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Abstract
Nature has always been our greatest inspiration in the research, design and development of novel ma-
terials and has driven us to gain a deep understanding of the underlying mechanisms that characterize
anisotropy and inelastic behavior. All this knowledge has been accumulated in the principles of ther-
modynamics. Deduced from these principles, the multiplicative decomposition combined with pseudo
potentials are powerful and universally valid concepts for inelastic materials. Simultaneously, the tremen-
dous increase in computational performance enabled us to investigate and rethink our history-dependent
material models to make the most of our predictions. Today, we have reached a point where materi-
als and their models are becoming increasingly sophisticated. This raises the question: How do we
find the best model that includes all inelastic effects to explain our complex data? Constitutive Arti-
ficial Neural Networks (CANN) may answer this question. Here, we extend the CANNs to inelastic
materials (iCANN). Rigorous considerations of objectivity, rigid motion of the reference configuration,
multiplicative decomposition and its inherent non-uniqueness, choice of appropriate stretch tensors, re-
strictions of energy and pseudo potential, and consistent inelastic evolution guide us towards the general
architecture of the iCANN satisfying thermodynamics per design. We combine feed-forward networks
of the Helmholtz free energy and pseudo potential with a recurrent neural network approach to take
time dependencies into account. Specializing the general iCANN to visco-elasticity, we demonstrate
that the iCANN is capable of autonomously discovering models for artificially generated data, the re-
sponse of polymers at different stretch rates for cyclic loading as well as the relaxation behavior of
muscle data. As the design of the network is not limited to visco-elasticity, our vision is that the iCANN
will reveal to us new ways to find the various inelastic phenomena hidden in the data and to under-
stand their interaction. Our source code, data, and examples are available at Holthusen et al. [2023a]
(https://doi.org/10.5281/zenodo.10066805).

Keywords: automated model discovery, hyperelasticity, viscoelasticity, constitutive neural networks, re-
current neural networks, inelasticity
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Nomenclature

a,A Scalar tr (A) Trace of A

a First order tensor det (A) Determinant of A

A Second order tensor dev (A) A− tr (A)

3
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I Identity tensor exp (A) Exponential of A

SO(•) Special orthogonal group IA1 tr (A)

AT Transpose of A IA2
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1 Motivation

Identifying the relationship between inputs and outputs of complex data sets is often tedious.
Artificial neural networks are a promising solution to this challenge. Inspired by how the brain
is solving problems, the architecture of neural networks is designed to learn these relations by
extracting information from the data provided. Much like the human brain, neural networks
are able to form more neurons as we provide more data; and thus, understand the input-output
dependency even better. However, in contrast to a neural network, we – as humans – do not
start from scratch when learning something new. The way we learn – and more importantly,
our ability to predict future outcomes based on what we have learned – is shaped by a powerful
characteristic of our brain that we constantly benefit from: Experience. Experience allows us to
intuitively extrapolate and, one day, may become knowledge. In a mechanical context, the study
of materials and their behavior has led us to the universal laws of thermodynamics. As classical
neural networks lack from this knowledge, it is not surprising that they may learn the relation
between strains and stresses well, but fail to predict the material behavior outside the training
regime. This is already the case for hyperelastic materials (see e.g. Linka and Kuhl [2023])
where the stress strain relation is bijective, and is even worse for inelastic materials with a non-
unique stress strain relation (see e.g. Wang et al. [2023]). Another issue of traditional neural
networks is that they typically require a rather huge amount of solution data of the underlying
problem for the training process. This can be an obstacle whenever the acquisition of data from
real experiments or realistic micromechanical simulations is either not feasible or too costly.

For this reason, neural networks were developed in which – in one way or the other – prior
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knowledge about the underlying physics of the problem is incorporated. This is done with the
aim of requiring less data and improving the predictive capabilities of the trained network. One
prominent approach in this direction are Physics-Informed Neural Networks, also called PINNs
(Raissi et al. [2019]). PINNs1 incorporate physical constraints to the formulation by adding
additional terms to the loss function. This strategy facilitates the training process by narrowing
the admissible solution space and assists the optimizer in finding a network behaving physically
more reasonably, i.e. showing better extrapolation abilities. Typically, PINNs are used for solv-
ing partial differential equations, i.e. whole (initial-)boundary value problems, as an alternative
to, e.g., the finite element method (for several recent examples in the context of solid mechan-
ics, see Rao et al. [2020], Zhang et al. [2020], Amini Niaki et al. [2021], Cai et al. [2021],
Haghighat et al. [2021], Vahab et al. [2021], Henkes et al. [2022], Rezaei et al. [2022], Harandi
et al. [in print], Niu et al. [2023]). Much less frequently, PINNs are also used to replace consti-
tutive models. For instance, Haghighat et al. [2023] present a PINN framework which is able to
characterize and discover yield surfaces and flow rules in geometrically linear elasto-plasticity,
showing how to deal with complex inequality constraints in the loss function. Eghbalian et al.
[2023] develop a surrogate model approximating classical elasto-plastic constitutive relations
that can be used for large deformations via integration into a hypoelastic-based plasticity frame-
work. However, it can generally be criticized that in PINN-like approaches physical laws are
only weakly enforced during the ‘offline’ training phase and not anymore during ‘online’ com-
putations. For this reason, outputs of the network may still violate basic physical principles.

Going in an entirely different direction, so-called (material) model-free approaches have been
developed which completely dispense with the formulation of constitutive models and their
characterization for solving boundary value problems, relying instead only on experimental
data (Kirchdoerfer and Ortiz [2016], Ibañez et al. [2017]). Such purely data-driven methods
have the clear advantage that only minimal and generally accepted laws (such as basic kine-
matic relationships and force equilibrium in a mechanical context) are assumed as given, but
no complicated (and possibly error-prone) constitutive equations need to be formulated at all.
On the downside, the large amount of data required for the success of such methods can be
disadvantageous – a property shared with traditional neural network approaches. These meth-
ods have already been extended to inelasticity (see e. g. Eggersmann et al. [2019], Ibanez et al.
[2018]). Nevertheless, their successful applicability in the case of complex multi-dimensional
and history-dependent problems or problems with non-unique solutions still needs further clar-
ification, the reason of which they are subject of intensive research in various directions (see
e. g. Eggersmann et al. [2021], Ciftci and Hackl [2022], Zschocke et al. [2022], Kuang et al.
[2023], to name only a few).

As a very promising alternative to PINNs described above, neural networks have been devel-

1For simplicity, other neural network approaches based on very similar ideas will also be referred to by this
abbreviation, even if they are not explicitly named as such in the corresponding papers.
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oped that enforce physical constraints in a strict sense even in ‘online’ computations. This can
be realized by encoding them a priori into the network architecture itself, as done e. g. by the
Thermodynamics-based Artificial Neural Networks developed by Masi et al. [2021]. Another
way of proceeding is to work with traditional neural networks in the first place but to enforce
the constraints a posteriori, as suggested e. g. by Kalina et al. [2022]. In any case, the outputs
of such networks do by design fulfill those natural requirements that we have been placing on
classically formulated material models ever since, as e.g. the second law of thermodynamics.
These approaches are therefore very much in line with our goal of not wanting to design neural
networks that completely discard all the knowledge of physical and thermodynamical principles
having been accumulated over centuries. Instead, it is our strong belief that we should better
teach networks the mentioned principles already beforehand, such that they can solely concen-
trate during training on revealing all the interesting (possibly inelastic) material phenomena for
us in the given data.

Recently, these considerations have led to a most fascinating development, which may lead to a
true paradigm shift in constitutive modeling in the future. The basic idea is as follows: instead of
laboriously deducing which specific phenomena are actually taking place in a material by manu-
ally analyzing experimental data and setting up a corresponding biased material model (which is
likely either too simplistic or too complex, depending on the developer’s level of experience), a
constitutive model is automatically discovered that optimally only reflects the material phenom-
ena truly present in the data. One representative following this idea is the framework EUCLID
developed by Flaschel et al. [2021, 2022]. Basically, EUCLID is an intelligent algorithm using
unlabeled data and sparse regression techniques to select and link only those candidates from a
large pre-formulated library of constitutive models (generalized standard materials) which are
actually necessary to describe the data. In Flaschel et al. [2023], it has been shown (for the case
of small deformations) that such an approach can be used to successfully identify a model for a
material whose material class was previously completely unknown.

A somehow related, but in its implementation completely different and even more general strat-
egy in this regard is pursued by Constitutive Artificial Neural Networks, also known as CANNs
(Linka et al. [2021], Abdolazizi et al. [2023], Linka et al. [2023]). In the first place, these are
neural networks in which kinematical, thermodynamical, and physical constraints (as given by
the second law of thermodynamics, material objectivity, material symmetry, etc.) are strictly in-
corporated. Additionally, and in contrast to most other neural networks in the literature, CANNs
aim to formulate a physically reasonable, yet extremely general expression for the Helmholtz
free energy by an intelligent construction of the network architecture. Consequently, through
appropriate training, the network will autonomously recognize which components of this pa-
rameterized energy are actually needed to describe the data. The main novelty is that, in special
cases, the network will be able to exactly represent known constitutive models from the litera-
ture; in general, however, it will generate a previously completely unknown material model that

4



describes the data even more accurately and leads to better predictions (Linka and Kuhl [2023]).
Important in this context is also the fact that the network learns a set of physically interpretable
parameters, which is clearly advantageous.

The aforementioned idea has taken the community by storm. Since the first publication on
Constitutive Artificial Neural Networks less than three years ago (Linka et al. [2021]), dozens
of research groups have adopted and refined the initial method to align with general physi-
cal requirements and thermodynamic constraints. Constitutive Artificial Neural Networks for
hyperelastic materials are now relatively well understood for both isotropic and anisotropic ma-
terials. In fact, the approach is so common by now that it has even been integrated directly into
the finite element workflow to translate into engineering practice (see Peirlinck et al. [2024]).
However, a critical missing link is to expand the general concept to inelastic materials.

