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A B S T R A C T

Misfolded tau proteins play a critical role in the progression and pathology of Alzheimer’s
disease. Recent studies suggest that the spatio-temporal pattern of misfolded tau follows a
reaction–diffusion type equation. However, the precise mathematical model and parameters
that characterize the progression of misfolded protein across the brain remain incompletely
understood. Here, we use deep learning and artificial intelligence to discover a mathematical
model for the progression of Alzheimer’s disease using longitudinal tau positron emission
tomography from the Alzheimer’s Disease Neuroimaging Initiative database. Specifically, we
integrate physics informed neural networks (PINNs) and symbolic regression to discover a
reaction–diffusion type partial differential equation for tau protein misfolding and spreading.
First, we demonstrate the potential of our model and parameter discovery on synthetic data.
Then, we apply our method to discover the best model and parameters to explain tau imaging
data from 46 individuals who are likely to develop Alzheimer’s disease and 30 healthy controls.
Our symbolic regression discovers different misfolding models 𝑓 (𝑐) for two groups, with a
faster misfolding for the Alzheimer’s group, 𝑓 (𝑐) = 0.23𝑐3 − 1.34𝑐2 + 1.11𝑐, than for the healthy
control group, 𝑓 (𝑐) = −𝑐3 + 0.62𝑐2 + 0.39𝑐. Our results suggest that PINNs, supplemented by
symbolic regression, can discover a reaction–diffusion type model to explain misfolded tau
protein concentrations in Alzheimer’s disease. We expect our study to be the starting point for a
more holistic analysis to provide image-based technologies for early diagnosis, and ideally early
treatment of neurodegeneration in Alzheimer’s disease and possibly other misfolding-protein
based neurodegenerative disorders.

1. Introduction

The tau protein plays a critical role in Alzheimer’s disease. In healthy brains, tau helps stabilize microtubules to maintain cell
structure and transport nutrients. In Alzheimer’s disease, tau undergoes abnormal modifications, it misfolds, and forms toxic tangles
in the brain. The accumulation of misfolded tau contributes to the spread of pathology throughout the brain and correlates with
cognitive decline and neurodegeneration. Understanding the spatio-temporal evolution of tau misfolding is vital for developing
interventions that target tau pathology and potentially slow down the progression of Alzheimer’s disease.

Until about ten years ago, the only method to diagnose Alzheimer’s disease non-invasively in vivo was cognitive testing to confirm
memory loss at the very advanced stages of neurodegeneration. Throughout the past decade, the ability to trace tau protein through
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Table 1
Reaction term 𝑓 in KPP equations. We stratify the subjects into 4 groups with the assumption that subjects in each group share
the same reaction term 𝑓 (𝑐) in Section 3.1. Diverse reaction terms are associated with distinct KPP equations, which are in turn
indicative of particular biological characteristics. We normalize 𝑓 to make its maximum value 1

4
in all groups.

Group Equation General form Reference Our case

1 Fisher 𝑘𝑐(1 − 𝑐) [1] 𝑐(1 − 𝑐)

2 Newell–Whitehead–Segel 𝑘𝑐(1 − 𝑐𝑞 ) [2,3]
3
√

3
8

𝑐(1 − 𝑐2)

3 22∕3

3
𝑐(1 − 𝑐3)

4 Zeldovich–Frank–Kamenetskii 𝑘𝑐(1 − 𝑐)𝑒𝛽(𝑐−1) [4]
√

5+2
4

𝑐(1 − 𝑐)𝑒𝑐−1−
√

5−3
2

positron emission tomography has drastically changed how we can image disease progression across the living brain, non-invasively,
at any stage. By tracking the accumulation and distribution of misfolded tau over time, these imaging techniques provide insights into
disease progression and staging. They allow us to correlated alterations in misfolded tau concentration to cognitive decline, and hold
the potential to evaluate therapeutic interventions and monitoring their effectiveness in slowing down disease progression. Towards
this goal, the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database has become the go-to repository of clinical, imaging,
and biomarker data from individuals with normal cognition, mild cognitive impairment, and Alzheimer’s disease. It contains dozens
of freely available, fully annotated, longitudinal scans and enables researchers to analyze and correlate data.

Computational modeling provides a valuable approach to accurately measure the accumulation and dissemination of two key
roteins, misfolded tau and Amyloid-𝛽, that are instrumental in the pathological development of AD. Mathematical models inspired

by reaction–diffusion systems hold significant potential for personalized predictions of disease progression timelines. Previous
studies have used cross-sectional positron emission tomography (PET) data to calibrate and validate computational models for tau
pathology [5,6]. A simple but efficient model is the Fisher–Kolmogorov model combined with network diffusion within the brain’s
connectome. Mattia et al. utilized such framework to study the spread of Amyloid-𝛽 in the human brain [7]. We have recently shown
that this method can be embedded into a hierarchical Bayesian analysis to explain tau protein misfolding and spreading across 83
brain regions from longitudinal neurimaging data of 76 subjects to distinguish amyloid positive patients and healthy controls [8,9].
However, this method a priori postulate a mathematical model of Fisher–Kolmogorov type for the reaction term and does not allow
or alternative functional forms to characterize the complex dynamics of protein misfolding.

In our study, we leverage Physics-Informed Neural Networks (PINNs) [10] in conjunction with symbolic regression [11,12] to
nravel the complex nonlinear dynamics of Alzheimer’s disease purely from clinical data. This methodological approach mirrors
he innovative work of Zapf et al. who employed PINNs to accurately estimate the diffusion coefficient that governs the long-term
pread of molecules in the human brain, as evidenced by magnetic resonance images [13]. The increasing adoption of PINNs, as seen
n our work and that of others [14–16], highlights the method’s potential in extracting meaningful parameters from real-world data
o enhance our understanding of various phenomena. To a priori guarantee physical constraints such as thermodynamic consistency
r polyconvexity, recent studies have proposed to hardwire our prior constitutive knowledge into the network input, output,
rchitecture, and activation functions, a strategy that has become known as constitutive artificial neural networks (CANN) [17].
his type of custom-designed neural networks has been used to discover the model, parameters, and experiment that best explain
he behavior of human brain [18] and skin [19].

The rest of this paper is organized as follows: in Section 2, we present the problem formulation and the methodology developed
or model discovery (see the PINN method in Section 2.1 and the symbolic regression method in Section 2.2); in Section 3, details
f the experimental setup and results are discussed, where our approach is first tested on simulated data in Section 3.1 and then
sed to discover reaction models for amyloid positive and negative patients from real data in Section 3.2; a discussion regarding
he proposed methodology and results is provided in Section 4.

. Methodology

In this section, we formulate the problem and describe the machine learning methodology to discover models for Alzheimer’s
isease. We focus on the discovery of the reaction model in the reaction–diffusion system [20], described by the following partial
ifferential equation (PDE):

𝜕𝑐
𝜕𝑡

= ∇ ⋅ (𝐃 ⋅ ∇𝑐) + 𝑓 (𝑐), (1)

where 𝑐 is the concentration of misfolded tau protein, 𝐃 denotes the heteroscedastic diffusion tensor, and 𝑓 ∶ R → R is the reaction
model. Different reaction models result in various behaviors of the system, e.g. [1–4] (see also Table 1), and the selection of the
appropriate model is governed by the nature of the underlying engineering or life sciences problem.

