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Abstract

Choosing the best constitutive model and the right set of model parameters is at the heart of continuum mechanics. For
ecades, the gold standard in constitutive modeling has been to first select a model and then fit its parameters to data. However,
he success of this approach dependends hugely on user experience and personal preference. Here we propose a new method that
imultaneously and fully autonomously discovers the best model and parameters to explain experimental data. Mathematically,
odel discovery translates into a complex non-convex optimization problem. We solve this problem by formulating it as a neural

etwork, and leverage the success, robustness, and stability of the optimization tools developed in deep learning. Yet, instead
f using a classical off-the-shelf neural network, we design our own family of Constitutive Artificial Neural Networks with
ctivation functions that feature popular constitutive models and parameters that have a clear physical interpretation. Our new
etwork inherently satisfies general kinematic, thermodynamic, and physical constraints and trains robustly, even with sparse
ata. We illustrate its potential for biaxial extension experiments on skin and demonstrate that the majority of network weights
rain to zero, while the small subset of non-zero weights defines the discovered model. Unlike classical network weights, these
eights are physically interpretable and translate naturally into engineering parameters and microstructural features such as

tiffnesses and fiber orientations. Our results suggest that Constitutive Artificial Neural Networks enable a fully automated
odel, parameter, and experiment discovery and could induce a paradigm shift in constitutive modeling, from manual to

utomated model selection and parameterization. Our source code, data, and examples are available at https://github.com/Livi
gMatterLab/CANN.
2023 Elsevier B.V. All rights reserved.

eywords: Constitutive modeling; Machine learning; Neural networks; Constitutive Artificial Neural Networks; Automated model discovery;
utomated science

1. Motivation

Neural networks are gaining increased popularity in the computational mechanics community and are increasingly
sed as function approximators in constitutive modeling [1]. Neural networks learn functions from data by
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minimizing a loss function [2]. In constitutive modeling, the function is a model for the stress, the data are
measured stress–strain pairs, and the loss function is the mean squared error between model and data [3]. Classical
neural networks have evolved into a powerful technology to interpolate or describe big data; however, they cannot
extrapolate or predict beyond their training regime [4]. They are an excellent choice when we have no information
about the underlying data, but they ignore our expert knowledge, and potentially violate kinematic, thermodynamic,
or physical constraints [5]. In the materials physics community, this has raised the question of how best to integrate
neural networks and constitutive modeling and ideally combine the best features of both [6].

Two successful but fundamentally different strategies have emerged to integrate physical knowledge into network
odels: Physics-Informed Neural Networks that add physical equations as additional constraints to the loss

unction [7]; and Constitutive Artificial Neural Networks that explicitly modify the network input, output, and
rchitecture to tightly incorporate physical constraints into the network design [8]. The former is broadly applicable
o any type of ordinary [9] or partial [10] differential equations, while the latter is specifically tailored to constitutive
quations [8]. In fact, almost two decades ago, the first constitutive neural network with strain invariants as input,
ree-energy functions as output, and a single hidden layer with logistic activation functions in between was proposed
or rubber-like materials [11]. It has recently regained attention in the constitutive modeling community [12], with
pplications for planing rubber sheets [8], sheets with holes [13], entire tires [11], parachute deployment [14],
nd plastic surgery [15]. An inherent limitation of all these success stories is that their neural network parameters
o not have a clear intuitive interpretation and teach us little to nothing about the underlying physics [16]. This
aises the question of whether and how we can use our expertise in constitutive modeling to design a new family of
onstitutive Artificial Neural Networks that not only approximate stresses from data [3], but rather discover the best
onstitutive model and meaningful model parameters to explain experimental data. We have recently prototyped this
dea for isotropic materials with experimental data from rubber [17] and the human brain [18,19], and will now
xpand it to transversely isotropic materials with data from skin.

