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Abstract The present manuscript documents our first
experiences with a computational model for stress-
induced arterial wall growth and in-stent restenosis
related to atherosclerosis. The underlying theoretical
framework is provided by the kinematics of finite growth
combined with open system thermodynamics. The com-
putational simulation is embedded in a finite element
approach in which growth is essentially captured by a
single scalar-valued growth factor introduced as
internal variable on the integration point level. The con-
ceptual simplicity of the model enables its straightfor-
ward implementation into standard commercial finite
element codes. Qualitative studies of stress-induced
changes of the arterial wall thickness in response to
balloon angioplasty or stenting are presented to illus-
trate the features of the suggested growth model. First
attempts towards a patient-specific simulation based on
realistic artery morphologies generated from computer
tomography data are discussed.

Keywords Finite growth · Open system
thermodynamics · Stress-induced growth · Restenosis ·
Patient specific simulation

1 Motivation

Cardiovascular diseases are the most common cause of
death in developed nations. Their early diagnosis and
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qualified treatments are thus of vital importance. A
common vascular disease is atherosclerosis, an inflam-
matory process in which plaque builds up against the
inner wall of a large or medium-sized artery. The name
atherosclerosis originates from the Greek words ath-
ero, meaning gruel or paste and sclerosis, meaning
hardness.

Atherosclerosis is a chronic and cumulative complex
disease that typically starts in the early childhood and
progresses slowly as people grow older. It is believed
to be initiated by injuries in the artery wall or more
precisely by endothelial dysfunction. Lipids and other
transfer products may then diffuse through the injured
parts of the arterial wall. A primary mutation of the
intima or the endothelium including accumulation of
platelets and fibrin increases the proliferation of con-
nective tissue. Further enlargement of the blood pres-
sure is an aftereffect, which in turn stimulates further
growth. The dangers related to atherosclerosis are thus
twofold: in early stages of the disease, the narrowing
of the lumen due to plaque growth is usually compen-
sated by artery enlargement. If the enlargement pro-
cess is too excessive, the artery eventually bulges on
the over-inflated inner tube and forms dangerous net
aneurysms.

The second major problem typically occurs at
advanced stages of the disease. Vascular smooth mus-
cle cells then migrate, proliferate and synthesize extra-
cellular matrix components on the luminal side of the
vessel wall forming a fibrous cap of the atherosclerotic
lesion. Inflammatory mediators ultimately induce thin-
ning of this fibrous cap rendering the plaque weak and
susceptible to rupture and thrombus formation. The
resulting blood clots may significantly narrow the artery
and reduce the blood flow through the affected cross
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section or even completely block it. Recent overviews
on the medical phenomena associated with atheroscle-
rosis are given e.g. by Shah (1997), Ross (1999), Libby
and Aikawa (2002) and Ruggeri (2002), a rather bio-
mechanical characterization is provided by Zohdi et al.
(2004, 2005).

Although atherosclerosis has been the subject of
intense research for over 100 years, there is still no
agent known that successfully reduces plaque growth
and gives elasticity back to the vessel walls. It is a com-
mon medical treatment to dilate narrowed arteries by
a balloon. Unfortunately, typical aftereffects like elas-
tic re-narrowing and other phenomena that re-close the
vessel are not unlikely. A major advance in the past
decade has been the introduction of the stent. Imme-
diately after stent implantation, endothelial denudation
takes place accompanied by the formation of a layer
of platelets and fibrin. Activated platelets eject adhe-
sion molecules which attach to leukocytes and begin
a process of rolling along the injured artery surface.
Growth factors which influence the proliferation and
migration of smooth muscle cells from the media into the
neo-intima are released from platelets, leukocytes and
smooth muscle cells. The resulting neo-intima consists
of extracellular matrix of smooth muscle cell and mac-
rophages recruited over several weeks. As time evolves,
the increased production of extracellular matrix decre-
ases. At the injured vessel surface, re-endothelialisation
might take place. So in-stent restenosis which affects
about one-fifth of all patients is largely a result of the
formation of neo-intima, see e.g. Zhou et al. (2003).