Today, there are nearly as many approaches to model inelastic material behavior as there are in-
elastic phenomena. Some of them are only useful for individual effects, such as visco-elasticity.
Therefore, we should not ask ourselves how we can fuse all these approaches into one model;
instead, what is the most general approach? What are the essential steps to describe inelastic
effects? Once these general mechanisms are found, the question of inelasticity, e.g. plasticity,
is merely a question of specializing the approach and not a question of changing the model. For
solids, we identify the concepts of internal state variables (Rice [1971]) and pseudo/dissipation
potentials of stress (Kestin and Rice [1969]) as universal and perfectly complementary ap-
proaches. The former concept allows to distinguish between elastic (reversible) strains asso-
ciated with the amount of elastically stored energy and inelastic (irreversible) strains related to
the dissipation. In the finite strain theory, the assumption of a multiplicative decomposition of
the deformation gradient into elastic and inelastic parts is advantageous, well-known, widely
accepted in the continuum mechanics community, and able to capture a broad range of material
behaviors (see Kröner [1959], Lee [1969], Mandel [1973], Sidoroff [1974], Rodriguez et al.
[1994], Lion [1997a], Haupt and Sedlan [2001], Menzel et al. [2005], Bammann and Solanki
[2010], and Latorre and Montáns [2015], among many others). It is worth noting that none of
these parts generally satisfies the compatibility condition, so they should not be misunderstood
as gradients. The latter concept follows from sound thermodynamic considerations that are
valid for rate-dependent (see e.g. Lion [1996, 1997b], Reese and Govindjee [1998], and Besson
[2009]) and -independent (see e.g. Miehe [1998] and Badreddine et al. [2010]) materials and
can be easily extended to induced anisotropy (see e.g. Hill and Orowan [1948] and Benzerga
and Besson [2001]). Similar to the Helmholtz free energy, which gives us the relationship be-
tween strains and stresses, the pseudo potential reveals how the thermodynamic driving force
influences the microstructure and, thus, determines the inelastic rate (see Maugin and Muschik
[1994]). The charm of this combination lies in the fact that the potential can be interpreted
mechanically in a way similar to the volumetric-isochoric split (Flory [1961]), and further, that
restricting the potential to be zero-valued, positive, and convex satisfies thermodynamical re-
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quirements a priori (see Germain et al. [1983]). Actually, the approach is in line with that for
generalized standard materials (see Halphen and Nguyen [1975]), with the difference that the
dissipation potential is formulated directly in terms of stress-like quantities.

Objective and outline. In this contribution, we present a new framework for model discov-
ery that extends Constitutive Artificial Neural Networks (CANNs) to general inelastic material
behavior (from now on called iCANNs). Our new iCANN assumes a multiplicative decom-
position of the deformation gradient and is, thus, capable to capture finite deformations and
deformation rates. To satisfy thermodynamics a priori, we derive the inelastic rates from a
pseudo potential that depends on the thermodynamic driving force. In Section 2, we briefly
review the fundamentals of thermodynamics for inelastic materials in general. To this end, we
introduce universally valid restrictions on the Helmholtz free energy as well as the pseudo po-
tential. Our considerations lead us to the architecture of the network in Section 3. In analogy
to CANNs, we use a feed-forward network for the pseudo potential, the underlying concept
of which is inherently generic and holds for any time of inelasticity. We subsequently embed
the feed-forward networks of the energy and pseudo potential into a recurrent neural network
environment. Thus, we obtain a modular structure for iCANNs, which we specialize to visco-
elasticity for illustrative purposes in Section 4. In Section 5, we investigate the performance of
our iCANN using artificially generated data, the visco-elastic behavior of polymers subjected
to cyclic loading, and the relaxation behavior of muscle data. We continue with a discussion of
our approach and mention its limitations in Section 6, before providing concluding remarks and
an outlook in Section 7.

2 Generalization: Constitutive framework for inelastic ma-
terials

To ensure a thermodynamically consistent and objective formulation of our inelastic constitutive
network, we will briefly recall the basic principles of continuum mechanics. Our two main
model ingredients, from which all constitutive relations are derived, are the Helmholtz free
energy, ψ0, and the pseudo potential, g0, which must satisfy all these principles. Therefore,
we introduce a motion, φ, that relates material points with position vector x0 in the reference
configuration defined at a fixed moment in time to points in the current configuration, x =

φ (x0, t), at time t (see Marsden and Hughes [1983]). Since φ is a bijective function, the
motion is invertible, i.e., x0 = φ−1 (x, t). By linearizing the (inverse) motion, we obtain the
deformation gradient as well as its inverse (see Holzapfel [2010])

F :=
∂φ (x0, t)

∂x0

, F−1 =
∂φ−1 (x, t)

∂x
with IF3 > 0. (1)
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Note that we may also include higher gradients of motion to describe the relative change be-
tween two points, but this is not considered in this work (see Bertram and Forest [2020]).

Objectivity. The principle of objectivity or frame indifference restricts the choice of consti-
tutive equations so that they must be independent of the observer. Mathematically, this is
equivalent to a rigid body motion of the current configuration (see Ogden [1984]). Thus,
we can introduce a second motion, φ+ (x0, t), and its inverse, φ+−1

(x+, t), as well as the
translation and rigid rotation of the current position x+ (x0, t) = Q+(t)x (x0, t) + c+(t) with
Q+ ∈ SO(3). Since the reference configuration remains the same for both motions, we con-
clude that φ−1 = φ+−1 and differentiate both with respect to x

∂φ+−1
(x+, t)

∂x+︸ ︷︷ ︸
=:F+−1

∂x+

∂x
=
∂φ−1 (x, t)

∂x
⇒ F+ = Q+F (2)

which gives us the transformation of the deformation gradient when the observer changes.

Rigid motion of the reference configuration. Analogous to objectivity, a rigid motion of the
reference configuration discusses under which alternative choices of reference configuration the
response of the material must remain unchanged (see Chadwick [1998]). If we assume a rigid
body motion of the reference configuration and subsequently apply the same deformation, i.e.,
the relative distance between all points is changed the same as without the rigid motion, the be-
havior of the material must be invariant. Consequently, we can introduce a motion, φ#

(
x#
0 , t
)

,

which accounts for a translated and rotated reference configuration, i.e., x#
0 = Q#x0+c# with

Q# ∈ SO(3). Since both φ and φ# yield to the same current configuration, we find the follow-
ing (cf. Simo and Hughes [2006])

∂φ#
(
x#
0 , t
)

∂x#
0︸ ︷︷ ︸

=:F#

∂x#
0

∂x0

=
∂φ (x0, t)

∂x0

⇒ F# = FQ#T . (3)

Multiplicative decomposition and rotational non-uniqueness. Regardless of whether the
material exhibits visco-elastic behavior, undergoes elasto-plastic deformations, or grows and
remodels itself, all these phenomena have in common that the (elastic) stresses arise from the
elastically stored energy. Therefore, we utilize the multiplicative decomposition

F = FeFi, with IFe3 , IFi3 > 0 (4)

of the deformation gradient into elastic, Fe, and inelastic, Fi, parts. This decomposition is
applied in various fields of mechanics of inelastic materials, for instance, visco-elasticity (see
Sidoroff [1974] and Lubliner [1985]), elasto-(visco)plasticity (see Eckart [1948], Kröner [1959],
and Lee [1969]), damage (see e.g. Schütte and Bruhns [2002] and Dorn and Wulfinghoff
[2021]) as well as growth and remodeling (see Rodriguez et al. [1994] and Lubarda and Hoger
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F

F ∗
i
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e
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Figure 1: Multiplicative decomposition of the deformation gradient, F , into elastic, Fe, and
inelastic, Fi, parts as well as their arbitrarily rotated counterparts F ∗

e and F ∗
i . Further, Fi =

RiUi possesses its polar decomposition. Configurations: rc – reference configuration, ic –
intermediate configuration, ic∗ – arbitrarily rotated intermediate configuration, cic – co-rotated
intermediate configuration, cc – current configuration.

[2002]). However, since none of these parts can be derived from motion in general, they should
not be misinterpreted as gradients. Unfortunately, due to the fact that the introduced interme-
diate configuration is fictitious, we find that the decomposition (4) suffers from an inherent
rotational non-uniqueness, i.e.,

F = FeQ
∗TQ∗Fi =: F

∗
e F

∗
i with Q∗ ∈ SO(3) (5)

is equivalent to (4). As a consequence, the multiplicative decomposition into elastic and inelas-
tic parts is not unique, which is illustrated in Figure 1. Thus, neither Fe nor Fi can be obtained
in general, as there is an infinite number of possible combinations (see, for instance, the brief
but precise discussion by Casey [2017]). However, any constitutive law must be independent of
this non-uniqueness.

Elastic and inelastic stretch tensors. In the case of elastic materials, objectivity constrains the
Helmholtz free energy to be a function of the right stretch tensor U = +

√
C, where C = F TF

is the right Cauchy Green tensor, while a rigid motion of the reference configuration may lead
to a dependence on the left stretch tensor V = +

√
B, where B = FF T is the left Cauchy

Green tensor. If we superimpose both considerations, we find ψ0 to be a scalar-valued isotropic
function of its argument. In order to find suitable stretch measures in the case of inelasticity, we
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superimpose the findings of Equations (2), (3), and (5), i.e.,

F+∗# = Q+FeQ
∗T︸ ︷︷ ︸

=:F+∗
e

Q∗FiQ
#T︸ ︷︷ ︸

=:F ∗#
i

. (6)

At this point, we assume ψ0 to be a function of elastic and inelastic arguments. However, anal-
ogously to elasticity, it remains to find suitable elastic and inelastic stretch tensors. Therefore,
we employ the polar decompositions of Fe = ReUe and Fi = ViRi with Re,Ri ∈ SO(3) into
their rotational and symmetric stretch parts. We insert these relations into the definitions of F+∗

e

and F ∗#
i and find the following (cf. Green and Naghdi [1971])

U+∗
e = Q∗UeQ

∗T , V ∗#
i = Q∗ViQ

∗T (7)

where U+∗
e and V ∗#

i are the stretch parts of F+∗
e and F ∗#

i , respectively. Consequently, the
Helmholtz free energy as an isotropic function of Ue and Vi satisfies the requirements of ob-
jectivity, rigid motion of the reference configuration as well as rotational non-uniqueness, since
both Ue and Vi transform in a similar way if subjected to these three requirements. Neverthe-
less, contrary to their invariants, it is important to note that both tensors are still not unique.

Thermodynamically consistent evaluation. The above considerations have shown us how to
design the Helmholtz free energy as a function of stretches. Now, in order to obtain a thermo-
dynamically consistent material response when subjected to arbitrary loading, we must satisfy
the Clausius-Planck inequality D := −ψ̇0 +

1
2
S : Ċ ≥ 0. In the latter, S denotes the second

Piola-Kirchhoff stress tensor. In line with the discussion led to Equation (7), we can state the
following general form of the Helmholtz free energy

ψ0 = ψ (Ce,Bi) . (8)

For convenience, we expressed ψ in terms of the elastic right Cauchy Green tensor, Ce = U 2
e ,

and the inelastic left Cauchy Green tensor, Bi = V 2
i . We then evaluate the Clausius-Planck

inequality for the Helmholtz free energy (8)

(
S − 2F−1

i

∂ψ0

∂Ce

F−T
i

)
:
1

2
Ċ +


=:Σ︷ ︸︸ ︷

2Ce
∂ψ0

∂Ce

−

=:X︷ ︸︸ ︷
2
∂ψ0

∂Bi

Bi


︸ ︷︷ ︸

=:Γ

: Di ≥ 0 (9)

and, under consideration of the arguments of Coleman and Noll [1961, 1963] and Coleman
and Gurtin [1967], end up with the state law S = 2F−1

i
∂ψ0

∂Ce
F−T
i . Noteworthy, we em-

ployed the symmetry of the relative stress, Γ, to reduce ḞiF
−1
i to its symmetric part, Di =

sym
(
ḞiF

−1
i

)
(see Svendsen [2001]). In contrast to Γ, neither the elastic Mandel-like stress,

Σ, nor the backstress, X , are generally symmetric. Moreover, we recognize that then subjected
to the three requirements mentioned, neither the thermodynamically consistent driving forces
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Σ+∗# = Q∗ΣQ∗T , X+∗# = Q∗XQ∗T , and Γ+∗# = Q∗ΓQ∗T , nor the inelastic deformation
rate D+∗#

i = Q∗DiQ
∗T are unique in the sense of Equation (7).