The skin is the largest organ in our body and our interface to the outside world. Its stiffness is tightly regulated to
rotect the underlying tissues from environmental insults while allowing for movement and interaction with objects
anging from clothes to medical prostheses. The first biomechanical study of skin dates back to 1861, when the
ustrian anatomist Karl Langer punctured circular holes in the human cadaver skin and discovered its anisotropy

s the circular punches turned into ellipsoidal shapes [20]. This experiment produced the classic Langer lines,
opological lines parallel to the natural orientation of collagen fibers in the dermis that have important implications
n plastic and reconstructive surgery [21,22]. However, it was not until more than 70 years later that scientists fully
haracterized the three-dimensional response of the skin using a custom-designed biaxial extension system [23].
hese experiments revealed a transversely isotropic behavior with a stiff response parallel to Langer’s lines and a soft

esponse perpendicular to it [24] and the characteristic stretch-stiffening [25] that we now commonly associate with
oft collagenous tissues [26]. Based on these pioneering experiments, different experimental protocols have been
roposed [27–30] for probing skin under uniaixal tension [31], biaxial extension [24], or torsion [32]. A legitimate
uestion, particularly with regard to constitutive modeling, is which experiment is best suited to identifying its
arameters [33], or, in view of model finding, which experiment provides the richest data for training neural networks
or skin [18]. Our intuition suggests that uniaxial tension or strip tests parallel and perpendicular to Langer’s lines
hould provide the best insight into the constitutive behavior of skin [31]. But is this really true, and if so, how can
e formally quantify it?
In parallel to the numerous experiments to characterize the nonlinear transversely isotropic response of skin, a

ong list of constitutive models has been developed for this important tissue throughout the past fifty years. Yet, there
s no definitive choice of constitutive equation that is best suited for a particular dataset, no universal model that can
e used for different animal species, and no standard testing protocol that can guarantee robust model training. The
eneral idea of this manuscript is to prototype a new method to autonomously discover the best model, parameters,
nd experiment to characterize the constitutive behavior of skin. For this purpose, we revisit the basics of constitutive
odeling in Section 2 and demonstrate in Section 3 how this expert knowledge can be integrated into a new family

f Constitutive Artificial Neural Networks. In Section 4, we briefly review the homogeneous deformation mode of
iaxial extension and introduce the data we use to train our model in Section 5. We discuss our results, limitations,

nd future directions in Section 6 and close with a brief conclusion in Section 7.
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2. Constitutive modeling

To characterize the deformation of a test sample, we introduce the deformation map ϕ that maps material particles
from the undeformed configuration to particles, x = ϕ(X), in the deformed configuration [26,34]. The gradient

f the deformation map ϕ with respect to the undeformed coordinates X defines the deformation gradient F with
the Jacobian J ,

F = ∇Xϕ with J = det(F) > 0 . (1)

ultiplying F with its transpose Ft from the left or the right introduces the right and left Cauchy–Green tensors
C = Ft

· F and b = F · Ft, respectively. In the undeformed state, all three tensors are identical to the unit tensor,
F = I , C = I , and b = I , and the Jacobian is one, J = 1. A Jacobian smaller than one, 0 < J < 1, denotes
ompression and a Jacobian larger than one, 1 < J , denotes extension.

transversely isotropic material is characterized through the pronounced direction n0 with unit length ∥ n0 ∥ = 1 in
he reference configuration, the pronounced direction n = F · n0 in the deformed configuration, and the associated
tructure tensor N = n0 ⊗ n0. We characterize its deformation state through the three principal invariants I1, I2, I3,
nd two additional invariants I4 and I5 [35],

I1 = [ Ft
· F ] : I ∂F I1 = 2 F

I2 =
1
2 [I 2

1 − [ Ft
· F ] : [ Ft

· F ]] ∂F I2 = 2 [ I1 F − F · Ft
· F ]

I3 = det (Ft
· F) = J 2 with ∂F I3 = 2 I3 F−t

I4 = [ Ft
· F ] : N ∂F I4 = 2 F · N

I5 = [ Ft
· F ]2

: N ∂F I5 = F · [N · [ Ft
· F ] + [ Ft

· F ] · N] .