Physics-informed neural networks (PINNs) have proven to be powerful tools to solve differential equations as well as infer
unknown quantities from data and physical law; see [21] for a review and [10,22–29] for recent developments of PINNs. In this
work, PINNs are employed to learn 𝑓 (𝑐) from data of 𝑐 and the physics defined in Eq. (1), followed by symbolic regression to
etermine the analytic expression of 𝑓 . A similar approach was proposed in [30], in which the PINN and AI Feynman [31] methods
2

ere used to discover differential operators in equations from data. Instead, in this paper, we focus on the topic of model discovery.
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Fig. 1. A schematic view of the approach for model discovery. The original PINN framework for inferring the diffusion coefficient 𝜅 and the reaction model 𝑓
(left) is followed by a symbolic regression step to discover the analytic form of 𝑓 (right).

We follow the same setup as in the literature [8,32,33] and model the aggregation and propagation of pathological tau in
the connectome of the brain by the reaction–diffusion system defined by Eq. (1) and discretized on a weighted, undirected graph
𝐺 [34,35]. The nodes of 𝐺 represent different non-overlapping brain regions and the edges of 𝐺 are the axonal connections between
different regions. In this regard, we discretize Eq. (1) on 𝐺, and we recast the PDE as an ODE system:

𝑑𝑐𝑖
𝑑𝑡

= ℎ𝑖𝜅 (𝑡, 𝐜) + 𝑓 (𝑐𝑖), 𝑖 = 1,… , 𝑁, (2)

here 𝐜 ∶= [𝑐1,… , 𝑐𝑁 ]𝑇 ∈ R𝑁 represents the concentration of misfolded tau protein in the 𝑁 different brain regions (see Figs. 4
and 6 for the illustration and Section 3 for the description of selected brain regions), ℎ𝑖𝜅 ∶ R𝑁+1 → R the diffusion term between
different regions, and 𝑓 ∶ R → R the local reaction/production model, which characterizes the collective dynamics of protein
production, clearance, and conversion from healthy to unhealthy seeds [36]. More details and reasoning of this setup can be found
in [8,32,33] and will be discussed in Section 3. Here the diffusion model, ℎ𝜅 , is assumed to be known and parameterized by the
diffusion coefficient 𝜅, while the reaction/production model, 𝑓 , will be discovered. Our approach for discovering 𝑓 is formulated as
ollows: first infer 𝐜, 𝑓 , and 𝜅 from data of 𝑐 and the physics defined in Eq. (2) using PINNs, and then find the analytic expression of 𝑓
sing symbolic regression. We remark that in this approach, we use two individual NNs: one for the approximation of 𝐜, which takes
he time 𝑡 as input, and one for the approximation of 𝑓 , which takes the misfolded protein concentration 𝑐𝑖 as input. Importantly,
he data of 𝐜, generated either synthetically from simulations or collected longitudinally from medical images, are only used in
he first step. A schematic view of the workflow is illustrated in Fig. 1, assuming a homogeneous distribution with 𝑁 = 1 and no
iffusion, and provided in Procedure 1. A pedagogical example on discovering the Kraichanan–Orszag dynamical system [14,37,38]
nd a tutorial of this approach can be found in Appendix A for better understanding.

Procedure 1 Identify 𝜅 and the analytic form of 𝑓 in Eq. (2)
Step 0 Specify two individual NNs, denoted as 𝐜𝜃 and 𝑓𝜙: 𝐜𝜃 approximates the solution to Eq. (2), which takes as input 𝑡 and outputs
𝐜, while 𝑓𝜙 approximates the local production model, which takes as input 𝑐𝑖, 𝑖 = 1, ..., 𝑁 and outputs the local production term for
the 𝑖𝑡ℎ region.
Step 1 Follow the PINN framework [10] and minimize the loss function defined in (3), such that 𝐜𝜃 fits the data and 𝐜𝜃 , 𝜅, and 𝑓𝜙
satisfy the Eq. (2).
Step 2 Regress the analytic form of 𝑓 using a symbolic regression method [11] from data of 𝑐𝑖 and 𝑓𝜙(𝑐𝑖).

2.1. Physics-informed neural networks (PINNs)

The PINN method, originally proposed by Raissi et al. in [10], addresses ODE/PDE problems by deploying neural networks
NNs) as surrogate models for quantities of interest, constructing a loss function with respect to the ODE/PDE used to describe the
hysics, and optimizing NN parameters such that the loss function is minimized (see [10,22] for more details). In our case, 𝐜 and

𝑓 are approximated with NNs, denoted by 𝐜𝜃 and 𝑓𝜙, respectively, where 𝜃 and 𝜙 denote NN parameters, e.g., weights and biases.
Let 𝐷 denote the set of 𝑡 on which data of 𝐜 is (partially) available and 𝑅 denote the set of 𝑡 on which residuals of the equation
are computed. Gradient-descent based methods, e.g., Adam [39] and L-BFGS [40], can be employed to minimize the following loss
function:

(𝛩) =  (𝜃) +  (𝜃, 𝜙, 𝜅) +  (𝜃, 𝜙, 𝜅) (3)
3

𝑑𝑎𝑡𝑎 𝑟𝑒𝑠 𝑎𝑢𝑥
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with respect to 𝛩 ∶= {𝜃, 𝜙, 𝜅}, where

𝑑𝑎𝑡𝑎(𝜃) =

∑

𝑡∈𝐷 ‖𝐜(𝑡) − 𝐜𝜃(𝑡)‖22
|𝐷|

, (4)

𝑟𝑒𝑠(𝜃, 𝜙, 𝜅) =

∑

𝑡∈𝑅 ‖

𝑑𝐜𝜃
𝑑𝑡 (𝑡) − ℎ𝜅 (𝐜𝜃) − 𝑓𝜙(𝐜𝜃)‖22

|𝑅|
, (5)

nd 𝑎𝑢𝑥 is the auxiliary loss that can be seen as additional physical information. More details will be discussed in Section 3 and in
q. (12).

It is possible to enforce boundary conditions on 𝑓 or 𝐜 [22,41,42]. For example, for 𝑓 one can set

𝑓𝜙(𝐜) = 𝐺(𝐜) +𝐷(𝐜)⊙ 𝑔𝜙(𝐜), (6)

where 𝐷(𝐜) represents the distance from 𝐜 to the boundary, 𝐺 is a function that matches 𝑓 on the boundary, while 𝑔𝜙 is a
fully-connected neural network.

2.2. Symbolic regression

For symbolic regression, we adopt the open-source software PySR [11], which has a configurable Python interface built on the
efficient Julia backend SymbolicRegression.jl. The underlying algorithm for PySR involves tree search and regularized evolution. In
our case of study, we use PySR to distill knowledge from 𝑓𝜙 to obtain a symbolic expression 𝑓𝑠𝑦𝑚.

Evaluation metric
We use score defined in [12] as one of our evaluation metrics for the correctness of an expression,

𝑠𝑐𝑜𝑟𝑒 = −𝛥 log(MAE)∕𝛥𝐶,

where MAE is the mean absolute error between the prediction and the data, 𝐶 refers to the complexity of the expression, and 𝛥
denotes local change [12]. Higher score means that with a slightly lower complexity, MAE of the symbolic regression model becomes

uch larger. A model with low loss and high score is preferred, so we pick the expression with the highest score among those whose
oss is lower than 1.5 times the loss of the most accurate model as our final candidate.