Evolution equation. It remains to choose an evolution equation for Di such that the remaining
Inequality (9), Γ : Di ≥ 0, is fulfilled for arbitrary processes. To this end, we introduce a
pseudo potential in terms of the thermodynamically consistent driving force, g0 = g (Γ), which
is also a scalar-valued isotropic function. Next, the evolution equation is assumed to be (cf.
Kestin and Rice [1969])

Di = γ
∂g0
∂Γ

(10)

where γ ≥ 0 introduces a time-scale into the model. Depending on the inelastic phenomenon
modeled, γ might be interpreted as a relaxation time (visco-elasticity) or Lagrange multiplier
(elasto-plasticity). In case of growth, the concept of homeostatic surfaces (see Lamm et al.
[2022]) allows the interpretation of γ. For the time being, we constrain g0 to be convex, non-
negative and zero-valued at the origin, i.e., g0(0) = 0. Hence, the dissipation inequality is
satisfied (see Germain et al. [1983]), which will be discussed in more detail in Section 2.2.
In addition, it is worth mentioning that many potentials found in literature assume g0 to be a
positive homogeneous function of degree α > 0. Thus, it is straightforward to prove that D ≥ 0,
since Γ : Di = αγ g (Γ) (cf. Hansen and Schreyer [1994]).

Co-rotated configuration. We observed that none of the tensors defined with respect to the in-
termediate configuration are unique. A consequence of this is that none of the partial derivatives
with respect to Ce, Bi, and Γ can be obtained using algorithmic differentiation. This is a pity,
because in our neural network we only want to design general functions of both ψ0 and g0 that
are capable of finding the best model to explain the experimental data without implementing
additional pull-backs (see Simo and Miehe [1992] and Dettmer and Reese [2004]). To this end,
we use the co-rotated formulation introduced by Holthusen et al. [2023b], which has proven ad-
vantageous when combined with algorithmic differentiation. The fundamental idea is to rotate
all non-unique tensors to their co-rotated counterparts, ¯(•) = R−1

i (•)Ri (see Figure 1),

C̄e = U−1
i CU−1

i , B̄i ≡ Ci, Σ̄ = 2 C̄e
∂ψ0

∂C̄e

, X̄ = 2
∂ψ0

∂Ci

Ci, D̄i = γ
∂g0
∂Γ̄

. (11)

In the latter equation, Ci = F T
i Fi is the inelastic right Cauchy Green tensor and Γ̄ = Σ̄ − X̄

is the co-rotated relative stress. Since all tensors and their co-rotated counterparts are similar,
both ψ(Ce,Bi) = ψ(C̄e,Ci) and g(Γ) = g(Γ̄) maintain the same functional structure. It is
interesting to note that Σ̄ and the Kirchhoff stress, FSF T , share the same eigenvalues (see
Dettmer and Reese [2004]). Hence, the pseudo potential expressed in terms of Γ̄ is physically
reasonable, which is considered an advantage. Finally, the state law reads S = 2U−1

i
∂ψ0

∂C̄e
U−1
i

(cf. Coleman and Noll [1963], Coleman and Gurtin [1967], and Rice [1971]).
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2.1 Helmholtz free energy: How strains cause stresses

So far, we have seen that, in addition to kinematics, the Helmholtz free energy function is
the essential function that tells us how to go from strains to all the stresses we need. Further,
objectivity, rigid motion of the reference configuration, and rotational non-uniqueness led us to
the conclusion that ψ0 must be an isotropic function of C̄e and Ci. Thus, we can express the
Helmholtz free energy in terms of its irreducible integrity basis (see Spencer [1971], Boehler
[1979], and Zheng [1994])

ψ0 = ψ
(
C̄e,Ci

)
= ψ

(
IC̄e1 , IC̄e2 , IC̄e3 , I4, I5, I6, I7, I

Ci
1 , ICi2 , ICi3

)
(12)

with the mixed invariants I4 = tr
(
C̄eCi

)
, I5 = tr

(
C̄2
eCi

)
, I6 = tr

(
C̄eC

2
i

)
, and I7 =

tr
(
C̄2
eC

2
i

)
. The constitutive artificial neural network that we design will learn the energy that

best explains the experimental data by identifying the most valuable terms of a generic form for
the Helmholtz free energy (see Linka and Kuhl [2023]). The goal of this section is therefore to
design such a generic function satisfying thermodynamics.

Isotropy. Within this contribution, we will only consider isotropic materials, i.e., any direc-
tionally dependence is excluded. As kinematic hardening shifts the pseudo potential in the
principal stress space, we neglect any influence of Ci, thus reducing the energy to ψ

(
C̄e

)
=

ψ
(
IC̄e1 , IC̄e2 , IC̄e3

)
. Furthermore, considering the energy as sufficiently smooth and infinitely

differentiable, we can express it in terms of a Taylor series ψ =
∑∞

i,j,k=0 aijk(I
C̄e
1 − 3)i(IC̄e2 −

3)j(IC̄e3 − 1)k at the elastically undeformed state C̄e = I . Since the free energy is zero in the
undeformed state, we can conclude that a000 = 0. However, within the network that we will
design, it is not possible, from a numerical point of view alone, to consider an infinite number of
terms. Unfortunately, this may violate fundamental conditions the energy must fulfill, namely

lim
IC̄e3 → ∞

ψ → +∞ and lim
IC̄e3 ↘ 0

ψ → +∞. (13)

as well as
lim

IC̄e1 → ∞
ψ → +∞ and/or lim

IC̄e2 → ∞
ψ → +∞. (14)

Volumetric-isochoric split. To circumvent these issues, we exploit the volumetric-isochoric
split (see Flory [1961]) and assume the elastic energy to take the form ψ = ψiso(ĨC̄e1 , ĨC̄e2 ) +

ψvol(IC̄e3 ) where ĨC̄e1 = IC̄e1 /(IC̄e3 )
1
3 and ĨC̄e2 = IC̄e2 /(IC̄e3 )

2
3 . This allows us to choose the

following polynomial forms for the energy terms (cf. Rivlin et al. [1951])

ψiso =
n∑
i=0

m∑
j=0

cij (Ĩ
C̄e
1 − 3)i(ĨC̄e2 − 3)j, ψvol =

p∑
k=0

dk(I
C̄e
3 − 1)2k +W (IC̄e3 ) (15)

where we introduced W (IC̄e3 ) in order to ensure the requirements (13). The isochoric response,
ψiso, addresses the second requirement (14). Similar to a000 and for mechanical convenience,
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we find that c00 = d0 = 0 as well as W (1) = 0. In addition to the Helmholtz free energy being
zero in the undeformed state, mechanics tells us that the same must hold for the stress. For the
isochoric response, this is naturally ensured by vanishing gradients of the modified invariants,

i.e., ∂Ĩ
C̄e
1

∂C̄e

∣∣
C̄e=I

=
∂ĨC̄e2

∂C̄e

∣∣
C̄e=I

= 0. Since the first term of the volumetric response, (IC̄e3 − 1)2k,

satisfies this condition as well, we conclude that ∂W (IC̄e3 )

∂IC̄e3

must be zero for IC̄e3 = 1.

Polyconvexity. Lastly, we consider polyconvexity for the design of our feed-forward network
architecture of the free energy. Therefore, we adjust the isochoric part of ψ to exclude mixed
products, i.e,

ψiso =
n∑
i=0

ci0 (Ĩ
C̄e
1 − 3)i +

m∑
j=0

c0j (Ĩ
C̄e
2 − 3)j (16)

since it is generally easier to prove that the sum of convex functions is convex (cf. Hartmann
and Neff [2003]). Consequently, our network is considered not fully connected. Furthermore,
in the context of our neural network, we will consider special convex functions of the power
terms appearing in Equation (16). This allows us to have a broader and more general basis of
constitutive functions, while using less high numbers of exponents of the power series. In the
context of the network, these can be thought of as custom-designed activation functions (see
As'ad et al. [2022]), which will be introduced in Section 3.

2.2 Pseudo potential: How elastic stresses lead to inelastic strains

x < 0

f ′(x) < 0

x > 0

f ′(x) > 0

x

f(x)

Figure 2: A function, f(x), that is convex, non-negative, and zero-valued has the property that
the sign of the derivative, f ′(x) := ∂f(x)

∂x
, evaluated at x and x itself coincide.

The previous section discussed general conditions that the free energy must satisfy and gave rise
to the design of the feed-forward network of this very scalar quantity within the overall recurrent
neural network. Next, we will discuss the design of our second scalar function necessary to
describe inelastic materials, the pseudo potential g(Γ̄). As an isotropic function, we can express
the potential in terms of its integrity basis as well, i.e., g(Γ̄) = g(I Γ̄1 , J

Γ̄
2 , J

Γ̄
3 ).
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Set of invariants. The choice of stress invariants is by no means unique. For instance, choosing
the principal stresses, which is the case for the yield criterion by Tresca, is possible as well.
However, as will be discussed below, we will observe that this choice of invariants is vividly
reflected in the evolution of inelastic strains. For the subsequent discussions, it is useful to take
the following into account

∂I Γ̄1
∂Γ̄

= I,
∂I Γ̄1
∂Γ̄

: Γ̄ = I Γ̄1

∂J Γ̄
2

∂Γ̄
= dev

(
Γ̄
)
,

∂J Γ̄
2

∂Γ̄
: Γ̄ = 2 J Γ̄

2

∂J Γ̄
3

∂Γ̄
= dev

(
dev

(
Γ̄
)2)

,
∂J Γ̄

3

∂Γ̄
: Γ̄ = 3 J Γ̄

3 .

(17)

In the latter equation, the first invariant accounts for the hydrostatic pressure, the second takes
the amount of shear stresses into account, and the third contains information about the direction
and state of stress2 Similar to the free energy, we expand the pseudo potential by a Taylor series
at the origin Γ̄ = 0, i.e., g =

∑∞
i,j,k rijk(I

Γ̄
1 )

i(J Γ̄
2 )

j(J Γ̄
3 )

k.