(2)

In the undeformed state, F = I , and the five invariants are equal to three and one, I1 = 3, I2 = 3, I3 = 1, I4 = 1
and I5 = 1.

A perfectly incompressible material is characterized through a constant Jacobian equal to one, I3 = J 2
= 1.

Accordingly, its set of invariants reduces to four, I1, I2, I4, I5.

Next, we introduce the constitutive equation, a tensor-valued tensor function that defines the relation between the
Piola or nominal stress P , the force df per undeformed area dA, and the deformation gradient F [26,36],

P = P(F) where P = lim
dA→0

d f
d A

. (3)

Here, instead of approximating the tensor-valued tensor function P(F) directly through a classical neural net-
work [3,37,38], our objective is to design a Constitutive Artificial Neural Network that limits the space of admissible
functions by a priori guaranteeing common thermodynamic and physical constraints:

First, we consider thermodynamic consistency and imply that the Piola stress P follows from the second law of
thermodynamics, D ≥ 0 (D stands for dissipation), as the derivative of the free-energy function ψ with respect to
the deformation gradient F [39],

P =
∂ψ(F)
∂F

from D = P : Ḟ − ψ̇(F) ≥ 0 with ψ̇ =
∂ψ(F)
∂F

: Ḟ . (4)

econd, we imply material objectivity [40] to ensure that our constitutive equation does not depend on the
xternal frame of reference by requiring that the free energy ψ is a function of the right Cauchy–Green tensor,

C = Ft
· F [36],

P =
∂ψ(C)
∂F

=
∂ψ(C)
∂C

:
∂C
∂F

= 2 F ·
∂ψ(C)
∂C

. (5)

hird, we consider material symmetry for transversely isotropic materials by ensuring that the free energy ψ only
epends on the five invariants from Eq. (2) [26],

P =
∂ψ(I1, I2, I3, I4, I5)

∂F
=
∂ψ

∂ I1

∂ I1

∂F
+
∂ψ

∂ I2

∂ I2

∂F
+
∂ψ

∂ I3

∂ I3

∂F
+
∂ψ

∂ I4

∂ I4

∂F
+
∂ψ

∂ I5

∂ I5

∂F
. (6)

ourth, we assume perfect incompressibility such that the third invariant remains constant, I3 = 1 = const., and we
−t 1 P : F is the hydrostatic pressure, an
orrect the free-energy function by a pressure term, −p F , where p = − 3

3
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Fig. 1. Constitutive Artificial Neural Network. Transversely isotropic, perfectly incompressible, Constitutive Artificial Neural Network
with two hidden layers for approximating the single scalar-valued free-energy function ψ(I1, I2, I4, I5) as a function of the invariants of the
deformation gradient F using sixteen terms. The first layer generates powers (◦) and (◦)2 of the network input and the second layer applies
the identity (◦) and exponential functions (exp(◦)) to these powers. The networks are not fully connected by design to satisfy the condition

f polyconvexity a priori.

dditional unknown that we typically determine from the boundary conditions,

P =
∂ψ(I1, I2, I4, I5)

∂F
− p F−t

=
∂ψ

∂ I1

∂ I1

∂F
+
∂ψ

∂ I2

∂ I2

∂F
+
∂ψ

∂ I4

∂ I4

∂F
+
∂ψ

∂ I5

∂ I5

∂F
− p F−t . (7)

Fifth, we ensure polyconvexity [41] by considering a special subclass of free-energy functions ψ , which we can
express as the sum of polyconvex subfunctions, ψ1, ψ2, ψ4, ψ5, of each invariant [42,43], such that the stresses
ake the following additive form,

P =
∂ψ1

∂ I1

∂ I1

∂F
+
∂ψ2

∂ I2

∂ I2

∂F
+
∂ψ4

∂ I4

∂ I4

∂F
+
∂ψ5

∂ I5

∂ I5

∂F
− p F−t where ψ = ψ1(I1)+ψ2(I2)+ψ4(I4)+ψ5(I5) . (8)

ith the derivatives of the invariants from Eq. (2), this results in the following explicit from,