When multiple simulations are conducted in the PINN inference stage, one may obtain multiple functions 𝑓𝜙. The score metric
can be used to pick one 𝑓𝑠𝑦𝑚 for each 𝑓𝜙. Then, in order to compare 𝑓𝑠𝑦𝑚 obtained from different 𝑓𝜙, we use the projection error as
another evaluation metric. We first solve Eq. (2) with the inferred parameter 𝜅 from the PINN in step 1 and the discovered model
𝑓𝑠𝑦𝑚 from the symbolic regression in step 2 to obtain the solution, denoted by 𝐜𝑝𝑟𝑜𝑗 , and then we evaluate 𝐜𝑝𝑟𝑜𝑗 on 𝑡 ∈ 𝐷. Specifically,
the projection error is defined by

projection error =
∑

𝑡∈𝐷 ‖𝐜(𝑡) − 𝐜𝑝𝑟𝑜𝑗 (𝑡)‖22
|𝐷|

. (7)

The candidate with the lowest projection error is the one that fits the data best.

3. Results

In this section, we discuss details of the experimental setup and discovery of the reaction model of the reaction–diffusion system.
We first test the approach with synthetic data in Section 3.1, in which we use data from simulations of Eq. (2) with four different
reaction models. Then we move to real data in Section 3.2, where two models are discovered using our approach with uncertainty.
Specifically for real data, we assume that all individuals within each group, amyloid positive and amyloid negative, share the same
type of reaction model but personalized with different reaction rates. A deep ensemble method for PINNs [14,43,44] is employed
for uncertainty quantification.

As mentioned in Section 2, to apply the reaction–diffusion equation to our brain-related problems, we follow the same setup
as in [8] and discretize Eq. (1) on a graph 𝐺, which comes from the Budapest Reference Connectome v3.0 [45] and the Human
Connectome Project [33]; see [8] for details on how to construct 𝐺. There are in total 𝑁 = 83 nodes in the graph 𝐺, representing
83 considered cortical and subcortical brain regions. In this work, we adopt the graph 𝐺 and discretization from [8] and Eq. (1) is
discretized as follows:

𝑑𝑐𝑖
𝑑𝑡

= −𝜅
𝑁
∑

𝑗=1
𝐿𝑖𝑗𝑐𝑗 + 𝛼𝑓 (𝑐𝑖), 𝑖 = 1,… , 𝑁, (8)

where 𝑐𝑖 is the concentration of tau protein in brain region 𝑖, 𝜅 determines the transport rate of misfolded protein between regions,
(𝐿𝑖𝑗 ) is the graph Laplacian, representing the connectivity of the graph, and 𝛼 denotes the reaction rate; 𝜅 and 𝛼 are assumed to be
specific to each individual but shared across all regions. We note that this corresponds to Eq. (2) with ℎ𝑖𝜅 (𝐜) = −𝜅

∑𝑁
𝑗=1 𝐿𝑖𝑗𝑐𝑗 .

Unlike previous studies [8,36], which assume a single specific reaction model, 𝑓 (𝑐) = 𝑐(1 − 𝑐), herein we aim to identify the
analytical form of the function 𝑓 from tau concentration data of 76 subjects from the Alzheimer’s Disease Neuroimaging Initiative
4

(ADNI) database.
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The intuition behind this is as follows: Assuming the same reaction model for all amyloid positive and negative subjects might
e too constrained and have a negative effect when the fitting of data. However, we found empirically that requirements from the
isher equation [1] and the Kolmogorov–Petrovsky–Piskunov (KPP) equation [20] on the reaction term were necessary to provide
etter and more realistic results. As a generalized form of the Fisher equation, the KPP equation requires that the reaction term 𝑓

has the following properties:

𝑓 (0) = 𝑓 (1) = 0, 𝑓 (𝑐) > 0, (9a)

𝑓 ′(𝑐) < 𝑓 ′(0),∀𝑐 ∈ [0, 1], (9b)

hich can be considered as the prior knowledge or constraints of the to-be-discovered model. Eq. (9a) implies no creation or
epletion of misfolded tau protein when 𝑐 = 0 (no tau protein) or 𝑐 = 1 (the region is completely occupied by tau protein) and
he growth rate of tau protein is always positive. Eq. (9b) implies that the reaction process is less intense or ‘‘slower’’ as 𝑐 increases
rom 0 to 1. In other words, the reaction process is more significant when tau concentration is close to 0 and becomes less important
s 𝑐 approaches 1. To satisfy constraints in Eqs. (9a) and (9b), we first set

𝑓𝜙(𝑐) = 𝑐(1 − 𝑐)𝑒𝑔𝜙(𝑐) (10)

o enforce (9a), where 𝑔𝜙 is a standard fully-connected NN parameterized by 𝜙. Then 𝑓𝜙 is normalized by setting

𝑓𝜙(𝑐) =
𝑓𝜙(𝑐)

4max𝑥∈[0,1] 𝑓𝜙(𝑥)
(11)

as our final parameterization of 𝑓 to ensure the inferred reaction term does not degenerate to 0. We introduce

𝑎𝑢𝑥 =

∑

𝑐∈ ‖max(0, 𝛼𝑓 ′
𝜙(𝑐) − 𝛼𝑓 ′

𝜙(0))‖1
||

, (12)

in (3) as the auxiliary loss term to softly enforce condition (9b), which guarantees a traveling wave solution to the Fisher–Kolmogorov
equation. In this paper we set  = {0, 0.01, 0.02,… , 1}. Another reason for introducing this additional regularization term is to
promote smoothness of the inferred reaction term. Additional types of KPP equations, including the Newell–Whitehead–Segel
equation and the Zeldovich–Frank–Kamenetskii equation, are summarized in Table 1.

3.1. Synthetic data

Data preparation
In this study, we conducted a simulation of tau concentration for a sample of 76 subjects with varying initial conditions,

parameters, and reaction terms, employing Eq. (8). The subjects were stratified into four groups of equal size, with differing
reaction models across groups. As detailed in Table 1, the reaction models are chosen from 𝑐(1 − 𝑐) (the spreading of biological
populations [1]), 𝑐(1− 𝑐2) (a convection in fluid thermodynamics [2,3]), and 𝑐(1− 𝑐)𝑒𝛽(𝑐−1) (a flame propagation in combustion [4]).
We note that these reaction models are chosen for the purpose of verifying our approach with simulated data. The parameters 𝜅, 𝛼𝑖,
and 𝛼𝑖𝑗 were assumed to follow probability distributions of BoundNormal(1, 0.52),  (0.6, 0.12), and  (𝛼𝑖, 0.22), respectively, where
𝑖𝑗 denotes the 𝑗th subject in the 𝑖th group. The initial tau concentration for the 𝑖th node, denoted by 𝑐𝑖(0), was sampled from
normal distribution with equivalent mean and variance as the real data. The connectivity matrix, denoted by 𝐿, was set to be

dentical to the real data. The tau concentrations 𝑐(𝑡𝑘) are sampled at 𝑡𝑘 = 𝑘 for 𝑘 = 0, 1, 2 years.