Thermodynamic consistency. As already mentioned in Section 2, the pseudo potential must
be chosen such that the potential (cf. Germain et al. [1983])

(i) is zero-valued at the origin.
Therefore, we choose r000 = 0 in the Taylor series of g. In practice, we could add any constant
term to the potential and still get a thermodynamically consistent model. However, for mechan-
ical convenience, and due to the fact that the potential can give rise to the dissipated energy, a
zero-valued potential seems most reasonable.

(ii) is convex.
For similar argumentations as in the previous section, we therefore omit all mixed variant terms.
Consequently, the Taylor series reduces to

g =
α∑
i=0

ri00 (I
Γ̄
1 )

i +

β∑
j=0

r0j0 (J
Γ̄
2 )

j +
κ∑
k=0

r00k (J
Γ̄
3 )

k =: g1(I
Γ̄
1 ) + g2(J

Γ̄
2 ) + g3(J

Γ̄
3 ). (18)

Hence, the feed-forward network architecture of the potential is not fully connected as well.

(iii) is non-negative.
Since J Γ̄

2 ≥ 0, g2 in Equation (18) always satisfies this condition, and further, also the require-
ments (i) and (ii). Unfortunately, both I Γ̄1 and J Γ̄

3 might be negative, and thus, all odd values
of j and k can lead to negative sub-potentials g1 and g3. Since we do not want to exclude odd
values a priori, we need to ensure non-negativity as well as (i) and (ii) through special activa-
tion functions within the feed-forward network of our potential. The fulfillment will therefore
be guaranteed by design. We will introduce our choice of functions in Section 3. Alternatively,

2In materials theory, Lode’s angle is often used instead of the third stress invariant (cf. Han and Chen [1985]).
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one may use input convex neural networks (see Amos et al. [2017]), as for instance used by
As'ad and Farhat [2023].

These three requirements together lead to a potential that has its global minimum at its origin. In
order to briefly illustrate why this leads to thermodynamically consistent, inelastic materials in
general, we recall the reduced dissipation inequality, Γ̄ : D̄i ≥ 0, the evolution Equation (10),
the derivatives of the stress invariants (17), and the choice of our potential (18), viz.

Γ̄ : D̄i = γ

(
∂g1(I

Γ̄
1 )

∂I Γ̄1
I Γ̄1 + 2

∂g2(J
Γ̄
2 )

∂J Γ̄
2

J Γ̄
2 + 3

∂g3(J
Γ̄
3 )

∂J Γ̄
3

J Γ̄
3

)
≥ 0. (19)

Since the derivative of the sub-potentials with respect to their corresponding arguments, e.g.
∂g1(IΓ̄1 )

∂IΓ̄1
and I Γ̄1 , always have the same sign due to the the requirements (i)-(iii), their product

is always positive. Figure 2 illustrates this property qualitatively. Hence, we generally fulfill
thermodynamics.

Effect of stress invariants on inelastic evolution. To motivate the choice of invariants as
well as sub-potentials also from a more mechanical point of view, we additionally consider the
inelastic volume, IFi3 , or rather its evolution over time. In this context, we found the analytical

expression
˙(
IFi3

)
= IUi3 tr

(
D̄i

)
, revealing that the evolution over time can be expressed in

terms of the evolution Equation (10). With this expression at hand, it becomes obvious that
the inelastic volume ratio is related to the hydrostatic pressure, I Γ̄1 , which seems intuitive. This
means that as long as ∂g1(IΓ̄1 )

∂IΓ̄1
= 0, the volume ratio must remain constant. For our specific

choice made in Equation (18), we found that g1(I Γ̄1 ) ̸= const. is strongly related to the volume
ratio over time. In addition, from a computational point of view, this guides our choice of time
discretization schemes for the evolution equation, which will be discussed in Section 4.

3 inelastic Constitutive Artificial Neural Networks

The previous sections have set the physical boundaries for the constitutive equations to obtain
thermodynamically consistent results. In the following, we will design an iCANN architecture
that inherently satisfies these requirements. We will discuss the inputs and outputs in each time
step, the general network architecture as well as the feed-forward architectures of the energy
and potential networks including their individual activation functions.

iCANN inputs and outputs. Within a time step, the overall inputs for both networks are C

and the time increment ∆t. Moreover, since our aim is to discover history-dependent materials,
the inelastic stretches, Ui, are passed through the hidden states. In addition, as we will discuss
in detail in Section 4, we will use an explicit time integration scheme. Thus, C corresponding
to the last time step is passed through the hidden states as well. While C̄e serves as the input
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for the energy network, the input for the potential network is Γ̄. Furthermore, considering
the constitutive requirements of objectivity, rigid motion of the reference configuration, and
rotational non-uniqueness, the basis for both networks are the invariants of these tensors.

Network architecture. The network architecture combines a recurrent neural network with
two individual feed-forward networks for the Helmholtz free energy as well as the pseudo po-
tential. Both feed-forward networks are inspired by the classical CANN approach (see Linka
et al. [2021]). As alluded in Linka and Kuhl [2023], both networks are not fully connected in
order to ensure polyconvexity and convexity, respectively. Figure 3 illustrates schematically
the recurrent architecture at sequential time steps. Noteworthy, ∆t does not have to be con-
stant rather it is the increment between the previous and current time step, e.g., at tn+1 we find
∆t = tn+1 − tn. A more detailed illustration of the iCANN structure is provided in Figure 4.
Here, we already exploited that we solve the evolution equation explicitly (cf. Equation (26)).
Hence, we have to calculate the Helmholtz free energy twice, however, we must not use two
feed-forward networks. Otherwise, we would not learn a unique set of weights for ψ explaining
the overall material behavior. If we would for example solve the evolution equation implicitly,
we would need an additional Newton-Raphson iteration, which would certainly increase the
numerical effort during training.

Helmholtz free energy feed-forward network. The feed-forward network for the energy that
we are using is shown in Figure 5. We extend the CANN structure of Linka and Kuhl [2023]
to compressible solids by decoupling the volumetric and isochoric response (cf. Equation 15)3.
Within this contribution, the explicit form we choose for W (IC̄e3 ) is taken from Ogden and Hill
[1972]4. Thus, the equation for the Helmholtz free energy within our networks takes the form

ψ
(
ĨC̄e1 , ĨC̄e2 , IC̄e3

)
= wψ2,1 (Ĩ

C̄e
1 − 3) + wψ2,2

[
exp(wψ1,1 (Ĩ

C̄e
1 − 3))− 1

]
+ wψ2,3 (Ĩ

C̄e
1 − 3)2 + wψ2,4

[
exp(wψ1,2 (Ĩ

C̄e
1 − 3)2)− 1

]
+ wψ2,5 (Ĩ

C̄e
2 − 3) + wψ2,6

[
exp(wψ1,3 (Ĩ

C̄e
2 − 3))− 1

]
+ wψ2,7 (Ĩ

C̄e
2 − 3)2 + wψ2,8

[
exp(wψ1,4 (Ĩ

C̄e
2 − 3)2)− 1

]
+ wψ3,2

[(
IC̄e3

)−wψ3,1 − 1 + wψ3,1 ln(IC̄e3 )

]
︸ ︷︷ ︸

W (IC̄e3 )

+ . . .

(20)

As discussed in Section 2.1, we approximate the energy by a Taylor series within one layer
of the network. The subsequent layer applies specific activation functions. In line with Linka
and Kuhl [2023], we utilize custom-designed activation functions: linear (•) and exponential
exp(•) − 1. These functions are monotonic, continuous, continuous differentiable, and zero at
the origin.

3We kindly refer the interested reader to the aforementioned publication for a more detailed explanation.
4For an overview of alternative choices, the reader is referred to Hartmann and Neff [2003].
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As shown in Figure 5, we introduce two types of weights here. The first, wψ1, and wψ3,1, control
the shape of the activation function, while the second, wψ2, and wψ3,2, scale the individual contri-
bution. Note that due to the linearity of the first activation function, we can reduce the weights
to one single weight for the linear activation, e.g., wψ2,1. In order to ensure physically reasonable
results, all weights except wψ3,1 are constraint to be greater or equal to zero.

Pseudo potential feed-forward network. We use a similar structure to that of the CANN to
design the feed-forward architecture of the pseudo potential. The underlying idea is to find a
general expression for the potential that is physically interpretable and that also satisfies the
requirements given in Section 2.2 by design. Therefore, we custom-design activation func-
tions that satisfy a zero-value potential for zero stress, are convex for inputs of any power
since we expand the potential by a Taylor series, and are non-negative for any positive and
negative arguments. One possible set of activation functions we are choosing is shown in Fig-
ure 6: absolute value abs(•), natural logarithm of the hyperbolic cosine ln(cosh(•)), and the
hyperbolic cosine cosh(•)− 1. Like the activation functions for the energy, these functions are
continuous and continuously differentiable. Moreover, to guarantee convexity, we do not use a
fully-connected feed-forward network, i.e., we do not include mixed products of the invariants
(cf. Equation (18)).
It remains that we introduce a set of possible weights. To this end, we take inspiration from the
CANN design, which means we introduce two types of weights. On the one hand, the shape of
each activation function is controlled by a weight, wg1,, and, in addition, the individual contri-
bution of each function is scaled by a second weight, wg2,. Due to the properties of the absolute
activation function, a weight controlling the shape is redundant. Thus, we can again reduce
the set of weights, since only one weight is needed for this very activation function. We also
restrict the range of values of the weights to be greater than or equal to zero for thermodynamic
considerations. All of these considerations lead us to the design of the potential network shown
schematically in Figure 7, or its explicit form

g
(
I Γ̄1 , J

Γ̄
2 , J

Γ̄
3

)
= wg2,1 abs(I

Γ̄
1 ) + wg2,2 ln(cosh(w

g
1,1 I

Γ̄
1 )) + wg2,3

[
cosh(wg1,2 I

Γ̄
1 )− 1

]
+ wg2,4 abs((I

Γ̄
1 )

2) + wg2,5 ln(cosh(w
g
1,3 (I

Γ̄
1 )

2)) + wg2,6

[
cosh(wg1,4 (I

Γ̄
1 )

2)− 1
]

+ wg2,7 abs(J
Γ̄
2 ) + wg2,8 ln(cosh(w

g
1,5 J

Γ̄
2 )) + wg2,9

[
cosh(wg1,6 J

Γ̄
2 )− 1

]
+ wg2,10 abs((J

Γ̄
2 )

2) + wg2,11 ln(cosh(w
g
1,7 (J

Γ̄
2 )

2)) + wg2,12

[
cosh(wg1,8 (J

Γ̄
2 )

2)− 1
]

+ wg2,13 abs(J
Γ̄
3 ) + wg2,14 ln(cosh(w

g
1,9 J

Γ̄
3 )) + wg2,15

[
cosh(wg1,10 J

Γ̄
3 )− 1

]
+ wg2,16 abs((J

Γ̄
3 )

2) + wg2,17 ln(cosh(w
g
1,11 (J

Γ̄
3 )

2)) + wg2,18

[
cosh(wg1,12 (J

Γ̄
3 )

2)− 1
]

+ . . .