P = 2
[[
∂ψ1

∂ I1
+ I1

∂ψ2

∂ I2

]
F − 2

∂ψ2

∂ I2
F · Ft

· F +
∂ψ4

∂ I4
F ·N +

∂ψ5

∂ I5

[
F ·N · Ft

· F + F · Ft
· F ·N

]]
− pF−t. (9)

Finally, we consider physically reasonable constitutive restrictions [34], and ensure that the free energy ψ is non-
negative for all deformation states, ψ(F) ≥ 0 for all F; zero in the reference configuration, ψ(F) .= 0 at F = I ;
and infinite for infinite compression or infinite expansion, ψ(F) → ∞ for J → 0 or J → ∞.

3. Constitutive Artificial Neural Networks

We now propose a new family of Constitutive Artificial Neural Networks that satisfy the conditions of
thermodynamic consistency, material objectivity, material symmetry, perfect incompressibility, polyconvexity, and
physical restrictions by design. Fig. 1 illustrates an example of a transversely isotropic, perfectly incompressible
Constitutive Artificial Neural Network with two hidden layers and four and eight nodes. The first layer generates
powers (◦) and (◦)2 of the network input and the second layer applies the identity, (◦) and the exponential function
(exp(◦)) to these powers. The constitutive equation of this networks takes the following explicit form,

ψ = w2,1 w1,1 [I1 − 3]+w2,2 [ exp(w1,2 [I1 − 3] ) − 1]+w2,3 w1,3 [I1 − 3]2
+w2,4 [ exp(w1,4 [I1 − 3]2 ) − 1]

+ w2,5 w1,5 [I2 − 3]+w2,6 [ exp(w1,6 [I2 − 3] ) − 1]+w2,7 w1,7 [I2 − 3]2
+w2,8 [ exp(w1,8 [I2 − 3]2 ) − 1]

+ w2,9 w1,9 [I4 − 1]+w2,10 [ exp(w1,10 [I4 − 1] ) − 1]+w2,11w1,11 [I4 − 1]2
+w2,12 [ exp(w1,12 [I4 − 1]2 ) − 1]

2 2

(10)
+ w2,13w1,13 [I5 − 1]+w2,14 [ exp(w1,14 [I5 − 1] ) − 1]+w2,15w1,15 [I5 − 1] +w2,16 [ exp(w1,16 [I5 − 1] ) − 1],

4



K. Linka, A. Buganza Tepole, G.A. Holzapfel et al. Computer Methods in Applied Mechanics and Engineering 410 (2023) 116007

(
m
m
o

w
e

W

a

E
λ

corrected by the pressure term ψ = ψ − p [J − 1]. Using the second law of thermodynamics, we can derive an
explicit expression for the Piola stress, P = ∂ψ/∂F,

P = [w2,1 w1,1 +w2,2 w1,2 exp(w1,2 [ I1 − 3 ])+2 [ I1 − 3 ][w2,3w1,3 + w2,4 w1,4 exp(w1,4 [ I1 − 3 ]2 )]] ∂ I1/∂F
+ [w2,5 w1,5 +w2,6 w1,6 exp(w1,6 [ I2 − 3 ])+2 [ I2 − 3 ][w2,7w1,7 + w2,8 w1,8 exp(w1,8 [ I2 − 3 ]2 )]] ∂ I2/∂F
+ [w2,9 w1,9 +w2,10w1,10 exp(w1,10 [ I4 − 1 ])+2 [ I4 − 1 ][w2,11w1,11 +w2,12w1,12 exp(w1,12 [ I4 − 1 ]2 )]] ∂ I4/∂F
+ [w2,13w1,13+w2,14w1,14 exp(w1,14 [ I5 − 1 ])+2 [ I5 − 1 ][w2,15w1,15 +w2,16w1,16 exp(w1,16 [ I5 − 1 ]2 )]] ∂ I5/∂F,