Atherosclerosis as such is not healable, but may be
avoided by prevention. To diagnose and localize athero-
sclerosis it is important to know the medical history of
the individual patient. With the help of computer tomog-
raphy, it is nowadays possible to visualize the narrowed

vessels. Figure 1 shows a typical CT-image from right
below the heart. To improve the visibility of the artery a
contrast agent was applied before the examination. The
CT-images provide two-dimensional information at cut-
ting distances of several millimeters. As such, they can
be used to generate individual finite element models
for patient-specific simulations. Pioneering steps from
traditional empirical to patient-specific finite element-
based medical treatment of cardiovascular diseases have
been accomplished by Taylor et al. (1998), see also Cipra
(2005).

In the present study, balloon angioplasty and stent-
ing of arteries and their aftereffects are considered as
examples for stress-induced growth of soft tissues. The
growing tissue is modeled within the framework of open
system thermodynamics, see Cowin and Hegedus (1976),
or Kuhl and Steinmann (2003a), Kuhl et al. (2003) and
Kuhl and Balle (2005). This framework is combined with
the concept of an incompatible growth configuration,
see e.g. Lee (1969) for the original idea in the context of
finite plasticity and Rodriguez et al. (1994), Epstein and
Maugin (2000) or Garikipati et al. (2004) for its applica-
tion to finite growth. Here, we closely follow the ideas
of Lubarda and Hoger (2002) which were realized com-
putationally in the recent work by Himpel et al. (2005)
and Maas (2005). More sophisticated models charac-
terize the growing tissue as a multiphase material. As
such they allow for a mass exchange amongst the indi-
vidual species rather than for a mass exchange with the
environment, see e.g. Humphrey and Rajagopal (2002)
or Garikipati et al. (2004). Accordingly, they properly
account for transport phenomena which are incorpo-
rated only phenomenologically through the mass source
in the present approach.

In this contribution, focus is placed on the reaction
of the artery in response to changes in the mechanical

Fig. 1 Human aorta – Typical computer tomography image of characteristic cut and related outline image
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loading situation. A direct correlation between the var-
iation in the aortic wall strain and the variation in struc-
tural thickness has been reported recently by Blomme
et al. (2006). From a microscopic point of view, these
thickness changes can be attributed to a variation in the
lamellar architecture. In the present approach, however,
we shall adopt a macroscopic phenomenological point of
view and assume that arterial growth can be character-
ized through a single scalar valued variable. Enhanced
models of anisotropic growth and fiber reorientation
have recently been addressed by Kuhl et al. (2005) or
Menzel (2005). For the sake of simplicity, the artery is
assumed to behave isotropically elastic. More sophisti-
cated constitutive models for arteries can be found in
the works of Gasser and Holzapfel (2002), Holzapfel
and Ogden (2003) and Holzapfel et al. (2004), Ogden et
al. (2005) Balzani et al. (2005). For general overviews of
the biomechanics of soft tissues we refer to the excellent
monographs by Holzapfel (2000, 2001, 2004), Holzapfel
and Ogden (2006), Humphrey (2002) and Humphrey
and Delange (2004).

The present manuscript is organized as follows: After
a summary of the governing equations based on the con-
cept of open system thermodynamics combined with the
kinematics of finite growth in Sect. 2, we briefly sketch
the underlying computational realization within a finite
element setting in Sect. 3. The basic features of the sug-
gested growth model are then elaborated in Sect. 4. The
effects of stent implantation are studied qualitatively, in
a healthy and in an atherosclerotic artery. Finally, a first
attempt towards a patient-specific simulation based on
computer tomography data is illustrated. This work is
summarized with an outlook and a final discussion in
Sect. 5.

2 Governing equations

To set the stage, we shall briefly introduce the governing
equations based on the kinematics of finite growth
combined with the framework of open system thermo-
dynamics and supplemented by the corresponding con-
stitutive equations.

2.1 Kinematics of finite growth

Let ϕ denote the deformation mapping particles from
a position X in the material configuration B0 onto a
position x = ϕ(X) in the spatial configuration Bt. Line
elements dX and dx = F · dX of the corresponding tan-
gent spaces TB0 and TBt are then mapped via the defor-
mation gradient F = ∇ϕ. Accordingly, volume elements
dV0 and dVt = J dV0 are related via the determinant of

Fig. 2 Kinematics of finite growth — growth tensor

the deformation gradient J = det(F). The fundamental
assumption of finite growth is the multiplicative decom-
position of the deformation gradient F into an elastic
part Fe and a growth part Fg.