arameter and function identification
The initial step in the present study involves the determination of undetermined parameters and remainder terms, specifically

and 𝛼𝑓 (𝑐), through the application of PINNs. We set 𝛼 and 𝜅 as subject-specific learnable parameters and approximate 𝑓 (𝑐)
ith a neural network 𝑓𝜙, which is hard constrained as indicated in (10). The training loss is shown in the left portion of Fig. 3.
he outcomes of the identification process are displayed in Fig. 2. The left portion of the figure displays the inferred and actual
istributions of the transport rate, 𝜅, at the global level, utilizing the Gaussian kernel density estimator [46]. The congruence between
he two distributions signifies that 𝜅 can be accurately identified. In the middle of the figure, the inferred and actual distributions
f the local production rate, 𝜅, at the group level are illustrated. Notably, the PINNs method successfully captures the appropriate
istribution of the growth rate 𝛼 in each group, regardless of the corresponding reaction term. The right portion of the figure presents
he inferred and actual reaction terms for each group, demonstrating that the neural network inference result, 𝑓𝜙, concurs with the
round truth 𝑓 for all four cases. The effect of hard constraining 𝑓𝜙 is discussed in Appendix B, where we found that without the
ard constraint, 𝑓𝜙 eventually deviates from the ground truth on regions where there is no data for 𝑐, which affects the prediction
apability of the entire framework. This is illustrated in Fig. 7 that we need data up to 𝑡 = 6, meaning medical images for consecutive
ix years, if there is no constraint on the boundary values.

In the second stage of our analysis, we utilize the symbolic regression package PySR to discover closed-form expressions for
he four functions 𝑓𝜙. To achieve this, we minimize the mean squared error (MSE) as the target function. Each 𝑓𝜙 undergoes 100
terations of simulation. The binary operators are chosen to be addition, subtraction, and multiplication, the unary operators are
xponential and reciprocal, and the complexities of unary operators are set to be 3 and 3. PySR generates analytical expressions,
valuates their corresponding losses (MSE), and scores at every complexity level. This information is presented in the right portion
5
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Fig. 2. Parameter and function identification results on synthetic data. Inference results for transport rate (left) and local production rate (middle), as well as
the reaction term for each group (right). PINNs accurately identify the distribution of the transport rate at the global level and the distribution of 𝛼 in each
group. The neural network inference result, 𝑓𝜙, as well as the symbolic regression approximation, 𝑓𝑠𝑦𝑚 agree with the ground truth 𝑓 for all four cases.

Fig. 3. Losses and evaluation metrics for PINNs and symbolic regression on synthetic data. (Left) Training loss  = 𝑑𝑎𝑡𝑎 + 𝑟𝑒𝑠 for PINN. L-BFGS is applied
following Adam to ensure convergence. (right) Loss and score for the symbolic regression model at each complexity level. The inferred 𝑓𝑠𝑦𝑚 is highlighted. It
aligns with the correct reaction function, and the plateau in loss suggests minimal loss improvement by increasing the expression complexity.

of Fig. 3. Subsequently, for each subject, we follow the procedures outlined in Section 2.2 to select a final candidate expression
𝑓𝑠𝑦𝑚 as the associated reaction term. We present the four chosen expressions along with their respective scores highlighted with a
black circle. Notably, the discovered 𝑓𝑠𝑦𝑚 aligns with the correct reaction function. Furthermore, a plateau in loss is observed after
selecting the best candidate, suggesting that increasing the complexity of the discovered function beyond this point would only
result in a minimal improvement of the loss.

Projection of tau concentration
In the last stage of our analysis, after we have identified the unknown parameters 𝜅 and 𝛼 and the unknown functions (𝑓𝜙

and 𝑓𝑠𝑦𝑚), we substitute them back into the ODE (8) and solve the equation up to 𝑡 = 20 with the built-in Python method
scipy.integrate.odeint to examine the predictability of our models. The projections of the tau concentration over 20 years after the first
PET scan in 36 subjects (nine from each group) and three different brain regions, namely entorhinal cortex (EC), middle temporal
gyrus (MTG), and superior temporal gyrus (STG), are illustrated in Fig. 4. We selected these regions due to their significance in
Alzheimer’s disease (AD). The entorhinal cortex (EC) is typically the first to show AD-related protein misfolding, with changes
occurring before symptoms appear. The middle and superior temporal gyrus (MTG and STG) are crucial for short-term memory,
which is often impacted early in AD. Studying these areas will help us understand AD’s early changes and related cognitive deficits.
The projection outcome achieved by PINNs, alongside the symbolic regression model, demonstrates a high degree of concordance
with the ground truth solution. Moreover, we present the deduced values of 𝛼 and 𝜅 for the 36 subjects, which are located at the
top of every subfigure. These inferred values are also in agreement with the preset parameters.

3.2. Real data

Data preparation
We utilize preprocessed tau concentration data directly from the literature [8]. In total 76 subjects are classified into two groups:

46 are identified as amyloid positive (𝐴𝛽+) meaning their mean amyloid concentration exceeds a certain level, and 30 are identified
as amyloid negative (𝐴𝛽−). For each subject, three data points are provided, which are on average one year (1.07 ± 0.31) apart.
6
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Fig. 4. Prediction of tau concentration. Evolution of misfolded tau protein in entorhinal cortex (EC), middle temporal gyrus (MTG), and superior temporal gyrus
(STG) throughout 20 years based on synthetic data from the first two years.

Parameter and function identification with uncertainty quantification
Observational noise in the real-life dataset could significantly increase the training difficulty of neural network models as well

as complicate the optimization landscape. For such highly nonconvex optimization problem, the parameter initialization becomes
more important. Different neural network initialization could lead to drastically different solutions and randomness in the learned
parameter set. Even though sometimes it is difficult for the model to identify global minima for every initialization, most modern
optimization techniques can handle local minima and ultimately find a parameter set close to the global minimum [47,48]. Such
uncertainty quantification method is commonly used in machine learning due to its simplicity yet effectiveness [14,43,44] and
often referred to as deep ensemble. The randomness in the trained NNs in this way can be interpreted as model uncertainty [29]. In
this work, we conduct ten independent simulations in the PINN inference stage to obtain ten different parameter sets of 𝛼 and 𝜅
7
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Table 2
Identified 𝛼, 𝜅, 𝑓𝑠𝑦𝑚 for the negative and positive groups in 10 independent simulations. The lowest projection errors for each group are
highlighted in bold.