(21)

which can be interpreted as the sum of convex potentials. In a more general context, this design
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is nothing more than a general convex yield criterion (cf. Mollica and Srinivasa [2002]) with ‘p-
norm’ equal to one. Remarkably, changing the ‘p-norm’ regularizes the corners of intersecting
yield criteria/potentials. Furthermore, varying the ‘p-norm’ allows us to consider a wider range
of pseudo potentials using the same set of activation functions, which is seen as an easy way to
extend our approach. From a network perspective, the ‘p-norm’ could be seen as an additional
weight.

The purpose of CANNs is to provide a simple network architecture, which is also physically
sound and interpretable. The extension made to iCANNs by the use of recurrent neural networks
for the history dependence as well as the network of the pseudo potential follows exactly this
way. All quantities within the ‘overall’ network are physically interpretable and can be clearly
assigned to the influence of strains on stresses (Section 2.1) or to the influence of stresses on
inelastic strains (Section 2.2).

iCANN iCANN iCANN

tn tn+1 tn+2

Sn Sn+1 Sn+2

Cn

Uin

Cn+1

Uin+1

Cn+2

Uin+2

Cn ∆t Cn+1 ∆t Cn+2 ∆t

Figure 3: Schematic illustration of recurrent neural network for iCANN. The history depen-
dence of the material is taken into account by the hidden state of the recurrent neural network.
Thus, the inelastic stretches, Ui, as well as the previous total stretches, C, are propagated
through time. Figure 4 illustrates the iCANN architecture in each time step.
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share the same weights

iCANN

Cn,Uin C̄en ψn Γ̄n g(Γ̄n) D̄n Uin+1

Cn+1

C̄en+1
ψn+1

Sn+1

∆t

feed
forward

feed
forward

Figure 4: Schematic illustration of the iCANN architecture. Color code: blue – current inputs;
orange – basic calculation; red – feed-forward network; yellow – hidden state variables; purple
– time discretization (Equation (26)); green – current output. It is important to note that the
feed-forward networks for both ψn and ψn+1 have the same weights. Thus, there is no double
set of weights for the energy. The architecture of the energy network is illustrated in Figure 5,
Figure 7 shows the architecture of the feed-forward network of the potential.
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C̄e I C̄e2

I C̄e1

I C̄e3

Ĩ C̄e2 − 3

Ĩ C̄e1 − 3

(•)1

(•)2

(•)1

(•)2

(•)

exp(•)− 1

(•)

exp(•)− 1

(•)

exp(•)− 1

(•)

exp(•)− 1

W (I C̄e3 )

ψ(C̄e)

wψ3,1

wψ1,4

wψ3,2

wψ2,8

wψ2,1

wψ1,1

Figure 5: Schematic illustration of the feed-forward network architecture of the elastic and
compressible Helmholtz free energy, ψ, within the recurrent neural network. The first layer
computes the invariants, the second employs the volumetric-isochoric split, the third generates
the powers (•) and (•)2, and the fourth applies the custom-designed activation functions identity
(•) and the exponential exp(•) − 1. To satisfy polyconvexity a priori, the network is not fully
connected by design.
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Figure 6: Particular choices of custom-designed activation functions for the pseudo potential,
g, with linear, quadratic, and cubic inputs. As required, all functions are convex, non-negative,
and zero-valued.
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Γ̄ J Γ̄
2

I Γ̄1

J Γ̄
3

(•)1

(•)2(•)2

(•)1

(•)2

(•)1

(•)2

abs(•)

ln(cosh(•))

cosh(•)− 1

abs(•)

ln(cosh(•))

cosh(•)− 1

abs(•)

ln(cosh(•))

cosh(•)− 1

abs(•)

ln(cosh(•))

cosh(•)− 1

g(Γ̄)

wg1,12 wg2,18

wg1,1 wg2,1

Figure 7: Schematic illustration of the feed-forward network architecture of the pseudo poten-
tial, g, within the recurrent neural network. The first layer computes the invariants, the second
generates the powers (•) and (•)2, and the third applies the custom-designed activation func-
tions absolute value abs(•), logarithm/hyperbolic cosine ln(cosh(•)), and the hyperbolic cosine
cosh(•)− 1. To satisfy convexity a priori, the network is not fully connected by design.

21



4 Specialization: Incompressibility, visco-elasticity and time
discretization

Fe Fi

ψNeq(C̄e) g(Σ̄Neq)

Figure 8: Schematic illustration of a single Maxwell element. Due to the history dependence
and the inelastic evolution, the energy associated with the spring element, ψNeq, is not instanta-
neously in equilibrium.

In the previous chapters we have discussed the constitutive properties of general inelastic mate-
rials from a theoretical point of view as well as its particular implementation and incorporation
into a recurrent neural network. In the following, we will now specify the material equations
and architecture of the network for the application of visco-elastic material behavior.

Incompressibility and loadings. For the time being, we restrict ourselves to the case of incom-
pressible material behavior, i.e., IC3 = 1. In order to ensure this condition within our studies,
we add a Lagrange term, −p(IC3 − 1) = −p(IC̄e3 ICi3 − 1), to the overall Helmholtz free en-
ergy ψ0. In the latter, p can be interpreted as the hydrostatic pressure and is calculated from
the boundary conditions. It is important to note that although the overall material behavior is
incompressible, the elastic response might not. Only if ICi3 = 1 remains constant, we obtain
elastic incompressibility. Furthermore, we only investigate coaxial loads, i.e., uniaxial loading
(C = diag

[
C11, 1/

√
C11, 1/

√
C11

]
), equibiaxial loading (C = diag [C11, C11, 1/C

2
11]), and

pure shear (C = diag [C11, 1, 1/C11]) (see Steinmann et al. [2012]). Hence, the principal axes
do not rotate during loading, and thus, both C̄e and Ci are diagonal tensors as well (cf. Itskov
[2004]). Finally, we calculate p by the condition that S33 = 0 must hold for each of these
loading cases.

Maxwell element. In terms of rheology, visco-elastic material behavior can be represented as a
spring and dashpot element in serial connection, which is schematically illustrated in Figure 8.
Additionally, since we consider incompressible behavior, we find the following overall energy

ψ0 = ψNeq(C̄e)− p (IC̄e3 ICi3 − 1) (22)

where ψNeq belongs to the spring element. Noteworthy, having Equation (11) in mind, we
observe that Γ̄ = Σ̄ − X̄ ≡ 2 C̄e

∂ψNeq(C̄e)

∂C̄e
=: Σ̄Neq. Thus, we realize that the driving force

for inelastic effects, Σ̄Neq, is independent from the Lagrange multiplier, p, and express the
reduced dissipation inequality as Σ̄Neq : D̄ ≥ 0 for the case of visco-elastic, incompressible
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material behavior. In addition, we can rewrite the state law per Maxwell element as SNeq =

2U−1
i

∂ψNeq(C̄e)

∂C̄e
U−1
i − pC−1.

Moreover, for discovering the viscous response, we need to specify the evolution Equation (10),
where we identify γ to be the reciprocal of the relaxation time. In this regard, we might consider
the relaxation time to be a function of Σ̄Neq, see Ricker et al. [2023] for a comprehensive
overview of suitable choices. However, for the time being, we consider γ to be constant.

Reduction of Maxwell element. For the studies we will conduct within this contribution,
we design the feed-forward network of the Helmholtz free energy of the Maxwell element,
ψNeq(C̄e), to be the very same as shown in Equation (20) without any further terms. Conse-
quently, the weights of this network are: 4 (wψ1,) + 8 (wψ2,) + 2 (wψ3,) = 14 weights in total. In
contrast, since the amount of experimental data is limited, we reduce the form of the potential
shown in Equation (21), which was for example also used by Taç et al. [2023]. In addition, also
in line with the latter mentioned work, we replace J Σ̄Neq

2 by a scaled version J̃ Σ̄Neq

2 = 3 J Σ̄Neq

2 ,
yielding the following potential

g
(
IΣ̄

Neq

1 , J̃ Σ̄Neq

2

)
= wg2,1 abs(I

Σ̄Neq

1 ) + wg2,2 ln(cosh(w
g
1,1 I

Σ̄Neq

1 ))

+ wg2,4 abs((I
Σ̄Neq

1 )2) + wg2,5 ln(cosh(w
g
1,3 (I

Σ̄Neq

1 )2))

+ w̃g2,7 abs(J̃
Σ̄Neq

2 ) + wg2,8 ln(cosh(w̃
g
1,5 J̃

Σ̄Neq

2 )).

(23)

Thus, for the potential we have in total: 3 (wg1,) + 6 (wg2,) = 9 weights. Noteworthy, in com-
parison to Equation (21), the relations wg2,7 = 3 w̃g2,7 and wg1,5 = 3 w̃g1,5 hold. At this point, an
additional weight for the relaxation time, 1

γ
, would increase the overall number of weights in

our network to 24. However, considering Equation (10), we realize that this weight is obsolete
if the relaxation time is constant, since the weights wg2, can be considered to have the dimen-
sion ‘stiffness divided by time’. Hence, the time-scale is included in the potential. Although
this might be unintuitive in terms of mechanics, we can reduce the numerical effort within the
training process of our network without changing the underlying constitutive framework.

Visco-elastic solid. A Maxwell element is not well suited to model visco-elastic solids. There-
fore, to learn the materials’ responses of different solids in Section 5, we utilize a common
approach in continuum mechanics. Here, we connect three Maxwell elements and an equilib-
rium spring in parallel, where the equilibrium spring behaves purely elastically. As a result, the
Helmholtz free energy can be expressed as

ψ0 =
3∑

α=1

(
ψNeq
α (C̄eα)− pα(I

C̄eα
3 I

Ciα
3 − 1)

)
+ ψEq(IC1 , I

C
2 )− p(IC3 − 1) (24)

together with the potential

g0 =
3∑

α=1

gα

(
IΣ̄

Neq
α

1 , J̃ Σ̄Neq
α

2

)
(25)
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with α denoting the contribution of each Maxwell element. Figure 9 schematically illustrates
the iCANN used here. Note that the energy, ψEq, depends solely on the right Cauchy Green
tensor, C. Since the determinant of the latter is always equal to one here, we do not need
to consider the invariant IC3 within the equilibrium energy term. Thus, ψEq is designed in
analogy to Equation (20), but without W (IC3 ) (cf. Linka and Kuhl [2023]). In summary, our
visco-elastic solid neural network contains 3 x 23 (Maxwell element) + 1 x 12 (equilibrium
spring) = 81 weights and the state law reads S =

∑3
α=1

(
2U−1

iα
∂ψNeq

α (C̄eα )

∂C̄eα
U−1
iα

− pαC
−1
)
+

2
∂ψEq(IC1 ,I

C
2 )

∂C
− pC−15.