(11)

corrected by the pressure term P = P − p F−t. For this particular format, one of the two weights with odd
second indices becomes redundant, and we can reduce the set of network parameters from 32 to 24, w =

[ (w1,1w2,1), w1,2, w2,2, (w1,3w2,3), w1,4, w2,4, (w1,5w2,5), w1,6, w2,6, (w1,7w2,7), w1,8, w2,8, (w1,9w2,9), w1,10, w2,10,

w1,11w2,11), w1,12, w2,12, (w1,13 w2,13), w1,14, w2,14, (w1,15w2,15), w1,16, w2,16 ]. We learn the network weights w by
inimizing a loss function L that penalizes the error between model and data. We characterize this error as the
ean squared error, the L2-norm of the difference between the model P(Fi ) and data P̂ i , divided by the number

f training points ntrn,

L(w; F) =
1

ntrn

ntrn∑
i=1

∥ P(Fi ) − P̂ i ∥
2

→ min . (12)

We train the neural network by minimizing the loss function (12) and constraining the network weights to always
remain non-negative, w ≥ 0. Instead of implementing this minimization ourselves, we use the robustness and
stability of the optimization tools developed for machine learning. In particular, we choose the widely used ADAM
optimizer, a robust adaptive algorithm for gradient-based first-order optimization.

4. Biaxial extension tests

To discover the constitutive model for skin, we consider data from biaxial extension tests on rabbit [24,25] and
pig [15,44] skin. We represent skin as a transversally isotropic, perfectly incompressible material using Eq. (8),

P =
∂ψ1

∂ I1

∂ I1

∂F
+
∂ψ2

∂ I2

∂ I2

∂F
+
∂ψ4

∂ I4

∂ I4

∂F
+
∂ψ5

∂ I5

∂ I5

∂F
− p F−t , (13)

here p denotes the hydrostatic pressure, which we determine from the zero-thickness-stress condition. In biaxial
xtension tests, the skin specimen is stretched in two orthogonal directions, λ1 ≥ 1 and λ2 ≥ 1. From the

incompressibility condition, I3 = λ2
1 λ

2
2 λ

2
3 = 1, the stretch in the thickness direction, λ3 = (λ1 λ2)−1

≤ 1, is
uniquely defied through these two stretches. In all experiments, the samples are mounted with Langer’s lines along
one of the stretch directions so that the deformation remains homogeneous and shear free, and the deformation
gradient F and Piola stress P remain diagonal,

F = diag { λ1, λ2, (λ1λ2)−1
} and P = diag { P11, P22, 0 } . (14)

e use the explicit expressions of the invariants from Eq. (2),

I1 = λ2
1+λ

2
2+(λ1λ2)−2 I2 = (λ1λ2)2

+λ−2
1 +λ−2

2 I4 = λ2
1 cos2 α+λ2

2 sin2 α I5 = λ4
1 cos2 α+λ4

2 sin2 α, (15)

nd their derivatives,
∂F I1 =2 diag {λ1, λ2, (λ1λ2)−1

} ∂F I4 =2 diag {λ1cos2α, λ2sin2α, 0}

∂F I2 =2 diag {(λ1λ
2
2 + λ−1

1 λ−2
2 ), (λ2

1λ2 + λ−2
1 λ−1

2 ), (λ1λ
−1
2 + λ−1

1 λ2 )} ∂F I5 =2 diag {2λ3
1cos2α, 2λ3

2sin2α, 0},
(16)

to determine the pressure p from the zero-thickness-stress condition in the third direction,

P33 = 0 thus p =
2
λ2

1λ
2
2

∂ψ

∂ I1
+

[
2
λ2

1
+

2
λ2

2

]
∂ψ

∂ I2
. (17)

q. (13) then provides explicit analytical expressions for the nominal stresses P11 and P22 in terms of the stretches
1 and λ2,