𝐴𝛽−

𝜅 𝛼 𝑓𝑠𝑦𝑚 Projection error

0.49 ± 0.51 0.24 ± 0.41 −0.64𝑐3 + 0.64𝑐 7.19E−04
0.50 ± 0.57 0.30 ± 0.48 −𝑐3 + 0.62𝑐2 + 0.39𝑐 4.94E−04
0.52 ± 0.62 0.30 ± 0.47 −0.86𝑐2 + 0.86𝑐 2.09E−03
0.60 ± 1.02 0.28 ± 0.45 −𝑐3 + 0.59𝑐2 + 0.41𝑐 4.95E−04
0.49 ± 0.48 0.29 ± 0.28 −0.65𝑐2 + 0.65𝑐 6.45E−04
0.49 ± 0.50 0.24 ± 0.40 −0.66𝑐2 + 0.66𝑐 6.00E−04
0.51 ± 0.59 0.24 ± 0.40 −0.64𝑐2 + 0.64𝑐 7.08E−04
0.57 ± 0.88 0.29 ± 0.45 −𝑐3 + 0.62𝑐2 + 0.39𝑐 4.80E−04
0.51 ± 0.62 0.27 ± 0.45 −𝑐3 + 0.57𝑐2 + 0.43𝑐 5.01E−04
0.52 ± 0.64 0.22 ± 0.37 −0.65𝑐3 + 0.65𝑐 6.14E−04

𝐴𝛽+

0.30 ± 0.29 0.16 ± 0.16 −𝑐2 + 𝑐 1.69E−03
0.30 ± 0.32 0.18 ± 0.17 −𝑐2 + 𝑐 1.74E−03
0.29 ± 0.28 0.18 ± 0.17 −𝑐2 + 𝑐 1.72E−03
0.31 ± 0.33 0.16 ± 0.16 −𝑐2 + 𝑐 1.70E−03
0.29 ± 0.28 0.15 ± 0.15 −𝑐2 + 𝑐 1.70E−03
0.31 ± 0.33 0.15 ± 0.15 −𝑐2 + 𝑐 1.70E−03
0.30 ± 0.33 0.17 ± 0.16 0.11𝑐3 − 1.15𝑐2 + 1.03𝑐 1.71E−03
0.29 ± 0.28 0.16 ± 0.16 0.07𝑐3 − 1.08𝑐2 + 1.02𝑐 1.71E−03
0.29 ± 0.28 0.16 ± 0.16 −𝑐2 + 𝑐 1.69E−03
0.29 ± 0.28 0.15 ± 0.14 0.23𝑐3 − 1.34𝑐2 + 1.11𝑐 1.68E−03

for each subject, as well as ten different functions 𝑓+
𝜙 and 𝑓−

𝜙 for the amyloid positive and negative groups. The distribution of the
personalized parameters 𝜅 and 𝛼 is shown in the left two columns of Fig. 5. Note that we only present the distribution for the best of
all ten simulations, i.e., the simulation with lowest projection error, since it is not appropriate to aggregate parameter distributions
corresponding to different 𝑓 . On the rightmost column of Fig. 5, we show the ensemble of ten 𝑓−

𝜙 , 𝑓+
𝜙 , as well as 𝑓−

𝑠𝑦𝑚, 𝑓+
𝑠𝑦𝑚. It can be

seen that in ten independent simulations, the reaction term clustered into two modes depending on whether the subject is from the
amyloid positive or negative group. Interestingly, the variation of the discovered function 𝑓𝑠𝑦𝑚 appears to be larger for the negative
group.

Table 2 summarizes the discovered reaction terms for each simulation together with their projection errors, as defined in
Section 2.2. For each group, we highlight the expression with lowest projection error. Strikingly, our symbolic regression model
discovers different misfolding models 𝑓 (𝑐) for the two groups, with a steeper increase for the Alzheimer’s group, 𝑓 (𝑐) = 0.23𝑐3 −
1.34𝑐2 + 1.11𝑐, than for the healthy control group, 𝑓 (𝑐) = −𝑐3 + 0.62𝑐2 + 0.39𝑐. We note that although the misfolding model can
be deterministically chosen based on the lowest projection error, we present results from all experiments to quantify the model
uncertainty for the purpose of reliable and trustworthy machine learning. The error and the uncertainty can be decreased using
transfer learning techniques, if an informative prior of the brain model is accessible.

Projection of tau concentration with uncertainty quantification
We substitute the parameters inferred by PINN and reaction terms inferred from the symbolic regression model back to ODE

of Eq. (8) and extrapolate in time up to 𝑡 = 30 for 36 subjects and three brain regions, similar to the synthetic data. Since ten
independent simulations are conducted, we can propagate the uncertainty in the parameters (𝛼, 𝜅) and functions (𝑓−

𝑠𝑦𝑚, 𝑓+
𝑠𝑦𝑚) to

quantify the uncertainty in the solution 𝑐. We obtain the extrapolated tau concentrations in each simulation, and plot their minimum
and maximum values at each time step, as shown in Fig. 6. The predicted concentrations given by the model with lowest projection
error are plotted in dashed lines.

4. Summary and discussion

Tau protein is a key player in Alzheimer’s disease, and misfolded tau proteins play a crucial role in disease progression and
pathology. Protein misfolding and spreading across the brain of Alzheimer’s patients follows a characteristic stereotypical pattern
that we can model with reaction–diffusion type equations. There is little controversy about the diffusion term of these equation: Since
tau is an intracellular protein, the underlying assumption is that it spreads along axons within the brain’s connectome. However,
the precise nature of the reaction term of these equations remains incompletely understood.

Here, we capitalize on the recent developments in physics-informed deep learning and artificial intelligence to discover a
mathematical model for the progression of Alzheimer’s disease from clinical data. Specifically, we use longitudinal tau positron
emission tomography images from 46 individuals who are likely to develop Alzheimer’s disease and from 30 healthy controls. Their
brain scans are publicly available through the Alzheimer’s Disease Neuroimaging Initiative database. By their very nature, positron
emission tomography images have a high spatial resolution, while their temporal resolution is low and limited to only a few points
in time. In essence, this temporal information is too sparse to infer protein misfolding dynamics from the medical images alone.
8

This motivates the use of a physics-informed approach.
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Fig. 5. Parameter and function identification results on real data. We present the inference results for the transport rate 𝜅 and local production rate 𝛼, alongside
the reaction term for both the positive and negative groups. (Left, Middle) To present the obtained results, we only visualized the (population-level) distribution
of 𝛼 and 𝜅 in the simulation with the lowest projection error, as it is not appropriate to aggregate the parameter distribution corresponding to different 𝑓 s.
(Right) We plot the ensemble of inferred 𝑓𝑠𝑦𝑚 and 𝑓𝜙, with shaded region representing the minimum and maximum value of 𝑓 s in all 10 simulations. We
highlight the 𝑓𝑠𝑦𝑚 which corresponds to the simulation with the lowest projection error with stars.

Physics-informed neural networks or PINNs are a type of machine learning model that integrates our prior physics-based
knowledge into the training process of neural networks. By incorporating the reaction–diffusion equation of protein misfolding into
the loss function, PINNs satisfy the underlying physics by design, and improve the network’s accuracy and generalization capabilities.
PINNs are particularly powerful for solving complex problems, when the underlying training data are sparse. While they seem well
suited to simulate misfolded protein spreading across the brain from sparse clinical data, they will provide no insight into the
functional form of the reaction dynamics.

Here, instead of using a stand-alone PINN simulation, we integrate physics informed neural networks and symbolic regression to
iscover a reaction–diffusion type partial differential equation for tau protein misfolding and spreading. Importantly, this is a two-
tep process in which the first step uses the PINN to learn a noninterpretable model from data and the second step uses symbolic
egression to discover the best model and parameters to explain the reaction term inferred by the PINN. Importantly, our library
f possible models contains a variety of popular engineering reaction terms and our parameters are interpretable by design. The
roposed approach is different from previous works studying tau pathology in brain in the sense that we learn the reaction term
(𝑐) instead of fixing it as a quadratic term. This flexibility means we make fewer assumptions about the governing equation, which
an result in a better fit to the data, when the underlying equation could be misspecified. However, a potential drawback of our
‘gray-box’’ modeling approach is that it may lead to higher computational cost.