F = Fe · Fg (1)

In the literature, this multiplicative decomposition and
the corresponding introduction of an incompatible
growth configuration Bg dates back to the work of
Rodriguez et al. (1994) which was motivated by anal-
ogous considerations in finite plasticity, see e.g. Lee
(1969) amongst many others. Accordingly, we can then
identify the overall right Cauchy Green strain tensor C
and its elastic counterpart Ce as relevant deformation
measures.

C = Ft · F Ce = Ft
e · Fe (2)

Moreover, we introduce the overall velocity gradient l
and its growth counterpart lg as illustrated in Fig. 2.

l = DtF · F−1 lg = DtFg · F−1
g (3)

Provided that appropriate evolution equations for the
growth tensor Fg are given, the above formulation is
in principle able to characterize growth of biological tis-
sues. In the simplest form, Fg can be of purely volumetric
nature accounting for isotropic growth as

dVg = Jg dV0 (4)

with the volume elements dVg of the incompatible
growth configuration Bg being related to their material
counterparts dV0 through the determinant of the growth
tensor Jg = det(Fg). However, from a biomedical point
of view, the above-introduced kinematic growth alone
does not seem very reasonable. It obviously implies that
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the density of the newly grown material ρg = ρ0 / Jg is
now no longer identical to the density ρ0 of the initial
tissue. In order to account for density changes indepen-
dent from the growth tensor, the kinematical framework
of finite growth will be embedded in the framework of
open system thermodynamics as illustrated in the fol-
lowing subsection.

2.2 Open system thermodynamics

It is obvious that by growing new material the over-
all mass of the tissue has to change if the density of
the newly added tissue is required to be identical to
the one of the original substrate. In order to ensure
this density conservation, the balance of mass has to be
supplemented by additional terms. Cell migration can
be incorporated phenomenologically through an addi-
tional mass flux R. Moreover, with the help of an addi-
tional mass source R0, phenomena such as increased cell
growth, cell division or cell enlargement can be incorpo-
rated in order to account e.g. for neo-intima formation in
relation with in-stent restenosis. Conceptually speaking,
we allow for density changes in the reference configura-
tion in the form of ρ0 = ρ∗

0 + ∫ t
0 [Div(R)+R0] dτ where

ρ∗
0 denotes the initial density prior to growth and ρ0 now

characterizes the density of the tissue after the apposi-
tion of new mass as e.g. in Lubarda and Hoger (2002)
or Himpel et al. (2005), see Fig. 3. Based on the above
considerations, the balance of mass of open system ther-
modynamics can be expressed as

Dtρ0 = Div(R)+ R0 (5)

see e.g. Cowin and Hegedus (1976) or Kuhl and Stein-
mann (2003a). Obviously, the newly added mass induces
additional momentum, moment of momentum, energy
and entropy into the system. Thus, the related higher
order balance equations have to be modified accord-
ingly. For example, the volume-specific balance of
momentum of open system thermodynamics takes the
following format,

Dt(ρ0v) = Div(F · S + v ⊗ R)+ b0 + v R0 − ∇v · R (6)

where S denotes the second Piola Kirchhoff stress tensor
and v and b0 are the velocity vector and the momentum
source or rather external force vector. Fortunately, this
rather cumbersome expression can be modified by sub-
tracting a weighted version of the balance of mass (5)
v Dtρ0 = Div(v ⊗ R)+ v R0 − ∇v · R to render the mass
specific version of the balance of linear momentum

ρ0Dtv = Div(F · S)+ b0 (7)

Fig. 3 Open system thermodynamics — mass source and flux

which obviously takes the familiar format known from
closed system thermodynamics. Note that similar sim-
plifications can be performed for all the other balance
equations such that the open system framework as such
poses no additional difficulties, see e.g. Kuhl and Stein-
mann (2003a). In summary, our formulation allows for
change in mass of the form dm = dm∗ + [ ∫ t