Time discretization. Regardless the material behavior of interest, we need to discretize the
evolution equation within the time interval t ∈ [tn, tn+1]. As discussed in Section 2.2, we have
to choose an algorithm that preserves the inelastic volume in absence of IΣ̄1 . Therefore, we will
use the class of exponential integrators, and further, we will integrate explicitly in time (cf. Simo
and Hughes [2006]). For our purpose within this contribution, this choice is sufficient and easier
in terms of the numerical implementation. Exploiting that the exponential satisfies the identity
exp (BAB−1) = B exp (A)B−1 if B is invertible and further algebraic reformulations (cf.
Holthusen et al. [2023b]), we obtain the following

Cin+1 = Uin exp
(
∆t 2 D̄in

)
Uin , Uin+1 = +

√
Cin+1 (26)

with the time interval ∆t := tn+1 − tn. We recognize that the derivatives in Equation (17) are
all coaxial, and, due to exp (A+B) = exp (A) exp (B) for coaxial arguments, we can rewrite
the exponential in Equation (26) as

exp
(
∆t 2 D̄i

)
= exp

(
∆t 2γ

∂g1(I
Γ̄
1 )

∂I Γ̄1
I

)
exp

(
∆t 2γ

∂g2(J
Γ̄
2 )

∂J Γ̄
2

dev
(
Γ̄
))

. . .

exp

(
∆t 2γ

∂g3(J
Γ̄
3 )

∂J Γ̄
3

dev
(
dev

(
Γ̄
)2)) (27)

where the index n was omitted. Lastly, we take the identity det (exp (A)) = exp (tr (A)) into
account, and thus, prove that the exponential integrator satisfies
det
(
Cin+1

)
= exp

(
∆t 6γ

(
∂g1(IΓ̄1 )

∂IΓ̄1

)
n

)
det (Cin).

5One could also combine all hydrostatic pressures, pα and p, into one total pressure. However, since the
Maxwell elements and the equilibrium spring are distinct from each other, it is convenient to separate these La-
grange functions then it comes to the numerical implementation.
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Figure 9: Schematic illustration of a generalized Maxwell element describing a visco-elastic
solid. While the overall deformation, F , is the same for the equilibrium, ψEq, and each of the
non-equilibrium springs, ψNeq

α , the elastic parts, Feα , may very.

5 Results

In the following, we apply our Maxwell iCANN (Equations (22)-(23)) as well as our visco-
elastic iCANN (Equations (24)-(25)) to various experimental and artificially generated data sets.
We implemented our iCANN into the open-source software library TensorFlow (see Abadi et al.
[2015]). Since this paper focuses on the design of thermodynamically consistent iCANNs and
not on questions related to the training procedure of NNs, we have set the L2-regularizer L2 =

0.001 for all simulations. The relationship between potential overfitting and L2-regularization
in the context of CANNs is explored, for example, by St. Pierre et al. [2023] and Wang et al.
[2023]. The loss is expressed in terms of least squares, i.e., the sum of the squared differences
between the experimentally observed stresses and the stress predicted by the iCANN (cf. Wang
et al. [2023]). In addition, we use two error measures, i.e. the normalized root mean squared
error, ϵ, and the coefficient of determination, R2, to evaluate the performance and accuracy of
our iCANN

ϵ :=
1

|S̄|

√√√√ 1

ndata

ndata∑
i=1

(
S11i − Ŝ11i

)2
, R2 := max

0, 1−

∑ndata

i=1

(
S11i − Ŝ11i

)2
∑ndata

i=1

(
S̄ − Ŝ11i

)2
 . (28)

In the latter, S11 denotes the iCANN stress response, the experimentally observed stress is indi-
cated by Ŝ11, while ndata is the number of data points. Further, |S̄| = 1

ndata

∑ndata

i=1 |Ŝ11i | denotes
the sum of absolute values of the experimentally observed stress and S̄ = 1

ndata

∑ndata

i=1 Ŝ11i is
its mean. In all examples, the ADAM optimizer is used for training the network. The weights
we discover during training for each example can be found in Appendix A.1-A.3.

25



5.1 Example 1: Artificially generated data

We start by creating artificial data using a Maxwell model. Consequently, the iCANN used
corresponds to the Maxwell network (cf. Equations (22)-(23)). We use a continuum mechanical
model to generate our artificial data. This constitutive framework is closed by introducing a
Helmholtz free energy function of the elastic stretch, a pseudo potential, and the definition of
the evolution equation

ψNeq(C̄e) =
µ

2

(
tr
(
C̄e

)
det
(
C̄e

)1/3 − 3

)
+
K

25

(
det
(
C̄e

)
− 1− ln

(
det
(
C̄e

)))
(29)

g
(
Σ̄Neq

)
=

1

4µ
tr
(
dev

(
Σ̄Neq

)2)
+

1

18K
tr
(
Σ̄Neq

)2
(30)

D̄i =
1

τ

∂g

∂Σ̄Neq
. (31)

In the latter, µ = 12.5 [kPa] is the shear modulus, K = 25 [kPa] is the material’s bulk modulus,
and τ = 10 [s] denotes the relaxation time. We choose a compressible Neo-Hookean model,
while the potential is taken from literature (see Reese and Govindjee [1998]). For the numer-
ical implementation, we use the algorithmic differentiation tool AceGen (see Korelc [2002])
and calculate the matrix exponential by the closed-form expression provided by Korelc and
Stupkiewicz [2014].

We load the model monotonically using uniaxial tension (Figure 10a), uniaxial compression
(Figure 10b), equibiaxial tension (Figure 10c), pure shear (Figure 10d), and uniaxial cyclic
tension/compression (Figure 10e). The first four loadings are relaxation tests, i.e., the load
is applied within 0.5 [s] and then kept constant. For cyclic loading, we utilize three cycles:
(i) increase stretch until Cmax

11 = 1.2 at t = 0.4 [s], (ii) increase stretch until Cmax
11 = 2.1 at

t = 1.2 [s], decrease stretch until Cmax
11 = 0.5 at t = 1.6 [s].

The iCANN is simultaneously trained using the four monotonic relaxation tests (Figures 10a-
10d). Here, we used 10,000 epochs for training. We observe that the iCANN is able to discover
a model that explains our training data almost exactly, which can be seen qualitatively in the
stress-time curves and quantitatively in terms of ϵ and R2 (see Figure 10). We test the perfor-
mance of the iCANN using the cyclic data set. The prediction is in almost perfect agreement
with the artificially generated data. It is important to mention that the loading/unloading rate
is not constant. This property is accurately reproduced by the model, although only relaxation
tests are used for training.
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(b) Uniaxial compression (ϵ = 0.01, R2 = 1.00,
Cmax
11 = 0.6)
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(c) Equibiaxial tension (ϵ = 0.00, R2 = 1.00,
Cmax
11 = 1.8)
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(d) Pure shear (ϵ = 0.01, R2 = 1.00,
Cmax
11 = 1.2)
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(e) Uniaxial cyclic loading (ϵ = 0.01, R2 = 1.00)

Figure 10: Discovering a model for artificially generated data. For training, C11 is increased
linearly within the first 0.5 seconds until Cmax

11 is reached and then kept constant for the rest
of the simulation. For testing, the specimen is subjected to cyclic loading within five loading
intervals.
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5.2 Example 2: Discovering a model for the polymer VHB 4910 subjected
to cyclic loading

Having validated our network on artificially generated data, we are interested in how well our
approach can learn and predict experimental data. Therefore, we take experimental data from
Hossain et al. [2012] for the very-high-bond (VHB) 4910 polymer. Note that these data have
already been used in a visco-elastic CANN by Abdolazizi et al. [2023]. However, they use
a Prony series approach to account for visco-elasticity. Since polymers are considered visco-
elastic, we use the visco-elastic network approach (Equations (24)-(25)).

Within the experimental investigation, Hossain et al. [2012] subjected the material to uniax-
ial loading-unloading cycles at different maximum stretches Cmax

11 = {2.25, 4.0, 6.25, 9.0}
and three constant stretch rates Ḟ11 = {0.01, 0.03, 0.05} [1/s]6. For the maximum stretch
Cmax

11 = 9.0, the authors did not provide any experimental data for the rate Ḟ11 = 0.03 [1/s].
The experimental data, which we transfered to the second Piola-Kirchhoff stress as well as the
right Cauchy-Green tensor, are shown in Figure 11. In addition, the authors derived a classical
constitutive model using the material model of Arruda and Boyce [1993]. In order to identify
the corresponding material parameters, additional multi-step relaxation tests were conducted by
the authors.

Similar to Abdolazizi et al. [2023], we are not using any of the multi-step relaxation tests to
learn the weights of our iCANN for the polymer. However, contrary to the latter mentioned
authors, we use less experimental data for training7. In fact, only the data up to the maximum
of Cmax

11 = 9.0 is used for training (Figure 11a). We set the epochs to 6,000 for this example.
Therefore, any data with a rate of Ḟ11 = 0.03 [1/s] is not seen by the iCANN during training.
The remaining nine experimental curves (Figures 11b-11d) serve for testing.

We observe a very good agreement with the results of the training process and the corresponding
experimental data, not only qualitatively but also quantitatively. The normalized root squared
error for all experiments in provided in Table 1, the coefficient of determination is listed in
Table 2. Furthermore, the results for the unseen data at stretch levels Cmax

11 = {2.25, 4.0}
are in remarkably good agreement with the experiments. This is particularly impressive since
the data for the rate at which no training was performed is also predicted to a high degree
of accuracy. Only the data for stretch Cmax

11 = 6.25 are less closely matched. However, as
noted by Abdolazizi et al. [2023], the experimental data are inconsistent here, at least from
a constitutive point of view: For constant loading rates but different maximum stretch levels
applied, the stress-strain curves should be approximately the same. This is not the case here (see
Appendix A.4). Thus, an artificial neural network obeying the laws of constitutive modeling is

6C11 = F 2
11 for uniaxial loading.

7They use the data for Cmax
11 = 2.25 as well, but exclude the rate Ḟ11 = 0.03 [1/s].
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simply not capable of predicting such results. However, we see this not as a disadvantage, but
rather as an advantage of iCANNs and CANNs, since inconsistencies in the experimentally
measured data will not seriously affect the discovered model.

The results shown here give us a groundswell of optimism that iCANNs are a potentially pow-
erful combination of machine learning approaches and thermodynamics. It is particularly note-
worthy that, in contrast to the constitutive material models from the literature, we only used the
cyclic experimental data and discovered an extremely accurate model.

Table 1: Normalized root mean squared error, ϵ, corresponding to the results shown in Figure 11.
The first row represents the results of training, the remaining three rows are the values of testing.
In Hossain et al. [2012] no experimental data are provided for the middle rate with Cmax

11 =

9.0 [−].

