living matter lab
(Difference between revisions)
(additional reading)
Line 153: Line 153:
 
==additional reading==
 
==additional reading==
  
[1] bar-on et al., SARS-CoV-2 (COVID-19) by the numbers, elife 9 (2020) e57309.  
+
bar-on et al., sars-cov-2 (covid-19) by the numbers, elife 9 (2020) e57309.  
[http://biomechanics.stanford.edu/me334_14/reading/bayly14.pdf (download)]<br>
+
[http://biomechanics.stanford.edu/me233_20/reading/baron20.pdf (download)]<br>
  
budday s, steinmann p, kuhl e. the role of mechanics during brain development.
+
bauer f, compartment models in epidemiology, mathematical epidemiology (2008) 19-79.
j mech phys solids. 2014:72:75-92.
+
[http://biomechanics.stanford.edu/me233_20/reading/bauer20.pdf (download)]<br>
[http://www.sciencedirect.com/science/article/pii/S0022509614001483 (download)] <br>
+
  
budday s, nay r, steinmann p, wyrobek t, ovaert tc, kuhl e.
+
hethcode hw, the mathematics of infectious disease, siam review 42 (2020) 599-653.
mechanical properties of gray and white matter brain tissue by indentation.
+
[http://biomechanics.stanford.edu/me233_20/reading/hethcote20.pdf (download)]<br>
j mech behavior biomed mat. 2015;46:318-330.
+
[http://biomechanics.stanford.edu/paper/JMBBM15.pdf (download)]<br>
+
  
budday s, steinmann p, kuhl e.
+
dietz k, the estimation of the basic reproduction number for infectious diseases, stat meth med res 2 (1993) 23-41.
physical biology of human brain development.
+
[http://biomechanics.stanford.edu/me233_20/reading/dietz93.pdf (download)]<br>
front cell neurosci. 2015;9:257.
+
[https://www.frontiersin.org/articles/10.3389/fncel.2015.00257/full (download)] <br>
+
  
budday s, sommer g, birkl c, langkammer c, hayback j, kohnert j, bauer m, paulsen f, steinmann p, kuhl e, holzapfel ga. mechanical characterization of human brain tissue. acta biomat. 2017;48:319-340.  
+
peirlinck m, et al. outbreak dynamics of covid-19 in china and the united states. medRxiv: doi:10.1101/2020.04.06.20055863.
[http://biomechanics.stanford.edu/paper/ACTABM17.pdf (download)] <br>
+
[http://biomechanics.stanford.edu/me233_20/reading/peirlick20a.pdf (download)]<br>
  
dennerll tj, lamoureux p, buxbaum re, heidemann sr.
+
park et al., reconciling early-outbreak estimates of the basic reproduction number and its uncertainty. j royal soc interface 17 (2020) 20200144.
the cytomechanics of axonal elongation and retraction.
+
[http://biomechanics.stanford.edu/me233_20/reading/park20.pdf (download)]<br>
j cell bio. 1989;109:3073-3083.
+
[http://biomechanics.stanford.edu/me334_14/reading/denerll89.pdf (download)]<br>
+
  
franceschini g, bigoni d, regitnig p, holzapfel ga.  
+
ioannis j, the invection fatality rate of covid-19 inferred from seroprevalence data, medRxiv, doi:10.1101/2020.05.13.20101253.
brain tissue deforms similar to filled elastomers and follows consolidation theory.  
+
[http://biomechanics.stanford.edu/me233_20/reading/ioannis20.pdf (download)]<br>
j mech phys solids. 2006;54:2592-2620.
+
[http://biomechanics.stanford.edu/me334_14/reading/franceschini06.pdf (download)]<br>
+
  
