber, 1995), orthotropic (Göktepe et al.,
2010b; Taber and Eggers, 1996), and generally anisotropic
(Ambrosi et al., 2010; Menzel, 2007) growth phenomena, both
compressibly (McMahon and Goriely, 2010) and incompressibly
(Humphrey, 2002; Schmid et al., 2011).
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Fig. 1. Mechanotransduction of growing skin. Transmembrane mechanosensors in

the form of stretch-activated ion channels, integrins, growth factor receptors, and

G-protein-coupled receptors translate extracellular signals into intracellular

events, which activate a cascade of interconnected signaling pathways. Biome-

chanical and biochemical signals converge in the activation of transcription

factors, activating gene expression. Mechanotransduction triggers increased

mitotic activity and increased collagen synthesis, resulting in an increase in

skin surface area to restore the homeostatic equilibrium state (Jaalouk and

Lammerding, 2009; Wong et al., 2011).
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Fig. 2. Biomechanics of growing skin. At biological equilibrium, the skin is in a

homeostatic state of resting tension. To grow skin for defect repair, a tissue

expander is placed in a subcutaneous pocket underneath the epidermis and the

dermis, above the hypodermis. When the expander is inflated, the skin is

stretched, associated with an acute dermal thinning attributed to the Poisson

effect. Stretches beyond a critical level trigger a series of signaling pathways

leading to the creation of new skin. Skin restores its homeostatic state, associated

with the chronic restoration of the original thickness. Upon expander removal,

elastic deformations retract and inelastic deformations remain.
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Recent trends focus on the computational modeling of finite
growth (Ambrosi et al., 2011; Himpel et al., 2005), typically by
introducing the growth tensor as an internal variable within a
nonlinear finite element framework (Göktepe et al., 2010a; Kroon
et al., 2009), a strategy that we also adopt here. To predict the
biomechanics and mechanobiology of growing skin and their
impact on stress, strain, and area gain, we adopt a transversely
isotropic growth model (Buganza Tepole et al., 2011, in press), in
which all cellular and molecular mechanisms are collectively
summarized in a single phenomenological internal variable, the
in-plane area growth. Here, in contrast to our previous model
formulated in the material frame of reference (Zöllner et al., in
press), we introduce a spatial formulation, which lends itself to a
computationally elegant and highly efficient algorithm. To simu-
late heterogeneous growth phenomena on anatomically realistic
geometries, we integrate the growth model into a multi-purpose
nonlinear finite element program (Taylor, 2008). We illustrate its
features by means of the simple model problem of equi-biaxial
extension and through two clinical cases of skin expansion in
pediatric forehead reconstruction.

2. Methods

2.1. Continuum model of growing skin

To accurately represent the finite deformations during skin
expansion, we adopt the kinematics of finite growth, and intro-
duce the deformation map u, which, at any given time t, maps the
material placement X of a physical particle onto its spatial
placement x¼u ðX,tÞ. We then introduce the multiplicative
decomposition of the deformation gradient (Rodriguez et al.,
1994)

F ¼rXu¼ Fe
� Fg

ð1Þ

into a reversible elastic part Fe and an irreversible growth part Fg,
in agreement with experimental findings (van Rappard et al.,
1988). Here, rfJg ¼ @XfJg9t denotes the gradient of a field
fJg ðX,tÞ with respect to the material placement X at fixed time
t. Its Jacobian defines the overall change in tissue volume

J¼ detðFÞ ¼ Je Jg
ð2Þ

which we can equivalently decompose into a reversibly elastic
volume change Je

¼ detðFe
Þ and an irreversibly grown volume

change Jg
¼ detðFg

Þ. Skin is a composite material consisting of a
0.1–1.0 mm thick, waterproof, protective outer layer, the epider-
mis, and a 1.0–4.0 mm thick, load bearing inner layer, the dermis
(Silver et al., 2003), which we idealize jointly as a single layer. We
characterize its area stretch through Nanson’s formula

W¼ JcofðFÞ � n0J¼ We Wg
ð3Þ

in terms of the skin plane normal n0 in the undeformed reference
configuration, where cofðJÞ ¼ detðJÞ ðJÞ�t denotes the cofactor of a
second order tensor ðJÞ. The area stretch obeys the multiplicative
decomposition into a reversibly elastic area stretch We and an
irreversibly grown area stretch Wg

¼ JcofðFg
Þ � n0J. To model stretch-

induced skin growth, we collectively summarize the effects of
mechanotransduction in a single scalar-valued variable Wg, which
characterizes the evolution of the in-plane area growth, while the
response in the thickness direction n0 is assumed to be purely
elastic (Beauchenne et al., 1989). Accordingly, we can express the
growth tensor Fg in the following simple format:

Fg
¼

ffiffiffiffiffiffi
Wg

p
Iþ½1�

ffiffiffiffiffiffi
Wg

p
�n0 � n0 ð4Þ

Since the material is not assumed to grow in the thickness direction
n0 (Rivera et al., 2005; van der Kolk et al., 1987), its area growth is

identical to its volume growth, i.e., Wg
¼ detðFg

Þ ¼ Jg. Using the
simple rank-one update structure of Fg, we can apply the Sher-
man–Morrison formula to invert the growth tensor explicitly

Fg�1
¼

1ffiffiffiffiffiffi
Wg
p Iþ 1�

1ffiffiffiffiffiffi
Wg
p

� �
n0 � n0 ð5Þ

and obtain an explicit representation of the elastic tensor Fe

Fe
¼

1ffiffiffiffiffiffi
Wg
p Fþ 1�

1ffiffiffiffiffiffi
Wg
p

� �
n� n0 ð6Þ

in terms of the spatial normal n¼ F � n0. From the push forward of
the contravariant material and intermediate metric tensors G�1 and
Gg�1, we obtain the left Cauchy Green tensor b¼ F � G�1

� Ft and its
counterpart be in the deformed, current configuration

be
¼ Fe

� Gg�1
� Fet
¼

1

Wg bþ 1�
1

Wg

� �
n� n ð7Þ

To focus on the impact of growth, we assume skin to behave
isotropically elastic within the in vivo loading range of interest.
Accordingly, we introduce the following Helmholtz free energy:

c¼ 1
2 l ln2

ðJe
Þþ1

2 m½g : be
�3�2 lnðJe

Þ� ð8Þ

to evaluate the standard dissipation inequality, which defines the
Kirchhoff stress s as thermodynamically conjugate to covariant
spatial metric g

s¼ 2
@c
@g
¼ ½l lnðJe

Þ�m�g�1þmbe
ð9Þ

This implies that the newly created skin will have the same
microstructure, density, and stiffness, as the original, native tissue
(Beauchenne et al., 1989; Buganza Tepole et al., 2011). We model
skin growth as a strain-driven process (Gosain et al., 2009), and
introduce the following evolution equation for the area growth:

_W
g
¼ kg
ðWg
Þfg
ðWe
Þ ð10Þ

in which kg
ðWg
Þ is a weighting function and fg

ðWe
Þ is a growth

criterion similar to a yield function in the theory of plasticity. For the
weighting function, we adopt a well-established functional form
(Lubarda and Hoger, 2002), which we rephrase here in a strain-
driven format (Göktepe et al., 2010a,b), to control unbounded
growth

kg
¼

1

t
Wmax
�Wg

Wmax
�1

� �g
ð11Þ

The adaptation speed t and the shape parameter for the adaptation
curve g control the speed of adaptation, whereas the maximum area
growth Wmax defines the biological equilibrium state (Himpel et al.,
2005; Lubarda and Hoger, 2002). For the growth criterion, we
assume that growth is driven by the elastic area stretch We

fg
¼/We

�WcritS¼/W=Wg
�WcritS ð12Þ

and that it is activated only if the elastic area stretch exceeds a
critical physiological limit Wcrit, where /JS denote the Macaulay
brackets.

2.2. Computational model of growing skin

To solve the nonlinear finite element equations of stretch-
induced skin growth, we implement the growth model in a
custom-designed version of the multi-purpose nonlinear finite
element program FEAP (Taylor, 2008). To characterize the growth
process at each instant in time, we introduce the area growth Wg

as an internal variable, and solve the biological equilibrium
equation (10) locally at the integration point level. At each
discrete time step t, we determine the current area growth Wg

for a given current deformation state F and a given area growth Wg
n
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from the previous time step tn. Accordingly, we introduce the
following finite difference approximation for the material time
derivative of the area growth:

_W
g
¼ ½Wg

�Wg
n�=Dt ð13Þ

where Dt¼ t�tn denotes the current time increment. In the spirit
of implicit time stepping schemes, we now reformulate the
evolution equation (10) with the help of Eq. (13), introducing
the discrete residual RW in terms of the unknown area growth Wg

RW
¼ Wg
�Wg

n�kgfgDt60 ð14Þ

We solve this nonlinear equation using a local Newton iteration.
Within each iteration step, we calculate the linearization of the
residual RW with respect to the area growth Wg

KW
¼
@RW

@Wg ¼ 1�
@kg

@Wg f
g
þkg @f

g

@Wg

� �
Dt ð15Þ

in terms of the linearizations of the weighting function
@kg=@Wg

¼�g kg=½Wmax
�Wg
� and the growth criterion @fg=@Wg

¼

�W=Wg2 introduced in Eqs. (11) and (12). We update the unknown
area growth iteratively

