living matter lab
(Difference between revisions)
(me338A - continuum mechanics)
Line 25: Line 25:
 
==grading==
 
==grading==
  
* 50 % homework - 4 homework assignments, 12.5% each <br>
+
* 50 % homework - 3 homework assignments, 16.7% each <br>
 
* 30 % midterm - open book, open notes <br>
 
* 30 % midterm - open book, open notes <br>
* 20 % project - final homework project
+
* 20 % project - final project
  
 
==syllabus==
 
==syllabus==
Line 35: Line 35:
 
! day !! date !! !! topic !! notes !! hw !!
 
! day !! date !! !! topic !! notes !! hw !!
 
|-
 
|-
| tue || jan || 08 || introduction || [http://biomechanics.stanford.edu/me309/me309_c00.pdf c00] [http://biomechanics.stanford.edu/me309/me309_c01.pdf c01] || || kuhl
+
| tue || apr || 01 || intro      ||  ||  ||  
|-
+
| thu || jan || 10 || 1d bar elements || [http://biomechanics.stanford.edu/me309/me309_c02.pdf c02]  || [http://biomechanics.stanford.edu/me309/me309_h01.pdf h01] || kuhl
+
 
|-
 
|-
| tue || jan || 15 || ansys - introduction (in terman 104) || [http://biomechanics.stanford.edu/me309/me309_c03a.pdf t01] [http://biomechanics.stanford.edu/me309/me309_c03b.pdf t02] [http://biomechanics.stanford.edu/me309/me309_c03c.pdf t03] || || bhargav
+
| thu || apr || 03 || vectors & tensors - vector algebra ||  || ||  
 
|-
 
|-
| thu || jan || 17 || 1d bar elements || [http://biomechanics.stanford.edu/me309/me309_c04.pdf c04] || || kuhl
+
| tue || apr || 08 || vectors & tensors - tensor algebra ||  || ||
 
|-
 
|-
| tue || jan || 22 || 1d beam elements || [http://biomechanics.stanford.edu/me309/me309_c05.pdf c05] ||  || kuhl
+
| thu || apr || 10 || vectors & tensors - tensor analysis ||  ||  ||
 
|-
 
|-
| thu || jan || 24 || 1d beam elements || [http://biomechanics.stanford.edu/me309/me309_c05.pdf c06]||  [http://biomechanics.stanford.edu/me309/me309_h02.pdf h02] || kuhl
+
| tue || apr || 15 || kinematics - configurations, deformation || ||  ||
 
|-
 
|-
| tue || jan || 29 || 2d trianglular elements || m03 || h05 || levenston
+
| thu || apr || 17 || kinematics - temporal derivatives ||  || |||
 
|-
 
|-
| thu || jan || 31 || ansys - modeling || m03 || || levenston
+
| tue || apr || 22 || kinematics - spatial derivatives ||  || h05 ||  
 
|-
 
|-
| tue || feb || 05 || 2d quadrilaterial elements || m04 ||  ||
+
| thu || apr || 24 || kinematics - strain measures || ||  ||  
 
|-
 
|-
| thu || feb || 07 || isoparametric concept || m04 || h03,h04 ||
+
| tue || apr || 29 || balance equations - mass, reynold's tt  || || ||
 
|-
 
|-
| tue || feb || 12 || stress calculation - error analysis || m05 || ||
+
| thu || may || 01 || balance equations - momentum, concept of stress || || h03 ||
 
|-
 
|-
| thu || feb || 14 || stress calculation - error analysis || m06 ||  ||
+
| tue || may || 06 || balance equations - moment of momentum, energy || ||  ||
 
|-
 
|-
| tue || feb || 19 || thermal analysis || m08 ||  ||  
+
| thu || may || 08 || balance equations - entropy, master balance law || ||  ||
 
|-
 
|-
| thu || feb || 21 || thermal analysis || m08  ||  ||
+
| tue || may || 13 || constitutive equations - hyperelasticity, iso || ||  ||  
 
|-
 
|-
| tue || feb || 26 || modeling errors - validation || m09 ||  ||
+
| thu || may || 15 || constitutive equations - hyperelasticity, aniso || ||  ||
 
|-
 
|-
| thu || feb || 28 || special topics in finite element analysis ||  ||  ||
+
| tue || may || 20 || midterm ||  ||  ||
 
|-
 
|-
| tue || mar || 04 || midterm ||  ||   ||
+
| thu || may || 22 || constitutive equations - viscoelasticity ||  || ||
 
|-
 
|-
| thu || mar || 06 || special topics in finite element analysis ||  ||  ||
+
| tue || may || 27 || constitutive equations - elastodamage ||  ||  ||
 
|-
 
|-
| tue || mar || 11 || special topics in finite element analysis ||  ||  ||
+
| thu || may || 29 || variational principles - virtual work ||  ||  ||
|-
+
| thu || mar || 13 || special topics in finite element analysis ||  ||  ||
+
|-
+
| fri || mar || 14 || final projects due  ||  ||  ||
+
 
|-
 
|-
 +
| tue || jun || 03 || journal club ||  ||  ||
 
|}
 
|}
  
==additional reading==
+
==suggested reading==
  
(1) cook rd: finite element modeling for stress analysis, john wiley & sons, 1995 <br>
+
holzapfel ga: nonlinear solid mechanics, a continuum approach for engineering, john wiley & sons, 2000 <br>
(2) buchanan gr: schaum's outline of finite element analysis, mc graw hill, 1994 <br>
+
(3) logan dl.: a first course in the finite element method, cengage engineering, 2006
+

Revision as of 21:27, 10 March 2008

Contents

me338A - continuum mechanics

Fem02.jpg
Fem01.jpg

me338A - continuum mechanics

ellen kuhl, gilwoo choi

spring 2008
tue thu 11:00-12:15
530-127

 

goals

basic concepts of finite elements, with applications to problems confronted by mechanical designers. linear static, modal, and thermal formulations; nonlinear and dynamic formulations. students implement simple element formulations. application of a commercial finite element code in analyzing design problems. issues: solution methods, modeling techniques features of various commercial codes, basic problem definition. Individual projects focus on the interplay of analysis and testing in product design and development. prerequisite: math103, or equivalent. recommended: me80, or equivalent in structural and/or solid mechanics; some exposure to principles of heat transfer.

grading

  • 50 % homework - 3 homework assignments, 16.7% each
  • 30 % midterm - open book, open notes
  • 20 % project - final project

syllabus

day date topic notes hw
tue apr 01 intro
thu apr 03 vectors & tensors - vector algebra
tue apr 08 vectors & tensors - tensor algebra
thu apr 10 vectors & tensors - tensor analysis
tue apr 15 kinematics - configurations, deformation
thu apr 17 kinematics - temporal derivatives
tue apr 22 kinematics - spatial derivatives h05
thu apr 24 kinematics - strain measures
tue apr 29 balance equations - mass, reynold's tt
thu may 01 balance equations - momentum, concept of stress h03
tue may 06 balance equations - moment of momentum, energy
thu may 08 balance equations - entropy, master balance law
tue may 13 constitutive equations - hyperelasticity, iso
thu may 15 constitutive equations - hyperelasticity, aniso
tue may 20 midterm
thu may 22 constitutive equations - viscoelasticity
tue may 27 constitutive equations - elastodamage
thu may 29 variational principles - virtual work
tue jun 03 journal club

suggested reading

holzapfel ga: nonlinear solid mechanics, a continuum approach for engineering, john wiley & sons, 2000