0[ Div(R)+
R0 ] dτ ] dV0, where dm∗ = ρ∗

0 dV0 and dm = ρ0 dV0 =
ρg dVg denote the mass prior to and after growth, respec-
tively. Thus, mass changes can either result from changes
in volume captured through the growth tensor Fg or
rather its determinant Jg or from changes in density rep-
resented though the mass flux and source R and R0.
Accordingly, two special cases can be identified, pure
density growth at constant volume with dVg = dV0 =
const and pure volume growth at constant density with
ρg = ρ∗

0 = const. In the former case, a mass flux and
mass source have to be specified constitutively while
the growth tensor remains constant. In the latter case
which seems reasonable in the context of in-stent reste-
nosis, we have to specify appropriate evolution laws for
the growth tensor while the mass source follows accord-
ingly provided that a mass flux is negligibly small. In the
following subsection, we shall close the set of governing
equations, by specifying the set of constitutive equa-
tions. To this end, we suggest to elaborate the reduced
dissipation inequality of open system thermodynamics.

Dred
0 = [Ce · Se] : [DtFg · F−1

g ]
−ρ0dρ0ψ[Div(R)+ R′] + Dext

0 ≥ 0
(8)

Note that the extra dissipation term Dext
0 has been intro-

duced in order to satisfy the second law of thermody-
namics in the case of arterial wall growth or stiffening,
see e.g. Kuhl and Steinmann (2003a,b) or Himpel et al.
(2005).
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2.3 Constitutive equations

The free energy density of the tissue can be expressed in
terms of the overall deformation gradient F, the growth
tensor Fg and the density ρ0 as ψ = ψ(F, Fg, ρ0). How-
ever, it proves convenient to reformulate the free energy
density in terms of the first and third invariant of the
elastic right Cauchy Green tensor I1 = tr(Ce) and I3 =
det(Ce) as

ψ = 1
8 λ ln2(I3)+ 1

2 µ [I1 − 3 − ln(I3)] (9)

Herein, λ and µ denote the classical Lamé constants.
From the standard argumentation of rational mechanics,
the second Piola Kirchhoff stress introduced in Eq. (7)
follows as S = 2ρ0 ∂Cψ . Its push forward to the growth
configuration Se = Fg · S · Ft

g then renders the following
useful expression

Se = µ I + [ 1
2 λ ln(I3)− µ] C−1

e (10)

where I denotes the second order identity. In the context
of isotropic growth, the growth tensor can be expressed
in terms of a single scalar-valued growth factor ϑ .

Fg = ϑ I (11)

Due to thermodynamic considerations, see e.g. Lubliner
(1990) or Himpel et al. (2005), the evolution of the
growth factor is assumed to be driven by the current
value of ϑ through a growth function kϑ(ϑ) and by the
trace of the elastic Mandel stress Ce ·Se, compare Eq. (8).

Dtϑ = kϑ(ϑ) tr(Ce · Se) (12)

Recall that the trace of the elastic Mandel tr(Ce · Se)

is identical to the trace of the overall Kirchhoff stress
tr(F · S · Ft) which is a measure of the current stress
acting on the tissue. According to Lubarda and Hoger
(2002) the coefficient kϑ is defined as

kϑ =
k+
ϑ

[
ϑ+ − ϑ

ϑ+ − 1

]m+
ϑ

for tr(Ce · Se) > 0

k−
ϑ

[
ϑ − ϑ−

1 − ϑ−

]m−
ϑ

for tr(Ce · Se) < 0

(13)

to avoid unlimited growth. The parameters ϑ+ > 1 and
ϑ− < 1 describe the limiting values of the growth factor
that can be reached by growth and atrophy, respectively.
Furthermore, k+

ϑ , m+
ϑ , and k−

ϑ , m−
ϑ are constant mate-

rial parameters in case of tensions and compression,
respectively.

On the microscopic scale, growth phenomena are
primarily dominated by cell migration and other trans-
port mechanisms. On the macroscopic scale, however,
we shall assume that growth is represented phenom-
enologically through a mass source R0 which follows
straightforwardly from Eq. (12) by making use of the
constant density condition ρg = ρ∗

0 .

R0 = 3 ρ∗
0 ϑ

2 Dtϑ (14)

Without loss of generality, we shall from now on assume
that the mass flux and momentum source are negligibly
small.