Wg
’Wg
�RW=KW

ð16Þ

until we achieve convergence, i.e., until the absolute value of the local
growth update DWg

¼�RW=KW is below a user-defined threshold
value. Once we have iteratively determined the current area growth
Wg, we can successively determine the growth tensor Fg from Eq. (4),
the elastic tensor Fe

¼ F � Fg �1 from Eq. (6), the Kirchhoff stress s
from Eq. (9), and, finally, the fourth order tensor e of the Eulerian
constitutive moduli

e¼ 2
ds
dg
¼ eeþeg ¼ 2

@s
@g

����
Fg
þ
@s

@Wg � 2
@Wg

@g

����
F

ð17Þ

The first term, the partial derivative of the Kirchhoff stress t with
respect to the covariant spatial metric g, defines elastic constitutive
moduli ee ¼ 2@s=@g

2
@s

@g
¼ lg�1 � g�1þ½m�l lnðJe

Þ�½g�1�g�1þg�1�g�1� ð18Þ

where we have used the common abbreviations, f��Jgijkl ¼

f�gik fJgjl and f��Jgijkl ¼ f�gil fJgjk, for the non-standard fourth
order products. The second term

@s

@Wg ¼�
1

Wg2
lWgg�1þm½b�n� n�
� �

ð19Þ

depends directly on the constitutive formulation for the Kirchhoff
stress s in Eq. (9) and indirectly on the particular format of the
growth tensor Fg in Eq. (4). The third term

2
@W
@g

g

¼
1

t
1

Wg

Wmax
�Wg

Wmax
�1

� �g
1

Kg Dt

� Wg�1�
J

W

2

½F�t
� n0� � ½F

�t
� n0�

" #
ð20Þ

consists of the algorithmic linearization of the time discrete
evolution equation for the area growth @Wg=@W in Eq. (16) and of
the linearization of the area stretch 2@W=@g in Eq. (3). The local
stress of Eq. (9) and the local consistent tangent of Eq. (17) enter
the global right-hand side vector and the global iteration matrix of
the global Newton iteration. Upon its convergence, we store the
corresponding area growth Wg locally at the integration point level.

3. Results

We illustrate the features of the proposed growth model for
the simple model problem of displacement-driven equi-biaxial
extension and for the clinical case of tissue expansion in pediatric

forehead reconstruction. For the elastic model, we assume Lamé
constants of l¼ 0:7141 MPa and m¼ 0:1785 MPa, which would
correspond to Young’s modulus of E ¼0.5 MPa and Poisson’s ratio
of n¼ 0:4 in the linear regime (Agache et al., 1980; Serup et al.,
2003). For the growth model, we assume that growth takes place
above the critical threshold of Wcrit

¼ 1:21, corresponding to
uniaxial stretches of 10% (Beauchenne et al., 1989). We restrict
the maximum area growth to Wmax

¼ 4:0, and assume an adapta-
tion speed of t¼ 1=12 and growth exponents of g¼ 2:0 and
g¼ 12:0 in Examples 3.1 and 3.2. Sensitivity analyses demon-
strate that the parameters t and g influence the adaptation time
and the shape of the adaptation curve, but not the final state of
biological equilibrium (Himpel et al., 2005; Zöllner et al., in press).

3.1. Model problem: Skin growth in equi-biaxial extension

We illustrate the conceptual features of our growth model by
exploring the simple model problem of displacement-driven skin
expansion of a square 1.0�1.0�0.2 sheet. In an equi-biaxial
setting, we increase the prescribed displacements such that the
in-plane area stretch is increased from W¼ 1:0 to 2.0, 3.0, and 4.0,
indicated through the vertical dashed lines in Fig. 3. This implies
that the skin sheet is gradually stretched to a final size of
2.0�2.0, i.e., to four times its original size. After applying the
deformation, we allow the tissue to adapt, and recover its
homeostatic equilibrium state. After three load increments, we
remove the applied stretch and allow the tissue to relax.

Fig. 3 illustrates the resulting temporal evolution of the total
area stretch W, the reversible elastic area stretch We, and the
irreversible area growth Wg. The horizontal dashed lines represent
the elastic stretch limit Wcrit beyond which skin growth is
activated, and the maximum area growth Wmax. The curves
confirm that, at all times, the multiplicative decomposition of
the deformation gradient F ¼ Fe

� Fg introduced in Eq. (1) carries
over to the multiplicative decomposition of the total area stretch
W¼ WeWg of Eq. (3). Convergence toward the homeostatic state
manifests itself through a gradual increase of growth Wg at a
constant total stretch W, while the elastic stretch We, and,
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Fig. 3. Temporal evolution of total area stretch W, reversible elastic area stretch We,

and irreversible growth area stretch Wg for displacement-driven skin expansion.