P11 = 2
[
λ1 −

1
λ2

1λ
2
2

]
∂ψ1

∂ I1
+ 2

[
λ1λ

2
2 +

1
λ1λ

2
2

−
1
λ2

1
−

1
λ2

2

]
∂ψ2

∂ I2
+ 2 λ1cos2α

∂ψ4

∂ I4
+ 4 λ3

1cos2α
∂ψ5

∂ I5

P22 = 2
[
λ2 −

1
2 2

]
∂ψ1

+ 2
[
λ2

1λ2 +
1
2 −

1
2 −

1
2

]
∂ψ2

+ 2 λ2 sin2 α
∂ψ4

+ 4 λ3
2sin2α

∂ψ5
.

(18)
λ1λ2 ∂ I1 λ1λ2 λ1 λ2 ∂ I2 ∂ I4 ∂ I5

5
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Table 1
Strip-x, strip-y, and biaxial extension data for rabbit skin. Skin samples are gradually stretched in one direction, while stretching is fixed
in the orthogonal direction. The reported forces are converted in nominal stresses P11 and P22 for square 35 × 35 mm2 samples with a
thickness of 1.2 mm [24,25].

Rabbit Rabbit Rabbit Rabbit Rabbit Rabbit
strip-x strip-y biaxial biaxial biaxial biaxial

λ2 = 1.000 λ1 = 1.000 λ2 = 1.000 λ2 = 1.087 λ2 = 1.235 λ2 = 1.415

λ1 P11 λ2 P22 λ1 P11 P22 λ1 P11 P22 λ1 P11 P22 λ1 P11 P22
[–] [kPa] [–] [kPa] [–] [kPa] [kPa] [–] [kPa] [kPa] [–] [kPa] [kPa] [–] [kPa] [kPa]

1.000 0.00 1.000 0.00 1.000 0.00 0.00 0.000 0.00 0.00 0.950 0.00 0.00 0.820 0.00 0.00
1.100 0.04 1.100 0.16 1.100 0.13 0.09 0.036 0.34 0.08 1.000 0.05 0.34 0.900 0.10 0.86
1.200 0.08 1.200 0.42 1.200 0.30 0.15 0.117 0.38 0.11 1.100 0.16 0.38 1.000 0.26 0.95
1.300 0.17 1.300 0.68 1.300 0.50 0.21 0.198 0.44 0.14 1.200 0.30 0.44 1.100 0.44 1.00
1.400 0.29 1.400 1.08 1.400 0.65 0.26 0.317 0.49 0.22 1.300 0.47 0.49 1.200 0.65 1.26
1.500 0.42 1.440 1.65 1.500 0.77 0.33 0.406 0.57 0.27 1.400 0.69 0.57 1.300 0.98 1.64
1.600 0.58 1.467 2.25 1.600 0.98 0.40 0.615 0.66 0.32 1.500 1.02 0.66 1.368 1.50 2.34
1.700 0.74 1.480 2.72 1.700 1.46 0.47 0.976 0.93 0.40 1.600 1.43 0.93 1.400 2.26 3.50
1.800 1.03 1.490 3.50 1.800 2.24 0.59 1.489 1.63 0.53 1.700 2.81 1.63 1.419 2.93 4.67
1.860 1.46 1.503 4.67 1.860 3.18 0.75 2.608 2.05 0.74 1.722 3.53 2.05 1.436 3.42 5.84
1.900 2.34 1.509 5.84 1.910 4.27 0.93 4.244 3.26 1.17 1.745 4.41 3.26 1.447 3.94 7.01
1.922 3.50 1.513 7.01 1.942 6.09 1.17 5.274 4.38 1.75 1.762 5.54 4.38 1.456 4.55 8.17
1.929 4.67 1.515 8.17 1.966 7.46 1.59 6.001 5.84 2.34 1.774 6.87 5.84 1.465 4.95 9.34
1.936 5.84 1.518 9.34 1.985 9.03 2.24 6.699 7.01 2.92 1.780 7.93 7.01 1.474 5.47 10.51
1.941 7.01 1.521 10.51 2.000 10.37 2.80 7.851 8.17 3.50 1.785 9.02 8.17 1.482 6.14 11.68
1.943 9.34 1.523 11.68 2.013 11.88 3.39 10.064 9.34 4.67 1.790 10.17 9.34 1.489 6.57 12.84
1.948 11.68 1.526 12.84 2.021 13.28 3.85 12.156 11.68 5.84 1.800 12.15 11.68 1.494 6.94 14.01
1.950 14.78 1.528 14.78 2.023 14.76 4.32 14.642 13.54 6.77 1.806 14.48 13.54 1.496 7.24 14.59