R = 0 b0 = 0 (15)

3 Computational framework

In the present section, we briefly sketch the numerical
treatment of the growth equations within a finite ele-
ment framework. In the context of isotropic growth, it
proves convenient to introduce the scalar-valued growth
factor ϑ as internal variable on the integration point
level. Its evolution is governed by Eq. (12) which is dis-
cretized in time with an implicit Euler backward scheme
introducing the following discrete residual statement.

Rϑ = −ϑ + ϑn + kϑ tr(Ce · Se)�t = 0 (16)

For the efficient solution of the above equation on the
integration point level, we suggest a Newton–Raphson
strategy based on the consistent linearization of Eq. (16)
in the sense of a truncated Taylor series.

Rk+1
ϑ = Rk

ϑ − [1 − ∂ϑDtϑ�t]�ϑ = 0 (17)

The above equation defines the incremental update �ϑ
as

�ϑ = ∂ϑDtϑ
−1

Rk
ϑ (18)

whereby we have introduced the following abbreviation.

∂ϑDtϑ = 1−[∂ϑkϑ tr(Ce ·Se)+kϑ ∂ϑ tr(Ce ·Se)]�t. (19)

In each local iteration step, the growth factor is updated
as ϑk+1 = ϑk +�ϑ until convergence is reached, i.e. the
discrete local residual (17) is sufficiently reduced. The
elastic growth tangent moduli Ceg = 2 dCeSe = 2 ∂CeSe+
2 ∂ϑSe ⊗ ∂Ceϑ of the global Newton iteration can then
be calculated as



E. Kuhl et al.

Fig. 4 Qualitative simulation of healthy aorta – aortic growth and evolution of growth factor

Ceg = Ce − 2
ϑ
∂ϑDtϑ

−1
kϑ�t

[Ce : Ce] ⊗
[

Se + 1
2

Ce : Ce
] (20)

in terms of the standard elastic tangent moduli Ce =
2 ∂CeSe and the abbreviation introduced in Eq. (19). For
the linearizations of the individual terms and a detailed
description of the algorithmic treatment, we refer to
Himpel et al. (2005). Due to the conceptual simplicity
of the computational modeling of growth into terms of
one single scalar-valued growth factor, the implemen-
tation in commercial finite element codes is straightfor-
ward. For example, the results presented in the following
section are based on simulations with ABAQUS (2005)
described in detail by Maas (2005).

4 Examples

In the following section, we shall elaborate the perfor-
mance of the suggested growth model in the context of
arterial wall thickening and stenting of arteries as typ-
ical examples of stress-induced growth of soft tissues.
The following case studies represent the first stage of
our current research project and are thus rather of phe-
nomenological nature. Nevertheless, they provide a first
insight into the complex interaction between changes in
mechanical loading and tissue growth. Three different
cases of increasing complexity are investigated. First,
we analyze the behavior of a perfect healthy artery in
response to a local increase of the internal pressure.
Next, we elaborate the same load case, however, now
focussing on the influence of an atherosclerotic plaque.

Finally, the suggested growth algorithm is applied to the
patient-specific analysis of a human aorta.

4.1 Qualitative simulation of healthy aorta

As a pre-stage to the simulation of a stented aorta, we
analyze a cylindrical tube to illustrate the basic features
of the proposed model. The elastic material parame-
ters of the tube wall are chosen to λ = 0.577 N/mm2

and µ = 0.385 N/mm2, the growth parameters are
taken as ρ∗

0 = 1 g/cm3, ϑ+ = 1.3, ϑ− = 0.5, k+
ϑ =

1.0, k−
ϑ = 2.0, m+

ϑ = 2.0, m−
ϑ = 3.0 and �t = 1,

respectively. The set of parameters is adopted from Him-
pel et al. (2005) where detailed sensitivity studies with
respect to different growth parameters can be found.
For different identification techniques of the relevant
elastic material parameters the reader is referred to
Cowin and Humphrey (2001), Holzapfel and Ogden
(2003) and Holzapfel and Ogden (2006) and references
cited therein. To qualitatively account the mechanical
influence of stenting, a smoothly increasing prescribed
radial expansion is prescribed in a selected subsection
in the middle of the tube. The deformation and the evo-
lution of the growth factor ϑ are illustrated in Fig. 4. A
pronounced tissue deposition at areas of increased ten-
sion in the middle of the tube can be observed. An artery
affected by increased mechanical loading due to stenting
or hypertension typically reacts by reinforcing its resis-
tance through increasing its wall thickness. The observed
growth phenomena clearly indicate a relation between
hypertension and atherosclerosis, especially when tak-
ing into account that the realistic elastic boundary con-
ditions in the human body would not allow the artery to
bulge out but rather force it to grow to the inside and nar-
row the lumen. Recall that standard inelastic material
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Fig. 5 Qualitative simulation of atherosclerotic aorta — different stages of atherosclerosis: (a) initial conditions (b) adiposis
(c) calcification (d) growing plaque