Displacements are increased and then held constant in three intervals between

the vertical dashed lines, and then relaxed. Displacement control induces relaxa-

tion indicated through the gradual decrease in elastic stretch We and stress, while

the growth stretch Wg increases at a constant total stretch W. Horizontal dashed

lines represent the elastic stretch limit beyond which skin growth is activated Wcrit,

and the maximum area growth Wmax.
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accordingly the stresses, decrease. Upon removal of the applied
displacements, the elastic stretch instantaneously returns to its
baseline value of one, We

¼ 1. Since the growth process is assumed
to be irreversible, the growth stretch remains constant, Wg

¼

const. The total stretch instantaneously adapts the value of the
growth stretch, W¼ Wg.

Fig. 4 shows the temporal evolution of the skin thickness.
Upon loading, the thickness decreases acutely from 1.0 to 0.72,
but then returns chronically to its loaded baseline value of 0.88.
This value, indicated through the lower horizontal line, is slightly
smaller than the original thickness because of the Poisson effect.
Upon removal of the applied displacements, the skin thickness
immediately returns to its original value of t¼1.0, indicated
through the upper horizontal line. Since the model assumes no
growth in thickness direction, tg ¼ 1:0, all thickness changes are
fully reversible, te ¼ t.

3.2. Clinical problem: Skin growth in pediatric forehead

reconstruction

To illustrate the full potential of our model, we simulate skin
expansion in pediatric forehead reconstruction for two clinical
cases, a one-year-old girl in case study I (Gosain and Cortes, 2007),
and a one-year-old boy in case study II (Gosain et al., 2009), both
born with giant congenital nevi affecting almost half of their
foreheads, see Fig. 5. Because giant congenital nevi place the child
at an increased risk of skin cancer, the nevus is typically removed
in the early childhood (Gosain et al., 2001). To reconstruct the
defect, preserve function, and maintain esthetic appearance, both
children underwent controlled tissue expansion (LoGiudice and
Gosain, 2003). To simulate the process of tissue expansion in an
anatomically exact geometry, we create a finite element mesh from
three-dimensional computer tomography images of a child of
similar age following the procedure outlined in Zöllner et al. (in
press). We identify the skin region by its distinct gray scale value in
the computer tomography scans to create a triangular surface
mesh, which we further smoothen semi-manually. From the
smoothened surface mesh, we create a volume mesh of the skin

layer, discretized with 61,228 nodes, 183,684 degrees of freedom,
and 30,889 tri-linear brick elements. Last, we assign each element
a skin plane normal n0, corresponding to the normal of the initial
surface mesh.

Case study I: Simultaneous forehead, anterior and posterior scalp

expansion. The first case study mimics the case of a one-year-old
girl, whose nevus covered her left posterior forehead (Gosain and
Cortes, 2007). To grow extra skin to cover the defect area, she
underwent simultaneous tissue expansion in the forehead and in
the anterior and posterior scalp as shown in Fig. 5, top row.
To model her case, we virtually implant three expanders. First, we
implant an expander in the posterior scalp, discretized with 4726
nodes, 14,178 degrees of freedom, and 2270 tri-linear brick
elements, covering an initial area of 53.1 cm2. Second, we implant
two closely connected expanders in the forehead and in the scalp,
discretized together with 7954 nodes, 23,862 degrees of freedom,
and 3820 tri-linear brick elements, covering an initial area of
96.3 cm2. To simulate tissue expansion, we fix all nodes and
release only the expander degrees of freedom, which we then
pressurize from underneath. We assume that the adjacent dermis
and hypodermis remain closely connected (Socci et al., 2007).

Fig. 6 shows the temporal evolution of the normalized total
area, elastic area, and growth area upon gradual expander infla-
tion, constant pressure, and gradual expander removal. Once the
elastic area stretch reaches the critical threshold of Wcrit

¼ 1:21,
slightly before the total pressure is applied, at t¼0.125, the tissue
starts to grow. As the expander pressure is held constant, growth
increases gradually causing the total area to increase. Then, at
t¼0.75, the pressure is decreased to remove the expander.
The elastic area retracts gradually, while the grown area remains
constant. The vertical dashed lines correspond to the discrete
time points, t¼0.24, t¼0.33, t¼0.42 and t¼0.75, shown in Fig. 7.

Fig. 7 illustrates the spatio-temporal evolution of the area
growth Wg. Growth is first initiated at the center of the expanders,
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expansion. Displacements are increased and then held constant in three intervals

between the vertical dashed lines, and then relaxed. Upon stretching, the skin

thickness decreases acutely to 0.72, but then returns chronically to the homeo-

static equilibrium thickness of 0.88 indicated through the lower horizontal line.