ϵ
Ḟ11 [1/s]

0.05 0.03 0.01

Cmax
11

9.0 0.02 - 0.04
2.25 0.09 0.07 0.07
4.0 0.04 0.05 0.14
6.25 0.16 0.17 0.13

Table 2: Coefficient of determination, R2, corresponding to the results shown in Figure 11. The
first row represents the results of training, the remaining three rows are the values of testing.
In Hossain et al. [2012] no experimental data are provided for the middle rate with Cmax

11 =

9.0 [−].

R2
Ḟ11 [1/s]

0.05 0.03 0.01

Cmax
11

9.0 1.00 - 0.99
2.25 0.96 0.97 0.97
4.0 0.99 0.99 0.88
6.25 0.81 0.80 0.89
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Figure 11: Discovering a model for the experimental data of the polymer VHB 4910 taken
from Hossain et al. [2012]. Each Figure 11a-11d shows loading/unloading stress-stretch curves
at constant deformation rates, Ḟ11, but different maximum applied stretch levels, Cmax

11 . The
experimental data are indicated by dots, the solid lines correspond to the training results of the
network (Figure 11a), and dashed lines represent the testing/prediction of the discovered model
(Figures 11b-11d).
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5.3 Example 3: Discovering a model for passive skeletal muscle subjected
to relaxation

Finally, we are interested in discovering a model for passive skeletal muscle subjected to uni-
axial compression. We take the data of Van Loocke et al. [2008], who performed relaxation
tests. In total, they performed five different experiments on the same material, i.e. they varied
both the maximum stretch Cmax

11 = {0.81, 0.64, 0.49, 0.49, 0.49} [−] applied for relaxation and
the rate of deformation Ḟ11 = {0.01, 0.01, 0.01, 0.005, 0.05} [s]. The experimental results used
here are the mean of six tests per data set.

Wang et al. [2023] studied the performance of a Constitutive Artificial Neural Network com-
bined with a Prony series approach to take visco-elasticity into account. In addition, they com-
pared their CANN model with the performance of a ‘vanilla’ recurrent neural network, i.e., no
physical or constitutive constraints are included in the design of the network. Although the per-
formance of the training sets was more accurate compared to CANNs, the prediction generally
provided non-physical results, which were in strong disagreement with thermodynamics. Thus,
viscoelastic CANNs outperform classical neural network approaches because their results are
most likely to violate physics. Another aspect investigated by the authors was the influence of
increased data for training. One the one hand, they started by training the network using one
experimental curve and test their discovered model using the remaining four experiments. On
the other hand, training the network using four experimental data sets and just using one unseen
data set for testing should generally increase the network’s performance. In the following, we
will study the same using our iCANN approach. Regardless whether we train on one or on four
experiments, we set the epochs to 5,000 in this example.

Train on one, test on four. To begin with, we train our iCANN on one experimental curve and
test on four remaining data sets. Additionally, we vary the training data set with respect to the
five different combination of maximum stretch and rate of deformation. The models we learned
as well as the experimental data are shown in Figure 12. Table 3 lists the normalized root mean
squared error, while the coefficient of determination is given in Table 4. Generally, we can say
that the training data sets are fitted very well using our iCANN approach, regardless of which
experiment is used for training. Summarizing each column in Table 3, we find the third column
to perform the best (

∑
ϵ = 1.21). Nevertheless, both the ϵ and R2 values of the tests in each

column are relatively poor, suggesting that an optimal model has not yet been discovered. As
possible causes we may consider either the limitation of the number of Maxwell elements to
three or the insufficient amount of training data. Regarding the first reason, however, it can be
assumed that no better model will be found if the training data remain the same, since the error
measures are already very good for the training data.

Train on four, test on one. Consequently, we increase the data used for training. Our results
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are illustrated in Figure 13 where we use four curves for training and test on the remaining
experimental curve. Again, we calculate the normalized root mean squared error in Table 5 and
the coefficient of determination in Table 6. As expected, we generally observe a way better
learning performance compared to the setup ‘train on one, test on four’. Overall, both error
measurements are in a relatively good range for in case of training and testing. In contrast to the
previous setup, where it was difficult to find a model that explained both training and testing,
the results shown in the second and fifth columns in particular agree very well with training and
especially with testing. The best model is discovered in the second column, where we have a
summarized normalized root mean squared error of

∑
ϵ = 0.68. As already mentioned above,

we might obtain better results if we increase the number of Maxwell elements, however, this is
out of the scope of this contribution.

Regardless whether we train with one or four experiments, our results infer that the choice of
the training set is by no means unique or trivial. Different choices influence the accuracy of pre-
diction capabilities. There are many reasons for this, including the quality of the measurement
during the experimental investigation, the choice of optimizer, or how much information about
inelastic effects is hidden in the data. Nevertheless, we observe once more that due to the very
general nature of iCANN, models can be found in any combination that not only agree with the
training data, as is the case for ‘vanilla’ networks, but also provide extremely good results when
tested and, moreover, always deliver to us results that obey the fundamental physical principles
of our world.

Table 3: Normalized root mean squared error, ϵ, corresponding to the results shown in Figure 12.
Each column represents a combination of training and testing, while each row represents one
experimental setup. The colored boxes indicate the experiment used for training, the remaining
four tests are utilized for testing.

Stress
S11 [kPa]

0.09 0.32 0.34 0.60 0.54
0.28 0.04 0.22 0.35 0.26
0.61 0.41 0.02 0.28 0.21
0.48 0.25 0.41 0.04 0.17
0.55 0.28 0.22 0.21 0.04

ϵ Time t [s]
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Table 4: Coefficient of determination, R2, corresponding to the results shown in Figure 12.
Each column represents a combination of training and testing, while each row represents one
experimental setup. The colored boxes indicate the experiment used for training, the remaining
four tests are utilized for testing.

Stress
S11 [kPa]

0.96 0.47 0.40 0.00 0.00
0.60 0.99 0.76 0.39 0.66
0.00 0.33 1.00 0.68 0.82
0.29 0.79 0.49 0.99 0.91
0.16 0.78 0.87 0.88 1.00

R2 Time t [s]

Table 5: Normalized root mean squared error, ϵ, corresponding to the results shown in Figure 13.
Each column represents a combination of training and testing, while each row represents one
experimental setup. The colored boxes indicate the experiment used for testing, the remaining
four tests are utilized for training.

Stress
S11 [kPa]

0.15 0.14 0.07 0.17 0.13
0.08 0.12 0.06 0.07 0.10
0.16 0.16 0.25 0.10 0.14
0.19 0.18 0.10 0.27 0.21
0.08 0.08 0.05 0.12 0.12

ϵ Time t [s]

Table 6: Coefficient of determination, R2, corresponding to the results shown in Figure 13.
Each column represents a combination of training and testing, while each row represents one
experimental setup. The colored boxes indicate the experiment used for testing, the remaining
four tests are utilized for training.

Stress
S11 [kPa]

0.89 0.90 0.97 0.85 0.91
0.97 0.93 0.98 0.98 0.95
0.90 0.90 0.76 0.96 0.93
0.89 0.90 0.97 0.77 0.87
0.98 0.98 0.99 0.96 0.96

R2 Time t [s]
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Figure 12: Train on one, test on four. Experimental data and discovered model for passive
skeletal muscle taken from Van Loocke et al. [2008]. Each column represents a combination of
training and testing, while each row represents one experimental setup. The experimental setup
varies with respect to the maximum applied stretch Cmax

11 = {0.81, 0.64, 0.49, 0.49, 0.49} [−]

and the rate of deformation Ḟ11 = {0.01, 0.01, 0.01, 0.005, 0.05} [s]. The columns vary with
respect to the one experiment used for training.
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Figure 13: Train on four, test on one. Experimental data and discovered model for passive
skeletal muscle taken from Van Loocke et al. [2008]. Each column represents a combination of
training and testing, while each row represents one experimental setup. The experimental setup
varies with respect to the maximum applied stretch Cmax

11 = {0.81, 0.64, 0.49, 0.49, 0.49} [−]

and the rate of deformation Ḟ11 = {0.01, 0.01, 0.01, 0.005, 0.05} [s]. The columns vary with
respect to the four experiments used for training.
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6 Discussion and limitations

In this paper, we have designed a general inelastic constitutive artificial neural network that
satisfies thermodynamics for all kinds of inelastic phenomena that can be accounted for by the
multiplicative decomposition. To investigate our proposed approach, we limited our study to the
effect of visco-elasticity. In addition, we focused on a thermodynamically sound and flexible
theoretical description of the network rather than on aspects related to the machine learning
algorithms themselves. Of course, this leads to some limitations of this work and leaves room
for future investigations, some of which we would like to briefly touch upon.

iCANNs are able to discover a model for visco-elasticity. Our results show that our extension
of CANNs by multiplicative decomposition and pseudo potentials is a suitable approach for
viscoelastic materials. The sparse amount of data does not hinder the successful discovery.
Since our pseudo potential, and especially the activation functions, are chosen in a general way
that satisfies the mathematical requirements of thermodynamics, rather than inspired by existing
models in the literature, it would be interesting to compare pseudo potentials used in constitutive
modeling to describe certain materials with those discovered by iCANN. Furthermore, we have
fixed the number of Maxwell elements to three. In future studies, it should be investigated
how to design an iCANN that learns whether the number either can be decreased or must be
increased.

Are our discovered iCANN models unique? Although we found several models that explain
the experimental data well and also perform extremely well in tests compared to standard neural
networks, we did not investigate the uniqueness of our solution. Thus, it is possible that fewer
terms in both the Helmholtz free energy and the pseudo potential are needed to explain the data
with the same accuracy. To avoid possible overfitting, it should be investigated to what extent
the optimizer’s regularization can help us achieve this goal, as has already been done in the
literature, e.g. by Wang et al. [2023], St. Pierre et al. [2023], and McCulloch et al. [2023] for
the Helmholtz free energy of CANNs.

Specialization to further inelastic phenomena. The network’s architecture is formulated in
a general way being applicable to almost all kind of inelastic effects. To investigate the per-
formance of the iCANN, we limited ourselves to the case of visco-elasticity. Future works
should study the ability to explain the data of, for instance, elasto-(visco)plasticity. Such a
phenomenon includes some kind of yield criterion, which distinguishes the elastic from the in-
elastic regime. Having in mind that one might need multi-surface models, i.e., several parallel
arrangements of iCANNs similar to using several Maxwell elements, we ask ourselves what is
the best implementation strategy. In order to keep the numerical effort during training low and
the implementation as simple as possible, we would suggest to keep an explicit time integration,
while the equality and/or inequality constrains are satisfied by Fischer-Burmeister approach (see
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e.g. Fischer [1992]). For example, such an approach was successfully applied in constitutive
modeling by Kiefer et al. [2012] and Brepols et al. [2017].