We compare the stress–stretch relations (18) with the very first reported biaxial extension experiments on
skin [24,25] from almost half a century ago. These experiments include both strip-x and strip-y tests and biaxial
extension tests on square rabbit skin samples with an average initial area of 35 × 35 mm2 and an average thickness of
1.2 mm. For the strip tests, the skin samples are either stretched in the x-direction, λ1 ≥ 1.000, with the y-direction
fixed, λ2 = 1.000, or vice versa, resulting in two pairs of the individual datasets {λ1, P11} and {λ2, P22}. For the
biaxial tests, the samples are stretched in the x-direction, λ1 ≥ 1.0, at four constant stretch levels in the y-direction,

2 = 1.000, 1.087, 1.235, 1.415 = const., resulting in four triplets of datasets {λ1, P11, P22}. Table 1 summarizes
he discrete data pairs and triplets from the reported rabbit skin experiments [24,25]. Next, we translate the nominal
tresses (18) into the true stress σ11 and σ22,

σ11 = 2
[
λ2

1 −
1
λ2

1λ
2
2

]
∂ψ1

∂ I1
+ 2

[
λ2

1λ
2
2 −

1
λ2

1

]
∂ψ2

∂ I2
+ 2 λ2

1cos2α
∂ψ4

∂ I4
+ 4 λ4

1cos2α
∂ψ5

∂ I5

σ22 = 2
[
λ2

2 −
1
λ2

1λ
2
2

]
∂ψ1

∂ I1
+ 2

[
λ2

1λ
2
2 −

1
λ2

2

]
∂ψ2

∂ I2
+ 2 λ2

2 sin2 α
∂ψ4

∂ I4
+ 4 λ4

2sin2α
∂ψ5

∂ I5
.

(19)

We compare the stress–stretch relations (19) with our recent biaxial extension experiments on pig skin [15,44].
These experiments were performed on dermal samples from the dorsal region of two twelve-month-old female mini
pigs within 48 h of excision using a planar biaxial testing system (BioTester 5000, CellScale, Waterloo, Canada).
All tests were performed in submerged state using 1x phosphate-buffered saline solution at 37 ◦C. The stretch λ

as calculated from the clamp-to-clamp distance, and stress P = f/A was calculated from the recorded forces f
of the last upstroke of five load cycles divided by the area A = L · T , where L is the specimen length and T is the
thickness averaged of five measurements from a digital thickness gauge prior to loading. The experiments include
five sets of biaxial extension tests with prescribed stretch pairs, strip-x with λ2 = 1.000, off-x with λ2 =

√
λ1,

qui-biaxial with λ2 = λ1, off-y with λ1 =
√
λ2, and strip-y with λ1 = 1.000. They provide five triplets of datasets,

λ1, σ11, σ22} or {λ2, σ11, σ22}, for which the second stretch λ2 or λ1 is either kept constant or increased as a function
f λ1 or λ2, such that the maximum principal stretch is inclined at angles of 90.00, 67.50, 45.00, 22.50, 0.00 towards

he collagen fiber direction. Table 2 summarizes the discrete data triplets from the pig skin experiments [15,44].
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Table 2
Biaxial extension data for pig skin. Skin samples are gradually stretched in two orthogonal directions. The ratio between the two stretches
varies for all five experiments, such that the principal stretch axis is inclined by angles of 90.00, 67.50, 45.00, 22.50, 0.00 in the collagen

ber orientation. Stresses are reported as true stresses σ11 and σ22 [15,44].