This value is smaller than the original thickness because of the Poisson effect.

Upon displacement relaxation, however, the skin thickness immediately returns to

its original value of 1.0, indicated through the upper horizontal line.

Fig. 5. Skin expansion in pediatric forehead reconstruction. The patients, a one-

year-old girl, case study I shown in the top row (Gosain and Cortes, 2007), and a

one-year-old boy, case study II shown in the bottom row (Gosain et al., 2009), both

presented with a giant congenital nevus. Three forehead, scalp, and cheek

expanders were implanted simultaneously for in situ skin growth. After enough

skin is grown, the nevus is removed and the new skin is pulled over the wound to

close it.
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where the elastic stretch is largest. As growth spreads throughout
the entire expanded areas, the initial area of 149.4 cm2 increases
gradually as the grown skin area increases to 190.2 cm2,
207.4 cm2, 220.4 cm2, and finally 251.2 cm2, shown from left to
right. In detail, we observe that the final area in the posterior
scalp region is 91.5 cm2, corresponding to a fractional area gain of
1.73. In the combined forehead and anterior scalp regions, the
final area is 159.6 cm2, corresponding to a slightly lower frac-
tional area gain of 1.66. Area growth displays regional variations
within 1:0rWgr2:0, i.e., in some regions, the skin has doubled its
initial area. Area growth is largest in the center regions and
smallest in the peripheries.

Case study II: Simultaneous forehead, scalp, and cheek expansion.
The second example mimics the case of a one-year-old boy whose
nevus covered his right anterior forehead (Gosain et al., 2009).
We simulate his simultaneous tissue expansion with expanders in
the forehead, scalp, and cheek as shown in Fig. 5, bottom row.
First, we virtually implant an expander in the scalp, discretized
with 4356 nodes, 13,068 degrees of freedom, and 2088 tri-linear
brick elements, covering an initial area of 50.5 cm2. Second, we
implant an expander in the cheek, discretized with 2542 nodes,

7626 degrees of freedom, and 1200 tri-linear brick elements,
covering an initial area of 29.3 cm2. Third, we implant an
expander in the forehead, discretized with 3782 nodes, 11,346
degrees of freedom, and 1800 tri-linear brick elements, covering
an initial area of 48.8 cm2. Again, we fix all nodes and release only
the expander degrees of freedom, which we then pressurize from
underneath, assuming that the adjacent skin remains unaffected.

Fig. 8 shows the temporal evolution of the normalized total
area, elastic area, and growth area upon gradual expander infla-
tion, constant pressure, and gradual expander removal. Similar to
Fig. 6, the tissue begins to grow once the elastic area stretch
reaches the critical threshold of Wcrit

¼ 1:21. Slightly after, at
t¼0.125, the total pressure is held constant. Similar to the first
case study, the skin grows gradually in all three expanded regions.
When the pressure is gradually decreased at t¼0.75, the elastic
area retracts, while the grown area remains constant. The vertical
dashed lines correspond to the discrete time points, t¼0.24,
t¼0.33, t¼0.42 and t¼0.75, shown in Fig. 9.

Fig. 9 illustrates the spatio-temporal evolution of the area growth
Wg. Since area stretches are largest at the center of the expander,
growth is first initiated in this region, spreading gradually throughout
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the entire expanded areas. During the growth process, the initial area
of 128.7 cm2 increases to 176.0 cm2, 191.3 cm2, 202.1 cm2, and finally
227.1 cm2, shown from left to right. In detail, we observe that the
new area in the scalp is 87.9 cm2 with a fractional area gain of 1.74, in
the cheek it is 50.6 cm2 with a fractional area gain of 1.72, and in the
forehead it is 88.6 cm2 with the largest fractional area gain of 1.82.
The area grows varies locally within the range of 1:0rWgr2:0 with
largest values in the center regions, where skin typically more than
doubles its initial area.