models such as damage or plasticity are typically not
capable of capturing these effects of volume increase.

4.2 Qualitative simulation of atherosclerotic aorta

Let us now analyze the influence of an atherosclerotic
plaque on tissue growth. The initial geometry of the
cylindric artery and the plaque is shown in Fig. 5.1. The
Lamé constants of the artery are chosen as λ = 1.73077
and µ = 1.15385. The initial density is ρ∗

0 = 1 g/cm3

and the growth parameters take values of ϑ+ = 1.5,
ϑ− + 0.5, k+

ϑ = 0.5, k−
ϑ = 0.25, m+

ϑ = 5 and m−
ϑ = 4.

While the tube has been subjected to prescribed lateral
displacements at the inner wall in the previous example,
we shall now apply an internal pressure to qualitatively
account for stenting.

During atherosclerosis, the atherosclerotic plaque
usually undergoes a transition from fatty tissue at an
early stage of the disease to a lime-type material at later
stages. These, of course, have very different elastic prop-
erties. While lime is a very hard and brittle material the
fatty tissue is rather soft, even softer than the artery wall
itself. To elaborate the different stages of the disease, we
thus assign different sets of material properties to the
atherosclerotic plaque. In the first example, the plaque
is modeled as a soft and fatty tissue with a stiffness of 3%
of the wall stiffness. For the calcified state, the plaque is
assumed to be 3000 times stiffer than the surrounding
artery wall. While in both cases, the plaque is modeled
as a non-growing material, not only the artery but also
the plaque itself is allowed to grow in a final third case
study.

In all three studies, the inner pressure opens the tube
pushing the plaque into the artery wall. Close to the ath-
erosclerotic boundary, imperfections cause high stress
concentrations on the luminal side of the vessel wall. The
different colors in Fig. 5 indicate the values of the growth
factor ranging from material resorption of ϑ = 0.75

in the blue areas to material deposition of ϑ = 1.25
in the red domains. As expected, pronounced growth
takes place at the boundaries of the plaque in order
to compensate local stress concentrations. In the case
of adiposis illustrated in Fig. 5b, the applied pressure
directly affects the artery wall and thus causes exten-
sive deposition of new material. While the lumen of the
artery is almost unaffected by the soft and fatty plaque
in Fig. 5b, first effects of cross section narrowing can be
observed for the stiff calcified plaque in Fig. 5c For the
calcified state depicted Fig. 5c, the overall deformation
is not as high as in the first example since, as a matter of
course, the stiffer plaque tends to strengthen the artery
wall. Accordingly, wall stresses are reduced beyond the
plaque. However, high local stress concentrations can be
observed at the plaque boundaries causing pronounced
local growth in very small areas. These are the areas of
potential plaque rupture.

For the sake of comparison, the plaque is finally mod-
eled as a growing material possessing the same growth
parameters as the surrounding artery. Recall that for
more realistic simulations, growth of the atherosclerotic
lesion should be modeled through a mass flux rather
than a mass source term. More sophisticated multiphase
models, e.g. the ones by Humphrey and Rajagopal (2002)
or by Garikipati et al. (2004) could be consulted in order
to define appropriate constitutive equations for the mass
flux.

The results of our mass source based simulation are
shown in Fig. 5d. They illustrate the qualitative effects
of in-stent restenosis. Due to huge local stress concen-
trations around the plaque, a high, wavy growth pattern
develops that re-narrows the cross section of the artery.
A zoom in of the final state of computational biological
equilibrium is given in Fig. 6. It clearly demonstrates
that the growth factor ϑ has increased up to almost
25% in regions of pronounced artery wall thickening.
The tendency of growing at areas of high stresses and
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Fig. 6 Qualitative simulation of atherosclerotic aorta — in-stent
restenosis and cross section re-narrowing

the possible danger of cross section re-narrowing agrees
nicely with the observed phenomena of in-stent reste-
nosis. Especially at the inside wall beyond the area of
the plaque, pronounced material ingrowth is observable
indicating that re-closure effects are not unlikely.