goriely a, geers mgd, holzapfel ga, jayamohan j, jerusalem a, sivaloganathan s, squier w, van dommelen jaw, waters s, kuhl e.
+
peirlinck m et al., visualizing the invisible: the effect of asymptomatic transmission, medRxiv, doi: 10.1101/2020.05.23.20111419
mechanics of the brain: perspectives, challenges, and opportunities.  
+
[http://biomechanics.stanford.edu/me233_20/reading/peirlinck20b.pdf (download)]<br>
biomech mod mechanobio. 2015;14:931-965.
+
[https://link.springer.com/article/10.1007/s10237-015-0662-4 (download)]<br>
+
  
hardan ay, libove ra, keshavan ms, melhem nm, minshew nj.
+
wilder-smith a, freedman do. isolation, quarantine, social distancing
a preliminary longitudinal magnetic resonance imaging study of brain volume and cortical thickness in autism.
+
and community containment, j travel med (2020) 1-4.
biol psych. 2009;66:320-326.
+
[http://biomechanics.stanford.edu/me233_20/reading/wilder20.pdf (download)]<br>
[http://biomechanics.stanford.edu/me334_14/reading/hardan09.pdf (download)]<br>
+
  
kruse sa, rose gh, glaser kj, manduca a, felmlee jp, jack cr, ehman rl.
+
dehning et al., inferring change points in the spread of COVID-19 reveals the effectiveness of interventions, science doi:10.1126/science.abb9789.
magentic resonance elastography of the brain.  
+
[http://biomechanics.stanford.edu/me233_20/reading/dehning20.pdf (download)]<br>
neuroimage. 2008;39:231-237.
+
[http://biomechanics.stanford.edu/me334_14/reading/kruse08.pdf (download)]<br>
+
  
miller k, chinzei k.  
+
linka et al., the reproduction number of covid-19 and its correlation with public health interventions, comp mech, doi:10.1007/s00466-020-01880-8.
constitutive modelling of brain tissue: experiment and theory.
+
[http://biomechanics.stanford.edu/me233_20/reading/linka20a.pdf (download)]<br>
j biomech. 1997;30:1115-1121.
+
[http://biomechanics.stanford.edu/me334_14/reading/miller97.pdf (download)]<br>
+
  
raybaud c, widjaja e.
+
pastor-satorras r et al., epidemic processes in complex networks, rev mod phys 87 (2015) 926-973.
development and dysgenesis of the cerebral cortex: malformations of cortical development.
+
[http://biomechanics.stanford.edu/me233_20/reading/pastor20.pdf (download)]<br>
neuroimag clin n am. 2011;21:483–543.
+
[http://biomechanics.stanford.edu/me334_14/reading/raybaud11.pdf (download)]<br>
+
  
richman dp, stewart rm, hutchinson jw, caviness vs.  
+
linka k et al. outbreak dynamics of covid-19 in europe and the effect of travel restrictions. comp meth biomech biomed eng; 2020; 23:710-717.
mechanical model of brain convolutional development.  
+
[http://biomechanics.stanford.edu/me233_20/reading/linka20b.pdf (download)]<br>
science. 1975;189:18-21.
+
[http://biomechanics.stanford.edu/me334_14/reading/richman75.pdf (download)]<br>
+
  
sun t, hevner rf.
+
linka k et al. global and local mobility as a barometer for COVID-19 dynamics. medRxiv doi:2020.06.13.20130658.
growth and folding of the mammalian cerebral cortex: from molecules to malformations.
+
[http://biomechanics.stanford.edu/me233_20/reading/linka20d.pdf (download)]<br>
nature neurosci. 2014;15:217-231.
+
[http://biomechanics.stanford.edu/me334_14/reading/sun14.pdf (download)]<br>
+
  
van essen dc.
+
linka k et al. is it safe to lift COVID-19 travel bans. the newfoundland story. comp mech doi:10.1007/s00466-020-01899-x.
a tension-based theory of morphogenesis and compact wiring in the central nervous system.  
+
[http://biomechanics.stanford.edu/me233_20/reading/linka20c.pdf (download)]<br>
nature. 1997;385:313-318.
+
[http://biomechanics.stanford.edu/me334_14/reading/vanessen97.pdf (download)]<br>
+
  
weickenmeier j, kuhl e, goriely a.  
+
anderson rm, may rm, directly transmitted infectious diseases: control by vaccination, science 215 (1982) 1053-1060
the multiphysics of prion-like disease: progression and atrophy.  
+
[http://biomechanics.stanford.edu/me233_20/reading/anderson82.pdf (download)]<br>
phys rev lett. 2018;121:158101.
+
 