4. Discussion

Motivated by the mechanotransduction pathways outlined in
Section 1, we have introduced a continuum model for growing
skin in response to chronic mechanical overstretch. From a
kinematic point of view, the model is based on the multiplicative
decomposition of the deformation gradient into an elastic part
and a growth part (Rodriguez et al., 1994). From a constitutive
point of view, it introduces four material parameters with a clear
physiological interpretation (Lubarda and Hoger, 2002; Zöllner
et al., in press), the critical physiological stretch limit Wcrit, the
maximum area growth Wmax, the adaptation speed t, and the
shape of the adaptation curve g. From a computational point of
view, the model is embedded in a standard nonlinear finite
element framework, in which the area growth Wg is introduced
locally as an internal variable on the integration point level
(Himpel et al., 2005; Kuhl et al., 2007). From an algorithmic point
of view, the biological equilibrium problem for this internal
variable is solved using a local Newton iteration embedded in a
global Newton iteration to solve the mechanical equilibrium
problem (Göktepe et al., 2010a; Rausch et al., 2011). Overall,
our growth model is unconditionally stable, robust, efficient,
conceptually modular, and easily portable. In contrast to the only
other skin growth model by other authors, which is based on a
rotationally symmetric formulation (Socci et al., 2007), our model
is conceptually generic, and can handle arbitrary skin geometries.
In contrast to our own first prototype of the model, which is based
on a material formulation (Buganza Tepole et al., 2011; Zöllner
et al., in press), the new realization based on a spatial formulation
is computationally elegant and efficient, reducing simulation
times by approximately factor five.

In Section 3.1, we have demonstrated the conceptual char-
acteristics of our growth model by means of a simple model
problem of successive equi-biaxial extension. Upon displacement

control, the model predicts the following features: (i) an acute
increase in the elastic area stretch We, (ii) an acute decrease in
thickness t, (iii) a chronic increase in area growth Wg, (iv) a chronic
restoration of the homeostatic elastic area stretch We

-Wcrit, and
(v) a chronic restoration of the homeostatic equilibrium thickness
t. Upon displacement relaxation, the model predicts the following
features: (vi) an acute retraction of the elastic area stretch back to
its baseline value of We

¼ 1:0 and (vii) an acute arrest of further
growth with W¼ Wg

¼ const, see Figs. 3 and 4.
Our in silico predictions are in excellent agreement with the

in vivo findings reported in the literature. More than three decades
ago, the first experimental studies confirmed a net gain in skin area
upon tissue expansion (Austad et al., 1982a,b). Unexpectedly, this
area gain was found to take place upon conservation of cellular
morphology, preservation of phenotype, and maintenance of func-
tionality, without an inflammatory response, and without evidence
of malignant degeneration (Beauchenne et al., 1989). This suggested
that the increase in tissue surface area is a result of new tissue being
regenerated, instead of being recruited from neighboring regions
(De Filippo and Atala, 2002). It supports our fundamental model
assumption that skin is capable to chronically increase its area,
represented through Eq. (3), upon mechanical overstretch, incorpo-
rated through Eq. (12), see Fig. 3.

In what follows, we will compare the response of our model to
skin growth experiments in the literature (Austad et al., 1982b;
Baker, 1991; Beauchenne et al., 1989; van der Kolk et al., 1987;
van Rappard et al., 1988; Wollina et al., 1992). Unfortunately,
almost all existing data are based on in vivo tissue expansion
studies. For the lack of experimental data, we assume that the
in vivo strain state of a pressurized thin membrane is close to our
in silico state of equi-biaxial extension. Alternatively, we could
simulate the true state of tissue expansion using finite element
models (Buganza Tepole et al., 2011, in press). However, since this
would introduce additional discretization and modeling errors,
we will assume a homogeneous strain state here, and focus on
comparing the constitutive, material point response.

4.1. Discussion of acute elastic response

Acutely, tissue expansion has been associated with slight
epidermal thickening and significant dermal thinning (Austad
et al., 1982b), resulting in an overall thinning and a reduced
tensile strength (Baker, 1991). Mechanically, a study in rodents
reported an acute increase in uniaxial stretch of approximately
36% (Beauchenne et al., 1989). This is in nice agreement with our
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Fig. 9. Skin expansion in pediatric forehead reconstruction. Case study II: Simultaneous forehead, scalp, and cheek expansion. Spatio-temporal evolution of area growth

displayed at t¼0.24, t¼0.33, t¼0.42 and t¼0.75. The initial area of 128.7 cm2 increases gradually as the grown skin area increases to 176.0 cm2, 191.3 cm2, 202.1 cm2, and

finally 227.1 cm2, from left to right.
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model, which predicts an acute elastic area stretch of 1.52, 1.60,
and 1.56, corresponding to an average increase in uniaxial stretch of
25%, see Fig. 3. Structurally, the same study identified an initial acute
decrease in skin thickness from 40773 mm to 31774 mm corre-
sponding to an acute thickness reduction of 22% (Beauchenne et al.,
1989). Again, this is in good quantitative agreement with our model,
which predicts an acute average normalized thickness of 0.74, 0.71,
and 0.72 corresponding to an acute average thickness decrease of
28%, see Fig. 4. Since these acute thickness changes can be attributed
primarily to the Poisson effect, they can be utilized to calibrate the
elastic material parameters, in particular Poisson’s ratio.