Initial and induced anisotropy. We have not considered anisotropy. However, some mate-
rials exhibit a pronounced type of anisotropy, either intrinsic (e.g., fiber reinforced, collagen
fibers, etc.) or induced (e.g., anisotropic damage). Since both phenomena can be constitu-
tively modeled by structural tensors, future work should include this additional tensorial ar-
gument. It would be interesting to study whether the iCANN helps to identify the degree of
anisotropy, e.g. the ratio between microvoids and microcracks. In addition, structural tensors
combined with multiplicative decomposition require push-forward operations of the structural
tensors to the intermediate configuration. This mapping is not unique, see Sansour et al. [2007]
and Holthusen et al. [2023b] for an overview of possible choices. This raises the question of
whether iCANNs are capable of deciding which mapping is best for certain types of materials.

How to include multiphysics? Up to now, we only have taken mechanical influences into
account. However, almost all engineering material behave temperature dependent, e.g., by ther-
mal expansion and/or thermal softening. To account for this phenomenon, we suggest to use a
multiplicative decomposition of the deformation gradient into a thermal part and a mechanical
part (see Stojanović et al. [1964] and Vujosevic and Lubarda [2002]). In addition, the influence
of electrochemical fields is of great importance in manufacturing (see Dorfmann and Ogden
[2005], Wulfinghoff and Dorn [2023], and van der Velden et al. [2021]). Moreover, the diffu-
sion of hormones and nutrients plays an important role in the growth and remodeling of living
organisms (see Manjunatha et al. [2022]). Hence, it is highly disable to extend the CANN and
iCANN approaches to multiphysical problems. The question is how to find the most general
formulation of our iCANN to account for all the interactions between the different fields at the
material point level.

How to set up experimental investigations? We have shown that we need less experimental
data to discover a model explaining our data compared to the identification of material param-
eters used in constitutive modeling. The long-term perspective of iCANN is that by design any
inelastic effects are included. This will allow the iCANN to automatically learn the inelastic ef-
fects hidden in the data and provide us with information about the micromechanical processes.
Up to now, such an identification requires complex experimental investigations, e.g. several
cyclic tests, relaxation tests etc. In view of our results, the question arises whether and how ex-
periments have to be conducted in order to generate a maximum of information for the iCANN
with as little effort as possible.
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7 Conclusion and outlook

The inelastic Constitutive Artificial Neural Networks (iCANN) architecture provides a new
family of neural networks for the prediction of inelastic material behavior under finite deforma-
tions. This architecture represents a consistent extension of the original Constitutive Artificial
Neural Network (CANN) design and inherits its advantages over classical neural network ar-
chitectures being used for constitutive modeling. The overall design of the iCANN is based on
sound kinematic and thermodynamic considerations. It combines well-known principles of con-
tinuum mechanics with the power of modern machine learning procedures to provide a neural
network architecture that does not only offer a-priori thermodynamic consistency, objectivity,
rigid motion of the reference configuration, independence of the rotational non-uniqueness or
polyconvexity but also provides a flexible, modular and interpretable machine learning algo-
rithm. Based on the multiplicative decomposition of the deformation gradient, this framework
uses individual subnets to approximate both, the general Helmholtz free energy as well as an
pseudo potential function. This idea enables the network to flexibly adjust to the data provided,
and therefore, represents a general formulation to explain various kinds of inelastic phenomena.
For illustrative purposes, we chose the example of finite visco-elasticity within this publication.
We were able to demonstrate that the iCANN is capable to predict this kind of rate-dependent,
inelastic material response properly with a high degree of accuracy, even though the amount of
experimental data is sparse. Due to its general design, the iCANN should be extended in fu-
ture investigations to inequality constraint material behavior (e.g. elasto-plasticity and damage),
equality constrained behavior (e.g. biological growth), multiphysics (e.g. thermoelasticity), and
initial anisotropy (structural tensors). The nature of the inelastic Constitutive Artificial Neural
Network enables us to achieve automated model discovery for inelastic constitutive modeling,
which is easily accessible now. Ideally, this technology might introduce a new age in the field
of constitutive modeling away from less flexible user-defined models, which already include
assumptions about the inelastic phenomena involved, to automated model selection on the basis
of the experimental data provided.
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A Appendix

A.1 Discovered weights for artificially generated data

Table 7: Discovered weights for the Helmholtz free energy feed-forward network. The weights
belong to the results for the artificially generated data in Section 5.1. The order of the weights
corresponds to the numerical implementation provided.

ψNeq

wψ1,1 0.16197191
wψ1,3 0
wψ1,2 0
wψ1,4 0
wψ3,1 4.4753417e-33
wψ2,1 4.5402040e+00
wψ2,5 9.2217451e-01
wψ2,3 0
wψ2,7 0
wψ2,2 2.2400634e+00
wψ2,6 0
wψ2,4 1.5364066e-33
wψ2,8 1.8214491e-33
wψ3,2 0

Table 8: Discovered weights for the pseudo potential feed-forward network. The weights be-
long to the results for the artificially generated data in Section 5.1. The order of the weights
corresponds to the numerical implementation provided.

g

wg1,1 0
wg1,3 0
w̃g1,5 0
wg2,1 0
wg2,4 0
w̃g2,7 0.00107837
wg2,2 0
wg2,5 0
wg2,8 0
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A.2 Discovered weights for VHB 4910 polymer

Table 9: Discovered weights for the Helmholtz free energy feed-forward network. The weights
belong to the results for the VHB 4910 polymer in Section 5.2. The order of the weights
corresponds to the numerical implementation provided.

ψEq ψNeq
1 ψNeq

2 ψNeq
3

wψ1,1 0.08989155 0.6867937 0.06954185 2.9327118
wψ1,3 0.3871473 0.6118265 0.28366846 2.6145873
wψ1,2 0 0.06561667 0 0.03622768
wψ1,4 0.01116255 0.21422595 0.01034374 0.17840806
wψ3,1 - 3.9390977e-33 -2.5810559e-33 -1.908444e-33
wψ2,1 2.646479 1.0183624 2.3602471 1.0819899
wψ2,5 3.1516218 0.70885456 2.8352766 1.2915097
wψ2,3 0 0.35119042 0 0.21051936
wψ2,7 0.6164215 0.35955966 0.1741371 0.2551231
wψ2,2 1.4593441 1.894548 1.1949594 3.15422
wψ2,6 2.9215317 1.354211 2.65872 2.8406792
wψ2,4 0.0537339 0.1450241 0.08411078 0.09968195
wψ2,8 0.24964914 0.32216933 0.2144338 0.23061126
wψ3,2 - 0 0 0

Table 10: Discovered weights for the pseudo potential feed-forward network. The weights
belong to the results for the VHB 4910 polymer in Section 5.2. The order of the weights
corresponds to the numerical implementation provided.

g1 g2 g3

wg1,1 0 0 0
wg1,3 0 0 0
w̃g1,5 0 0 0
wg2,1 0 0 0
wg2,4 0 0 0
w̃g2,7 0.02321647 0.00174507 0.08019841
wg2,2 0 0 0
wg2,5 0 0 0
wg2,8 0 0 0
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A.3 Discovered weights for passive skeletal muscle

Table 11: Discovered weights for the Helmholtz free energy feed-forward network. The weights
belong to the best results for passive skeletal muscle in Section 5.3, i.e., the third column in
Figure 12. The order of the weights corresponds to the numerical implementation provided.

ψEq ψNeq
1 ψNeq

2 ψNeq
3

wψ1,1 0.10420806 0.01166395 0.00115344 0.01122695
wψ1,3 0.1841228 0.01309146 0.00347792 0.01664283
wψ1,2 0.02560516 0.00111786 0.00250525 0.00101571
wψ1,4 0.21253704 0.0157883 0.6823113 0.01311576
wψ3,1 - 5.497631e-34 -2.4178903e-14 -1.6557697e-05
wψ2,1 0.06608981 0.04277665 0 4.2320956e-02
wψ2,5 0.0637252 0.03449954 0 3.4831800e-02
wψ2,3 0.06350973 0.01193809 0.02947876 1.5011105e-02
wψ2,7 0.07190274 0.01611285 0.06952783 1.8784763e-02
wψ2,2 0.09108008 0.01163169 0 1.1191454e-02
wψ2,6 0.14969026 0.01267746 0 1.6345050e-02
wψ2,4 0.02551797 0 0.0014553 7.9535537e-05
wψ2,8 0.20174257 0 0.52773875 0
wψ3,2 - 0 0 0

Table 12: Discovered weights for the pseudo potential feed-forward network. The weights
belong to the best results for passive skeletal muscle in Section 5.3, i.e., the third column in
Figure 12. The order of the weights corresponds to the numerical implementation provided.

g1 g2 g3

wg1,1 0 0 0
wg1,3 0 0 0
w̃g1,5 0 0 0
wg2,1 4.5470802e-06 0 0
wg2,4 7.6929213e-13 0 0
w̃g2,7 1.7541333e-01 0.5692788 0.15919787
wg2,2 0 0 0
wg2,5 0 0 0
wg2,8 0 0 0
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Table 13: Discovered weights for the Helmholtz free energy feed-forward network. The weights
belong to the best results for passive skeletal muscle in Section 5.3, i.e., the second column in
Figure 13. The order of the weights corresponds to the numerical implementation provided.

ψEq ψNeq
1 ψNeq

2 ψNeq
3

wψ1,1 0.00138299 0 0 6.044407e-06
wψ1,3 0.03045796 0 0 0
wψ1,2 0.07063455 0 0 0
wψ1,4 0.09885824 7.708453e-10 0.00558791 0
wψ3,1 - 3.6285916e-33 3.733226e-33 3.766066e-33
wψ2,1 0.02312493 3.51029038e-02 0.02298807 8.7625727e-02
wψ2,5 0.04258661 1.12825185e-02 0.01470857 5.3523790e-02
wψ2,3 0.11215075 2.31756195e-01 0.02367271 8.5964095e-04
wψ2,7 0.12233058 5.45360267e-01 0.04010505 8.0012449e-04
wψ2,2 0.00133567 0 0 5.9973318e-06
wψ2,6 0.02934347 0 0 0
wψ2,4 0.0702935 0 0 0
wψ2,8 0.0983757 7.71025022e-10 0.00552198 0
wψ3,2 - 0 0 0

Table 14: Discovered weights for the pseudo potential feed-forward network. The weights
belong to the best results for passive skeletal muscle in Section 5.3, i.e., the second column in
Figure 13. The order of the weights corresponds to the numerical implementation provided.

g1 g2 g3

wg1,1 0 0 0
wg1,3 0 0 0
w̃g1,5 0 0 0
wg2,1 0 0 0
wg2,4 4.6914302e-11 0 0
w̃g2,7 7.3394459e-01 0.24998124 0.29360896
wg2,2 0 0 0
wg2,5 0 0 0
wg2,8 0 0 0
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A.4 Experimental data of polymer VHB 4910
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Figure 14: Experimental data of polymer VHB 4910 provided by Hossain et al. [2012]. The
material is subjected to uniaxial loading-unloading at different maximum stretch levels, Cmax

11 .
For constant loading rates, Ḟ11, but different maximum stretch levels applied, the material’s
response during loading should be the same.
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