[http://biomechanics.stanford.edu/paper/PRL18.pdf (download)]<br>
+
grassly nc, fraser c, seasonal infectious disease epidemiology, proc royal
 +
soc b 273 (2006) 2541-2550.
 +
[http://biomechanics.stanford.edu/me233_20/reading/grally06.pdf (download)]<br>
 +
 
 +
kuhl e. data-driven modeling of COVID-19 - lessons learned. extr mech lett; doi:10.1016/j.eml.2020.100921.
 +
[http://biomechanics.stanford.edu/me233_20/reading/kuhl20.pdf (download)]<br>

Revision as of 16:47, 20 August 2020

Corona.jpg

Contents

fall 21 - me233 - data-driven modeling of covid-19

ME233aa.jpg
ME233b.jpg

me 233 - data-driven modeling of covid-19

ellen kuhl kevin linka
amelie schafer oguz tikenogullari

announcement, syllabus

fall 2021
tue thu 8:30-9:50

 

dissecting brains

objectives

understanding the outbreak dynamics of COVID-19 through the lens of mathematical models is an elusive but significant goal. within only half a year, the COVID-19 pandemic has resulted in more than 20 million reported cases across 188 countries with more than 700,000 deaths worldwide. this has generated an unprecedented volume of data; yet, the precise role of mathematical modeling in providing quantitative insight into the COVID-19 pandemic remains a topic of ongoing debate. this course discusses how to design computational tools to understand the COVID-19 outbreak. we focus on mathematical epidemiology, infectious disease models, concepts of the effective reproduction number and herd immunity, network modeling, outbreak dynamics and outbreak control, bayesian methods, model calibration and validation, prediction and uncertainty quantification. we highlight the early success of classical models for infectious diseases and show why these models fail to predict the current outbreak dynamics of COVID-19. we illustrate how data-driven modeling can integrate classical epidemiology modeling and machine learning to infer critical disease parameters—in real time—from reported case data to make informed predictions and guide political decision making. We critically discuss questions that current models can and cannot answer and showcase controversial decisions around the early outbreak dynamics, outbreak control, and exit strategies.

grading

  • 15 % homework 01 - mathematical epidemiology of covid-19
  • 15 % homework 02 - early outbreak dynamics of covid-19
  • 15 % homework 03 - outbreak control of covid-19
  • 25 % final project - presentation graded by class
  • 30 % final project - report graded by instructors

final project

harris tc, de rooij r, kuhl e. the shrinking brain: cerebral atrophy following traumatic brain injury. ann biomed eng. 2019; 47:1941-1959. (download)

weickenmeier j, kurt m, ozkaya e, wintermark m, butts pauly k, kuhl e. magnetic resonance elastography of the brain: a comparison between pigs and humans. j mech beh biomed mat. 2018; 77:702-710. (download)

wu lc, ye pp, kuo c, laksari k, camarillo d, kuhl e. pilot findings of brain displacements and deformations during roller coaster rides. j neurotrauma. 2017; 34:3198-3205. (download)

lejeune e, javili a, weickenmeier j, kuhl e, linder c. tri-layer wrinkling as a mechanism for anchoring center initiation in the developing cerebellum. soft matter. 2016;12:5613-5620. (download)

ploch cc, mansi cssa, jayamohan j, kuhl e. using 3D printing to create personalized brain models for neurosurgical training and preoperative planning. world neurosurg. 2016;90:668-674. (download), (perspectives)