4.2. Discussion of chronic growth response

Chronically, tissue expansion is associated with the gradual
restoration of baseline histology, baseline mechanics, and base-
line structure (Baker, 1991). Histologically, a comparison of piglet
tissue in expanded and non-expanded regions demonstrated a
chronic restoration of the number of epidermal cell layers and
a chronic restoration of the epidermal thickness (van der Kolk
et al., 1987). In addition, immunocytochemistry confirmed that
the expanded tissue maintains its phenotypical characteristics
and native program of cellular differentiation (Wollina et al.,
1992). Mechanically, in a multiple time-point study in rodents, an
acutely increased uniaxial stretch of 36% was reduced chronically
to approximately 10% 32 days post expansion (Beauchenne et al.,
1989). This is in excellent agreement with our model, which
predicts an acutely increased uniaxial stretch of 25% and a chronic
reduction to 10%, see Fig. 3. A uniaxial stretch of 10% would
correspond to an area stretch of Wcrit

¼ 1:21. In our model, the
model parameter Wcrit takes the interpretation of the physiological
threshold value, to which the elastic area stretch tends to return
during adaptive skin growth, see Eq. (12). Structurally, after an
initial acute thickness decrease of 22%, the same study reports a
chronic restoration of the homeostatic equilibrium thickness from
initially 42574 mm to 39873 mm, corresponding to a chronic
thickness reduction of 7% (Beauchenne et al., 1989). This agrees
well with our model, which predicts a normalized homeostatic
equilibrium thickness of 0.88, corresponding to a chronic thick-
ness reduction 12%, see Fig. 4. The chronic rodent study also
reported that the overall weight of the tissue sample almost
tripled, with a fractional weight gain of approximately 2.7 for wet
weight and 3.3 for dry weight (Beauchenne et al., 1989). In our
model, the fractional weight gain is directly proportional to the
fractional area gain of Wg

¼ 3:3 which agrees nicely with these
experimental findings, see Fig. 3. Finally, the study found a
conservation of the mechanical properties, for example, a con-
stant breaking strength acutely right after expansion and chroni-
cally long term (Beauchenne et al., 1989). These findings support
our model assumption that ultimately, the newly created skin
will have the same microstructure, density, and stiffness, as the
original, native tissue (Buganza Tepole et al., 2011, in press).

4.3. Discussion of elastic retraction

Acutely, upon expander removal, an instantaneous retraction
of the elastic deformation significantly reduces the overall skin
area. In controlled in vivo experiments in pigs, the ratio between
the reversible elastic deformation to irreversible growth was
almost 2:1 (van Rappard et al., 1988). Since our model assumes
that the overall deformation gradient can be multiplicatively
decomposed into an elastic and growth part, represented through
Eq. (1), it is perfectly capable of reproducing the effect of elastic
retraction upon expander removal, see Figs. 3, 6, and 8.

4.4. Discussion of growth heterogeneity

Figs. 7 and 9 clearly indicate the heterogeneity of the growth
process with larger values in the center region and smaller values
in the periphery. This is in agreement with in vivo studies, which
report a fractional area gain of 3.14, i.e., 50% above average, in the
center region, and 2.06, i.e., 25% below average, in the periphery
(Beauchenne et al., 1989). The authors hypothesized that larger
strains in the center region would trigger larger growth. This is in
agreement with our model in Eq. (10), where the evolution of area
growth is directly correlated to the amount of overstretch
through the growth criterion defined in Eq. (12).

4.5. Limitations

Although we have presented both qualitative and quantitative
comparisons of the proposed model with acute and chronic tissue
expansion experiments from the literature, several limitations
remain. First and foremost, the most challenging aspect would be
to tie the growth law in Eq. (4) more closely to the underlying
mechanobiology described in detail in the introduction section.
Comparative gene expression assays and immunohistochemistry of
grown versus ungrown tissue samples could help to identify the
mechanisms that trigger skin growth on the molecular and cellular
level. Similar approaches have been proposed for amelogenesis
(Cox, 2010) and tumorigenesis (Astanin and Preziosi, 2009;
Preziosi and Tosin, 2009) in the past and could also be adopted
here. Ideally, this would help to specify our evolution equation for
the growth tensor (4) in terms of discrete mechanotransduction
cascades through selected extracellular and intracellular events.
To this end, we are currently designing a test setup to stretch and
grow explanted tissue samples ex vivo. Since most existing data
sets on skin growth are based on in vivo measurements of inflated
membranes, an ex vivo setting will allow us to create well-defined
geometries and boundary conditions such as the equi-biaxial
extension test suggested here.