We demonstrate the features our two-step approach in terms of synthetic and real data and discover the best model and
arameters to explain tau imaging data from 46 individuals who are likely to develop Alzheimer’s disease and 30 healthy controls.
trikingly, our method discovers different misfolding models for the two groups, with a faster protein misfolding in the Alzheimer’s
roup, 𝑓 (𝑐) = 0.23𝑐3 − 1.34𝑐2 + 1.11𝑐, than in the healthy control group, 𝑓 (𝑐) = −𝑐3 + 0.62𝑐2 + 0.39𝑐. We anticipate that our two-step
odeling strategy generalizes well to other types of partial differential equations with various engineering applications.

Taken together, our results suggest that PINNs, supplemented by symbolic regression, can discover a reaction–diffusion type
odel to explain misfolded tau protein concentrations in Alzheimer’s disease. Understanding the dynamics of tau protein misfolding

nd its propagation can provide insights into the mechanisms underlying Alzheimer’s disease and potentially lead to the development
f effective therapeutic interventions. We expect this study to be the starting point for a more comprehensive analysis to provide
mage-based technologies for early diagnosis, and ideally early treatment, of neurodegeneration in Alzheimer’s disease and possibly
9

ther misfolding-protein based neurodegenerative disorders.
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Fig. 6. Projection of tau concentration in entorhinal cortex (EC), middle temporal gyrus (MTG) and superior temporal gyrus (STG) in 30 years based on real
data in first three data points. We plot the ensemble of predicted 𝑐 given by substituting 𝑓𝑠𝑦𝑚 back to ODE of Eq. (8). The lower and upper bound of the shaded
region represents the minimum and maximum value of 𝑐 in all 10 simulations. We plot the predicted concentrations given by the model with lowest projection
error in dashed lines.
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ppendix A. Pedagogical example: Discovering the Kraichnan–Orszag system

For better understanding of the proposed integration of physics-informed neural networks (PINNs) and symbolic regression, in
his section, we provide a pedagogical example that discovers the Kraichnan–Orszag system [14,37,38] from data. The system is
escribed by the following ODE system:

𝑑𝑢1
𝑑𝑡

= 𝑒−𝑡∕10𝑢2𝑢3,

𝑑𝑢2
𝑑𝑡

= 𝑢1𝑢3,

𝑑𝑢3
𝑑𝑡

= −2𝑢1𝑢2,

(13)

with initial conditions that are typically drawn from a Gaussian distribution. Instead, here we fix the initial conditions as 𝑢1(0) =
1, 𝑢2(0) = 0.8, 𝑢3(0) = 0.5, and assume partial knowledge of the dynamics. Specifically, we assume we know the right-hand side of
the third equation to be a linear transformation of 𝑢1𝑢2, and have zero information of the first two equations. Then we can rewrite
the ODE system as follows:

𝑑𝑢1
𝑑𝑡

= 𝑓1(𝑡, 𝑢1, 𝑢2, 𝑢3),

𝑑𝑢2
𝑑𝑡

= 𝑓2(𝑡, 𝑢1, 𝑢2, 𝑢3),

𝑑𝑢3
𝑑𝑡

= 𝑎𝑢1𝑢2 + 𝑏,

(14)

where 𝑎, 𝑏 are unknown constants to be inferred and 𝑓1, 𝑓2 are unknown functions, whose analytic regressions we seek to discover.
Here, we choose to use neural networks (NNs) with two hidden layers, each of which equipped with 50 neurons, and hyperbolic
tangent activation. Following the proposed method, we use one NN as the surrogate of 𝑢, which has 1-dimensional input and 3-
dimensional output, and one NN to approximate concatenation of 𝑓1 and 𝑓2, which has 4-dimensional input and 2-dimensional
output. The results are shown in Tables 3 and 4. As we can see, both steps of our approach yield accurate inferences of 𝑎, 𝑏 and
𝑓1, 𝑓2.

We reiterate that 𝑎 and 𝑏 are jointly inferred in the PINNs step while the identification of 𝑓1 and 𝑓2 is done separately in the
symbolic regression step. We also note that results from symbolic regression may be sensitive to the metrics of model selection,
to the candidates of unary and binary operators, and to the complexities of the operators. In this example, the metric is the score
defined in [12] and described in Section 2.2, the binary operators are chosen to be addition and multiplication, the unary operators
are identity, sin, cos, exponential and reciprocal, and the complexities of unary operators are set to 1, 3, 3, 3, 3, respectively.

Appendix B. Effect of sample size on inference quality

In the simulated dataset, we are provided with training data 𝑐(𝑡) at 𝑡 = 0, 1,… , 𝑇 . In the primary exposition, we have determined
that a value of 𝑇 = 2 suffices for the purpose of training, inference, and projection. This conclusion is, in part, attributable to the
additional physical constraint that we have imposed, namely, 𝑓 (0) = 𝑓 (1) = 0. In the absence of these constraints, our investigation
has revealed that a greater amount of data is required to optimize the model effectively. To illustrate this finding, we have conducted

Table 3
Inference of unknown constants using PINNs.

a b

Inference −1.9975 0.0002
Exact −2 0

Table 4
Identifications of the dynamics of 𝑢1 and 𝑢2 using PINNs and symbolic regression. Top 3 identifications, in terms of the score
defined in Section 2.2, are shown.
𝑓1 𝑢2𝑢3𝑒−0.0986𝑡 0.6694𝑢2𝑢3 𝑢2𝑢3
Score 3.8855 0.6695 0.5910

𝑓2 𝑢1𝑢3 𝑢1𝑢3 +
0.0014
𝑡+0.0314

𝑢1𝑢3 − 0.0020 + 0.0017
𝑡+0.0379

Scores 2.9805 0.5552 0.0617
11
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Fig. 7. PINN inference results when 𝑇 = 2, 4, 6, without fixed boundary conditions for 𝑓 . While the learned parameters 𝜅 and 𝛼 perform well in all instances,
he parametric function 𝑓𝜙 fails to align with 𝑓 in regions where there is no available data for 𝑐.

Table 5
Inferred reaction terms when 𝑇 = 2, 4, 6, without fixed boundary conditions for 𝑓 . When boundary conditions for 𝑓 are not fixed, more data are required to
guarantee the correct inference result by symbolic regression model. The more data we are provided, the better inference quality will be achieved. To get 𝑓𝑠𝑦𝑚
correct in 4 groups, we need data up to 𝑇 = 6.