syllabus

day date topic slides homework
tue sept 15 introduction to covid-19 s01
thu sept 17 I. infectious disesaes - a brief history s02
tue sept 22 II. mathematical epidemiology - 1. intro to compartment modeling s03
thu setp 24 II. mathematical epidemiology - 2. compartment models s04 h01
tue sept 29 II. mathematical epidemiology - 3. endemic disease modeling s05
thu oct 01 III. data-driven modeling - 1. compartment modeling of covid-19 s06
tue oct 06 III. data-driven modeling - 2. early outbreak dynamics of covid-19 s07
thu oct 08 III. data-driven modeling - 3. asymptomatic transmission of covid-19 s08 h02
tue oct 13 III. data-driven modeling - 4. inferring outbreak dynamics of covid-19 s09
thu oct 15 IV. modeling outbreak control - 1. managing infectious diseases s10
tue oct 20 IV. modeling outbreak control - 2. change-point modeling of covid-19 s11
thu oct 22 IV. modeling outbreak control - 3. dynamic modeling of covid-19 s12 h03
tue oct 27 V. network modeling - 1. network modeling of epidemiology s13
thu oct 29 V. network modeling - 2. network modeling of covid-19 s14
tue nov 03 V. network modeling - 3. dynamic network modeling of covid-19 s15
thu oct 05 VI. informing political decision making - exit strategies s16 p01
tue oct 10 VI. informing political decision making - vaccination strategies s17
thu oct 12 VI. informing political decision making - the second wave s18
tue oct 17 data-driven modeling of covid-19 - lessons learned s19
thu oct 19 data-driven modeling of covid-19 - final project presentations s20

python files

we'll share the python files for the projects here

additional reading

bar-on et al., sars-cov-2 (covid-19) by the numbers, elife 9 (2020) e57309. (download)

bauer f, compartment models in epidemiology, mathematical epidemiology (2008) 19-79. (download)

hethcode hw, the mathematics of infectious disease, siam review 42 (2020) 599-653. (download)

dietz k, the estimation of the basic reproduction number for infectious diseases, stat meth med res 2 (1993) 23-41. (download)

peirlinck m, et al. outbreak dynamics of covid-19 in china and the united states. medRxiv: doi:10.1101/2020.04.06.20055863. (download)

park et al., reconciling early-outbreak estimates of the basic reproduction number and its uncertainty. j royal soc interface 17 (2020) 20200144. (download)

ioannis j, the invection fatality rate of covid-19 inferred from seroprevalence data, medRxiv, doi:10.1101/2020.05.13.20101253. (download)

peirlinck m et al., visualizing the invisible: the effect of asymptomatic transmission, medRxiv, doi: 10.1101/2020.05.23.20111419 (download)

wilder-smith a, freedman do. isolation, quarantine, social distancing and community containment, j travel med (2020) 1-4. (download)

dehning et al., inferring change points in the spread of COVID-19 reveals the effectiveness of interventions, science doi:10.1126/science.abb9789. (download)

linka et al., the reproduction number of covid-19 and its correlation with public health interventions, comp mech, doi:10.1007/s00466-020-01880-8. (download)

pastor-satorras r et al., epidemic processes in complex networks, rev mod phys 87 (2015) 926-973. (download)

linka k et al. outbreak dynamics of covid-19 in europe and the effect of travel restrictions. comp meth biomech biomed eng; 2020; 23:710-717. (download)

linka k et al. global and local mobility as a barometer for COVID-19 dynamics. medRxiv doi:2020.06.13.20130658. (download)

linka k et al. is it safe to lift COVID-19 travel bans. the newfoundland story. comp mech doi:10.1007/s00466-020-01899-x. (download)

anderson rm, may rm, directly transmitted infectious diseases: control by vaccination, science 215 (1982) 1053-1060 (download)

grassly nc, fraser c, seasonal infectious disease epidemiology, proc royal soc b 273 (2006) 2541-2550. (download)

kuhl e. data-driven modeling of COVID-19 - lessons learned. extr mech lett; doi:10.1016/j.eml.2020.100921. (download)