Second, since our goal was to focus primarily on the kinematic
characterization of the growth process, the constitutive modeling
of the elastic baseline properties of skin has played a minor role.
However, the proposed model is inherently modular and the
incorporation of more sophisticated constitutive models (Verdier
et al., 2009) is relatively straightforward. A typical candidate is a
multiple-constituent anisotropic skin model with in-plane aniso-
tropy introduced through a pronounced stiffness along Langer’s
lines (Kuhl et al., 2005, 2006), which we have successfully
combined with the proposed growth model in the past
(Buganza Tepole et al., in press). In addition, the growth process
itself could be modeled as anisotropic (Göktepe et al., 2010b), e.g.,
attributed to a pronounced growth along specific microstructural
directions. Similarly, through the deposition of large bundles of
compacted immature collagen (Baker, 1991; Kroon and Holzapfel,
2007), the underlying collagen network could reorient itself, e.g.,
to align with the maximum principal strains (Himpel et al., 2008;
Kuhl and Holzapfel, 2007). Here, we model growth as a strain-
driven process. This implies that the elastic material parameters,
or, accordingly, the corresponding stresses, play a less important
role than in stress-driven growth, e.g., in hypertension (Kuhl et al.,
2007; Rausch et al., 2011). In other words, when using the same
model with different Lamé constants or different constitutive
models, we would require different expander pressures to obtain
the same deformation pattern, but the growth process itself
would still be affected by kinematical quantities only. Along the
same lines, we have assumed that the effects of resting tension
and residual stress are negligible. Both play a critical role
when studying instabilities and buckling (Goriely and BenAmar,
2005; Vandiver and Goriely, 2009). In a previous study, we have
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explored these phenomena in more detail (Buganza Tepole et al.,
2011). Within the context of finite deformations, resting tension
and residual stress could be incorporated through another second
order tensor, which would mimic the mapping to a pre-strained or
residually stressed configuration (Menzel, 2007; Taber and
Humphrey, 2001).

Third, for the sake of simplicity, we have modeled skin as
homogeneous across the thickness, neglecting its individual
layers and their potential interaction. We are currently refining
our model utilizing shell kinematics with a higher resolution
across the thickness direction. This will facilitate to model the
individual skin layers (Silver et al., 2003), which we believe to be
a major source of heterogeneities and residual stresses in real
tissue expansion cases (Menzel, 2005). Alternatively, to explore
the biomechanical interaction between the growing dermis and
the underlying hypodermis during tissue expansion, we could
even model growing skin through its own boundary energy (Javili
and Steinmann, 2010).

Fourth, at this stage, the chronic response of our model is not
yet calibrated in time. We have assumed that chronic growth
takes place within a normalized time interval from zero to one. In
reality, growth periods range from the order of days in rodents
(Beauchenne et al., 1989) to weeks in pigs (van Rappard et al.,
1988) and humans (Gosain et al., 2009). However, with the
appropriate experimental data, the duration of the adaptation
process can be calibrated easily through the adaptation speed t
(Zöllner et al., in press).

Fifth, we have modeled the tissue expander only implicitly
through controlling the expander pressure. In real tissue expan-
sion, the external control parameter is the expander volume
(LoGiudice and Gosain, 2003). This implies that our simulation
displays creep under constant loading, while clinical tissue
expansion might rather display relaxation under constant defor-
mation (Buganza Tepole et al., in press). Moreover, we have
assumed that the expander is connected tightly to the expanded
tissue, neglecting effects of interface sliding and shear (Socci et al.,
2007). However, this seems to be a reasonable first assumption,
since most current expanders have well-designed textures to
promote mild tissue in-growth, primarily to prevent expander
migration (Barone et al., 1992).

Last, while our computational model seems well suited to
provide qualitative guidelines and trends, in its present state, it is
not recommended for quantitative statements. We will need to
perform acute and chronic in vitro and in vivo experiments to
truly identify the underlying mechanisms which have, up until
now, only been represented phenomenologically. Nevertheless,
we believe that using the equations of nonlinear continuum
mechanics to characterize skin growth represents a significant
advancement over the current gold standard to predict tissue
growth exclusively in terms of areas, volumes, and empiric
correction factors (Shively, 1986; van Rappard et al., 1988).

5. Conclusion

We have presented a continuum model for growing biological
membranes in which the underlying mechanobiology is collec-
tively summarized in a single pheonomenological internal variable,
the in-plane area growth. The model can reliably predict the
characteristic histological, mechanical, and structural features of
controlled overstretch-induced skin growth, both acutely and
chronically. We anticipate that the proposed skin growth model
can be generalized to arbitrary biological membranes, and that it
can serve as a valuable tool to virtually manipulate membrane area
simply by means of changes in the mechanical environment.
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