Group 1 Group 2 Group 3 Group 4

𝑇 = 2 2.88𝑐𝑒−1.05𝑒𝑐 𝑐(−1 + 2𝑒−0.55𝑐2 ) 𝑐2(1.76 − 0.78𝑒𝑐 ) 0.37𝑐𝑒−0.71𝑐2

𝑇 = 4 𝑐(−1.16𝑐 + 0.12𝑒𝑐 + 0.9) 𝑐(1 − 𝑐2) 𝑐2(1 − 𝑐) 𝑐(0.51𝑐 − 0.49𝑒𝑐 + 0.86)
𝑇 = 6 𝑐(1 − 𝑐) 𝑐(1 − 𝑐2) 𝑐2(1 − 𝑐) 𝑐(0.37 − 0.37𝑐)𝑒𝑐

three simulations with 𝑇 = 2, 4, 6 and have plotted the inference results obtained using PINNs and the symbolic model, as depicted
in Fig. 7. It is noteworthy that in all cases, the parameters 𝜅 and 𝛼 are inferred correctly; yet, the parametric function 𝑓𝜙 does not
match 𝑓 in areas where no data for 𝑐 is available. This is particularly pronounced for larger concentration 𝑐 values, which correspond
o subjects with tau concentration levels close to 0 in the initial stages. The rightmost column of Fig. 7 shows that the inferred 𝑓 (𝑐)
oes not agree well with the ground truth. Interestingly, when 𝑇 = 4 and 𝑇 = 6, the symbolic regression model 𝑓𝑠𝑦𝑚 discovered from
he neural network 𝑓𝜙 outperforms 𝑓𝜙 in approximating the underlying target. One possible explanation for this phenomenon is that
𝑠𝑦𝑚 is trained with the concentration 𝑐 from the training set of 𝑓𝜙, which means that the region that corresponds to the incorrect
nference by 𝑓𝜙 is not fed into the symbolic regression model. As a result, the underlying inductive bias directs 𝑓𝑠𝑦𝑚 towards the
orrect solution automatically. Finally, we note that Table 5 demonstrates that, to obtain the correct symbolic model when there
12

re no constraints on the boundary conditions of 𝑓 , data up to 𝑇 = 6 is required.



Computer Methods in Applied Mechanics and Engineering 419 (2024) 116647Z. Zhang et al.
References

[1] Ronald Aylmer Fisher, The wave of advance of advantageous genes, Ann. Eugen. 7 (4) (1937) 355–369.
[2] Alan C. Newell, John A. Whitehead, Finite bandwidth, finite amplitude convection, J. Fluid Mech. 38 (2) (1969) 279–303.
[3] Lee A. Segel, Distant side-walls cause slow amplitude modulation of cellular convection, J. Fluid Mech. 38 (1) (1969) 203–224.
[4] Yakov B. Zeldovich, David A. Frank-Kamenetskii, The theory of thermal propagation of flames, Zh. Fiz. Khim 12 (1938) 100–105.
[5] Keith A Johnson, Aaron Schultz, Rebecca A Betensky, J Alex Becker, Jorge Sepulcre, Dorene Rentz, Elizabeth Mormino, Jasmeer Chhatwal, Rebecca

Amariglio, Kate Papp, et al., Tau positron emission tomographic imaging in aging and early a lzheimer disease, Ann. Neurol. 79 (1) (2016) 110–119.
[6] Julio C. Rojas, Adam L. Boxer, Targeting tauopathies for therapeutic translation, Nat. Rev. Neurol. 12 (2) (2016) 74–76.
[7] Mattia Corti, Francesca Bonizzoni, Paola F Antonietti, Alfio M Quarteroni, Uncertainty quantification for Fisher-Kolmogorov equation on graphs with

application to patient-specific alzheimer disease, 2023, arXiv preprint arXiv:2305.03619.
[8] Amelie Schäfer, Mathias Peirlinck, Kevin Linka, Ellen Kuhl, Alzheimer’s Disease Neuroimaging Initiative (ADNI), Bayesian physics-based modeling of tau

propagation in Alzheimer’s disease, Front. Physiol. 12 (2021) 702975.
[9] Amelie Schäfer, Pavanjit Chaggar, Alain Goriely, Ellen Kuhl, Alzheimer’s Disease Neuroimaging Initiative, Correlating tau pathology to brain atrophy using

a physics-based Bayesian model, Eng. Comput. 38 (5) (2022) 3867–3877.
[10] Maziar Raissi, Paris Perdikaris, George E. Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and inverse

problems involving nonlinear partial differential equations, J. Comput. Phys. 378 (2019) 686–707.
[11] Miles Cranmer, Interpretable machine learning for science with PySR and SymbolicRegression. jl, 2023, arXiv preprint arXiv:2305.01582.
[12] Miles Cranmer, Alvaro Sanchez Gonzalez, Peter Battaglia, Rui Xu, Kyle Cranmer, David Spergel, Shirley Ho, Discovering symbolic models from deep

learning with inductive biases, Adv. Neural Inf. Process. Syst. 33 (2020) 17429–17442.
[13] Bastian Zapf, Johannes Haubner, Miroslav Kuchta, Geir Ringstad, Per Kristian Eide, Kent-Andre Mardal, Investigating molecular transport in the human

brain from MRI with physics-informed neural networks, Sci. Rep. 12 (1) (2022) 15475.
[14] Zongren Zou, Xuhui Meng, Apostolos F Psaros, George Em Karniadakis, NeuralUQ: A comprehensive library for uncertainty quantification in neural

differential equations and operators, 2022, arXiv preprint arXiv:2208.11866.
[15] Ehsan Kharazmi, Min Cai, Xiaoning Zheng, Zhen Zhang, Guang Lin, George Em Karniadakis, Identifiability and predictability of integer-and fractional-order

epidemiological models using physics-informed neural networks, Nat. Comput. Sci. 1 (11) (2021) 744–753.
[16] Minglang Yin, Zongren Zou, Enrui Zhang, Cristina Cavinato, Jay D Humphrey, George Em Karniadakis, A generative modeling framework for inferring

families of biomechanical constitutive laws in data-sparse regimes, 2023, arXiv preprint arXiv:2305.03184.
[17] Kevin Linka, Ellen Kuhl, A new family of Constitutive Artificial Neural Networks towards automated model discovery, Comput. Methods Appl. Mech.

Engrg. 403 (2023) 115731.
[18] Kevin Linka, Sarah R. St Pierre, Ellen Kuhl, Automated model discovery for human brain using Constitutive Artificial Neural Networks, Acta Biomater.

160 (2023) 134–151.
[19] Kevin Linka, Adrian Buganza Tepole, Gerhard A Holzapfel, Ellen Kuhl, Automated model discovery for skin: Discovering the best model, data, and

experiment, Comput. Methods Appl. Mech. Engrg. 410 (2023) 116007.
[20] Andreï N. Kolmogorov, A study of the equation of diffusion with increase in the quantity of matter, and its application to a biological problem, Mosc.

Univ. Bull. Math. 1 (1937) 1–25.
[21] George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, Liu Yang, Physics-informed machine learning, Nat. Rev. Phys. 3 (6)

(2021) 422–440.
[22] Lu Lu, Xuhui Meng, Zhiping Mao, George Em Karniadakis, DeepXDE: A deep learning library for solving differential equations, SIAM Rev. 63 (1) (2021)

208–228.
[23] Liu Yang, Xuhui Meng, George Em Karniadakis, B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy

data, J. Comput. Phys. 425 (2021) 109913.
[24] Ameya D. Jagtap, Ehsan Kharazmi, George Em Karniadakis, Conservative physics-informed neural networks on discrete domains for conservation laws:

Applications to forward and inverse problems, Comput. Methods Appl. Mech. Engrg. 365 (2020) 113028.
[25] Guofei Pang, Lu Lu, George Em Karniadakis, fPINNs: Fractional physics-informed neural networks, SIAM J. Sci. Comput. 41 (4) (2019) A2603–A2626.
[26] Zhiping Mao, Ameya D. Jagtap, George Em Karniadakis, Physics-informed neural networks for high-speed flows, Comput. Methods Appl. Mech. Engrg.