Comparing the three simulated cases for different
plaque compositions, we observe the largest local stress
concentrations for the calcified plaque, whereas the
stresses are rather uncritical and smooth for the soft
and fatty tissue. Since adiposis represents an early state
of atherosclerosis, a surgical treatment is often not yet
necessary. Besides the danger of narrowing the artery
lumen, the fatty plaque as such is not really dangerous.
The circulation system is able to compensate the nar-
rowing in most cases by increasing physical activity and
changing the pattern of life. The simulation shows that
in case of adiposis, the human body may even be able
to heal itself under special conditions. The final simu-
lation with the growing plaque nicely documents that
the incorporation of growth factors is of cardinal impor-
tance, especially if interest is focussed on a changing
loading situation. Although being of rather phenom-
enological nature and not yet fully developed to sim-
ulate real biological tissues, the suggested model has
been shown capable of identifying regions of local stress
concentrations indicating the potential danger of plaque
rupture. Moreover, the computational simulation is able
to qualitatively predict restenosis effects of re-narrow-
ing of cross sections in response to artery stenting.

4.3 Patient specific simulation of the human aorta

The long-term goal of this project is to provide patient-
specific predictions of individual arteries in response to
medical surgery. To investigate the features of the sug-
gested growth model, we analyze a real human aorta

based on computer tomography data. The CT-data used
in the present study contains cross sections of a human
abdomen from slightly underneath the heart ranging
down to the legs whereby a cutting distance of 10 mm
was chosen. Before the examination, a contrast agent
was applied to improve the visibility of the artery.

For the generation of a patient-specific geometric
model of the aorta the individual CT-images have to
be inverted and edited until only the outlines of the
required features are visible. The outlined images as
depicted in Fig. 1, right, can then be converted into
two-dimensional point coordinates, e.g. by a simple
MATLAB subroutine which basically generates a three-
dimensional data set of point clouds from the two-
dimensional outlines of the individual cuts. The spline
curves generated from these points define a the solid
model of the aorta as depicted in Fig. 7, left, which, after
some postprocessing and smoothing, serves as the input
for the finite element program.

The widening of the lumen in response to stent or
balloon exposure is simulated qualitatively by the appli-
cation of a uniform pressure of 10 mbar at the inside of
the aorta in a predefined subsection. The stent opera-
tion usually takes about half an hour corresponding to
a time step of �t in our simulation. Restenosis effects
are typically recognized after several weeks. The post-
operative response is thus simulated in 1600 time steps
corresponding to a period of approximately 1 month
after the operation. During that time, we allow for stress-
induced growth of the aortic wall in response to changes
in the mechanical loading situation. The evolution of
the aortic geometry and the scalar-valued growth fac-
tor ϑ is depicted in Fig. 8. The results clearly reflect
the expected growth at destinations of high stresses.
Because of the non-uniform surface of the aorta wall,
there is an extensive growth to one side. Approximately
1 month after the operation, see Fig. 8, right, a state of
computational biological equilibrium is reached and no
additional growth takes place. At that stage, the aorta
has fully adapted to changes in the mechanical loading
situation.

The role of mechanical stresses in the artery wall is
often discussed as a cause for in-stent restenosis by pro-
liferation of cells. Several studies as for instance Zhou
et al. (2003), have shown that the mechanical stress
caused by oversized stents is positively correlated with
the severity of in-stent restenosis. The appropriate stent
size in relation to the vessel geometry can minimize the
stresses in the vessel wall and therefore decrease the risk
of in-stent restenosis, see e.g. Holzapfel et al. (2005). The
improved understanding of the interaction of mechanics
and growth is thus of fundamental importance in mod-
ern stent technology.
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Fig. 7 Patient-specific simulation of the human aorta – aortic growth and evolution of growth factor (lateral view)