360 (2020) 112789.
[27] Shengze Cai, Zhiping Mao, Zhicheng Wang, Minglang Yin, George Em Karniadakis, Physics-informed neural networks (PINNs) for fluid mechanics: A

review, Acta Mech. Sin. 37 (12) (2021) 1727–1738.
[28] Zongren Zou, George Em Karniadakis, L-HYDRA: Multi-Head Physics-Informed Neural Networks, 2023, arXiv preprint arXiv:2301.02152.
[29] Zongren Zou, Xuhui Meng, George Em Karniadakis, Correcting model misspecification in physics-informed neural networks (PINNs), 2023, arXiv preprint

arXiv:2310.10776.
[30] Lena Podina, Brydon Eastman, Mohammad Kohandel, A PINN approach to symbolic differential operator discovery with sparse data, 2022, arXiv preprint

arXiv:2212.04630.
[31] Silviu-Marian Udrescu, Max Tegmark, AI Feynman: A physics-inspired method for symbolic regression, Sci. Adv. 6 (16) (2020) eaay2631.
[32] Amelie Schäfer, Elizabeth C. Mormino, Ellen Kuhl, Network diffusion modeling explains longitudinal tau pet data, Front. Neurosci. 14 (2020) 566876.
[33] Jennifer A McNab, Brian L Edlow, Thomas Witzel, Susie Y Huang, Himanshu Bhat, Keith Heberlein, Thorsten Feiweier, Kecheng Liu, Boris Keil, Julien

Cohen-Adad, et al., The human connectome project and beyond: initial applications of 300 mt/m gradients, Neuroimage 80 (2013) 234–245.
[34] M X Henderson, E J Cornblath, A Darwich, B Zhang, H Brown, R J Gathagan, R M Sandler, D S Bassett, T J Trojanowski, Lee V M Y, Spread of

𝛼-synuclein pathology through the brain connectome is modulated by selective vulnerability and predicted by network analysis, Nature Neurosci. 22 (8)
(2019) 1248–1257.

[35] Ellen Kuhl, Connectomics of neurodegeneration, Nature Neurosci. 22 (8) (2019) 1199–1202.
[36] Sveva Fornari, Amelie Schäfer, Mathias Jucker, Alain Goriely, Ellen Kuhl, Prion-like spreading of alzheimer’s disease within the brain’s connectome, J. R.

Soc. Interface 16 (159) (2019) 20190356.
[37] Xiaoliang Wan, George Em Karniadakis, Multi-element generalized polynomial chaos for arbitrary probability measures, SIAM J. Sci. Comput. 28 (3) (2006)

901–928.
[38] Paula Chen, Tingwei Meng, Zongren Zou, Jérôme Darbon, George Em Karniadakis, Leveraging Multi-time Hamilton-Jacobi PDEs for Certain Scientific

Machine Learning Problems, 2023, arXiv preprint arXiv:2303.12928.
[39] Diederik P. Kingma, Jimmy Ba, Adam: A method for stochastic optimization, 2014, arXiv preprint arXiv:1412.6980.
[40] Ciyou Zhu, Richard H. Byrd, Peihuang Lu, Jorge Nocedal, Algorithm 778: L-BFGS-b: Fortran subroutines for large-scale bound-constrained optimization,

ACM Trans. Math. Softw. (TOMS) 23 (4) (1997) 550–560.
[41] Ying H. Huang, Zheng Xu, Cheng Qian, Li Liu, Solving free-surface problems for non-shallow water using boundary and initial conditions-free

physics-informed neural network (bif-PINN), J. Comput. Phys. 479 (2023) 112003.
13

http://refhub.elsevier.com/S0045-7825(23)00770-3/sb1
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb2
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb3
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb4
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb5
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb5
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb5
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb6
http://arxiv.org/abs/2305.03619
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb8
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb8
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb8
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb9
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb9
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb9
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb10
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb10
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb10
http://arxiv.org/abs/2305.01582
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb12
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb12
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb12
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb13
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb13
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb13
http://arxiv.org/abs/2208.11866
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb15
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb15
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb15
http://arxiv.org/abs/2305.03184
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb17
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb17
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb17
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb18
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb18
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb18
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb19
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb19
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb19
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb20
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb20
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb20
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb21
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb21
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb21
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb22
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb22
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb22
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb23
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb23
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb23
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb24
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb24
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb24
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb25
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb26
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb26
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb26
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb27
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb27
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb27
http://arxiv.org/abs/2301.02152
http://arxiv.org/abs/2310.10776
http://arxiv.org/abs/2212.04630
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb31
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb32
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb33
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb33
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb33
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb34
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb34
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb34
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb34
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb34
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb35
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb36
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb36
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb36
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb37
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb37
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb37
http://arxiv.org/abs/2303.12928
http://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb40
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb40
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb40
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb41
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb41
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb41


Computer Methods in Applied Mechanics and Engineering 419 (2024) 116647Z. Zhang et al.
[42] S. Berrone, C. Canuto, M. Pintore, N. Sukumar, Enforcing Dirichlet boundary conditions in physics-informed neural networks and variational
physics-informed neural networks, 2022, arXiv preprint arXiv:2210.14795.

[43] Balaji Lakshminarayanan, Alexander Pritzel, Charles Blundell, Simple and scalable predictive uncertainty estimation using deep ensembles, Adv. Neural
Inf. Process. Syst. 30 (2017).

[44] Apostolos F Psaros, Xuhui Meng, Zongren Zou, Ling Guo, George Em Karniadakis, Uncertainty quantification in scientific machine learning: Methods,
metrics, and comparisons, J. Comput. Phys. (2023) 111902.

[45] Balázs Szalkai, Csaba Kerepesi, Bálint Varga, Vince Grolmusz, Parameterizable consensus connectomes from the human connectome project: the budapest
reference connectome server v3. 0, Cogn. Neurodyn. 11 (2017) 113–116.

[46] Emanuel Parzen, On estimation of a probability density function and mode, Ann. Math. Stat. 33 (3) (1962) 1065–1076.
[47] Simon S. Du, Xiyu Zhai, Barnabas Poczos, Aarti Singh, Gradient descent provably optimizes over-parameterized neural networks, 2018, arXiv preprint

arXiv:1810.02054.
[48] Chaoyue Liu, Libin Zhu, Mikhail Belkin, Loss landscapes and optimization in over-parameterized non-linear systems and neural networks, Appl. Comput.

Harmon. Anal. 59 (2022) 85–116.
14

http://arxiv.org/abs/2210.14795
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb43
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb43
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb43
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb44
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb44
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb44
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb45
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb45
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb45
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb46
http://arxiv.org/abs/1810.02054
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb48
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb48
http://refhub.elsevier.com/S0045-7825(23)00770-3/sb48

	Discovering a reaction–diffusion model for Alzheimer's disease by combining PINNs with symbolic regression
	Introduction
	Methodology
	Physics-informed neural networks (PINNs)
	Symbolic regression
	Evaluation Metric


	Results
	Synthetic data
	Data preparation
	Parameter and function identification
	Projection of tau concentration

	Real data
	Data preparation
	Parameter and function identification with uncertainty quantification
	Projection of tau concentration with uncertainty quantification


	Summary and discussion
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A. Pedagogical example: Discovering the Kraichnan–Orszag system
	Appendix B. Effect of sample size on inference quality
	References