Due to the applied, maybe non-physiological bound-
ary conditions, the artery wall grows to the outside.
When being embedded into the human body, however,
the artery is typically subjected to elastic boundary con-
ditions from the outside. Recent investigations by
Blomme et al. (2006) indicate that the boundary condi-
tions, e.g. the additional support introduced by the stiff
spine, severely influence the structural development of
the artery, even in the healthy state. By incorporating
more realistic boundary conditions, the grown material
would certainly be pushed to the inside of the artery, per-
haps even through the lattice-type stent geometry. The
aortic wall thickening predicted by our simulation would
then result in the reduction of the lumen according to
the phenomena observed in restenosis. The simulation
of real atherosclerotic loading and boundary conditions
in combination with a discretized stent require the solu-
tion of a contact problem exceeding the goals of the
present study.

5 Outlook

A model for stress-induced growth in soft biological
tissues has been presented. To account for volumetric
growth at constant density, the model combines the the-
ories of finite growth and open system thermodynamics.
Growth phenomena are captured by a single scalar-val-
ued internal variable which is essentially driven by the
Mandel stress. Within a finite element framework, the
evolution of this growth factor is evaluated on the inte-
gration point level. An implicit Euler backward time
stepping scheme is applied to ensure unconditional

stability. For the sake of efficiency, the resulting time dis-
crete nonlinear equation for the growth factor is solved
iteratively by a local Newton iteration to ensure opti-
mal quadratic convergence. The conceptual simplicity of
the proposed model allows for a straightforward imple-
mentation of growth on the material subroutine level of
commercial finite element codes.

To illustrate the features of the suggested model,
qualitative pre-studies of stress-induced changes of the
arterial wall in response to stent implantation were pre-
sented. Thereby, the complexity of the model was
increased successively. After elaborating a healthy
artery without imperfections, we focussed on a diseased
artery with an atherosclerotic plaque. Different stages of
atherosclerosis were simulated by changing the mechan-
ical properties of the plaque. Finally, a first attempt
towards the simulation of growth processes in a real
human aorta was presented. To this end a patient-
specific geometric model of the aorta was generated
based on computer tomography data. The results of
the simulation convincingly document the potential of
the suggested growth model. In principle, the presented
approach is able to capture biomechanical phenomena
of stress-induced growth such as neo-intima hyperpla-
sia which are very likely to cause in-stent restenosis and
cross section re-narrowing.

Nevertheless, it has to be pointed out that the pres-
ent manuscript only documents our very first attempts
in patient-specific simulation. The illustrated analyses
have brought up a number of new questions and can
by no means be understood as the final solution to the
problem. For example, future research certainly has to
focus on a more realistic representation of the in vivo
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Fig. 8 Patient-specific simulation of the human aorta – aortic
growth and evolution growth factor (cross sectional view)

boundary conditions of the artery, which are assumed to
largely affect the locations of material apposition in the
context of growth. In this context, the influence of the
elastic foundation of the artery is currently being elab-
orated. In addition, it might even become important to

include relevant growth factors other then the mechan-
ical stress.

Moreover, more realistic constitutive models for the
artery which in reality consists of three mechanically
different anisotropic nearly incompressible individual
layers have to be adopted. The appropriate simulation
of neo-intima formation involves additional numerical
complications related to the resolution of the very thin
intima layer in comparison to the surrounding media and
adventitia. The improvement of the constitutive model
for the artery is in line with the identification of patient-
specific material parameters. This includes not only the
parameters of the growth model but also the elastic
material properties of the intima itself which, despite
of intensive research, are not yet fully understood.

In the present approach, stenting of arteries has been
accounted for exclusively though the boundary condi-
tions. The final goal of this research is, of course, the
improvement of stent design supported by the simula-
tion of realistic stents with different geometries. It might
even be of interest to simulate the influence of drug-
coated stents in the context of diffusion of the growth
suppressing substances.

According to the common understanding, plaque vul-
nerability strongly depends upon the individual tissue
morphology. Patient- specific computational simulations
are thus of growing interest in modern medical treat-
ment. The ultimate goal of research along these lines
is certainly the development of reliable predictive sim-
ulation tools that could assist physicians to choose the
optimal medical treatment for each individual patient.
The present manuscript has shown that patient-specific
analyses are in general possible. However, a number
of open questions remain providing an open field of
potential future research.
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