Pig Pig Pig Pig Pig
strip-x off-x biaxial off-y strip-y

λ2 = 1.000 λ2 =
√
λ1 λ1 = λ2 λ1 =

√
λ2 λ1 = 1.000

λ1 σ11 σ2 λ1 σ11 σ2 λ1, λ2 σ11 σ2 λ2 σ11 σ2 λ2 σ11 σ2
[–] [MPa] [MPa] [–] [MPa] [MPa] [–] [MPa] [MPa] [–] [MPa] [MPa] [–] [MPa] [MPa]

1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000
1.014 0.000 0.000 1.011 0.000 0.000 1.008 0.000 0.000 1.011 0.000 0.000 1.010 0.002 0.001
1.026 0.000 0.001 1.022 0.002 0.003 1.017 0.003 0.001 1.019 0.001 0.001 1.018 0.003 0.001
1.041 0.001 0.000 1.033 0.004 0.006 1.025 0.006 0.006 1.030 0.003 0.006 1.029 0.005 0.005
1.056 0.004 0.003 1.044 0.006 0.012 1.032 0.007 0.011 1.041 0.006 0.013 1.039 0.005 0.010
1.068 0.004 0.005 1.055 0.010 0.017 1.042 0.015 0.019 1.052 0.007 0.019 1.049 0.007 0.018
1.083 0.012 0.007 1.066 0.018 0.025 1.049 0.023 0.037 1.062 0.010 0.028 1.058 0.013 0.030
1.099 0.021 0.015 1.078 0.024 0.038 1.057 0.038 0.054 1.073 0.019 0.047 1.068 0.019 0.049
1.112 0.026 0.019 1.089 0.039 0.058 1.067 0.055 0.088 1.084 0.024 0.076 1.079 0.023 0.075
1.127 0.048 0.030 1.101 0.057 0.088 1.075 0.077 0.125 1.096 0.038 0.118 1.090 0.034 0.110
1.144 0.074 0.044 1.113 0.088 0.116 1.083 0.107 0.169 1.105 0.049 0.156 1.099 0.048 0.150
1.157 0.103 0.058 1.124 0.121 0.154 1.093 0.148 0.234 1.117 0.069 0.221 1.109 0.057 0.206
1.174 0.155 0.080 1.137 0.160 0.195 1.101 0.186 0.300 1.129 0.091 0.297 1.121 0.073 0.283
1.190 0.222 0.102 1.149 0.209 0.244 1.109 0.235 0.382 1.141 0.118 0.394 1.132 0.089 0.373
1.204 0.300 0.131 1.161 0.264 0.298 1.119 0.298 0.493 1.151 0.147 0.493 1.141 0.111 0.471
1.221 0.413 0.167 1.174 0.335 0.359 1.127 0.365 0.604 1.163 0.185 0.635 1.152 0.135 0.609

5. Results

We successfully trained our Constitutive Artificial Neural Network from Fig. 1 with the biaxial extension data
rom Tables 1 and 2, either individually for each dataset or simultaneously for all datasets combined. For all
ases, the loss function converged robustly within 8,000 epochs, with an early stopping criterion for no accuracy
hange after 200 mandatory epochs. The computational time varied between individual and simultaneous training,
epending on the amount of training data. With a batch size of 32, each training run took approximately 3–
min on a standard desktop computer. For each training case, in every direction, we compared the experimentally

eported stress–stretch data to the discovered stress–stretch model and used the other cases for testing. We report
he correlation coefficients R2 as an indicator for the goodness-of-fit for both train and test data.

or insufficiently rich training data, model discovery is non-unique. Fig. 2 shows the discovered models
for the strip-x and strip-y data of rabbit skin in Table 1. The four columns show four different models for four
different initial conditions; the two rows show the stress–stretch relations in the x− and y−directions. First and
oremost, the neural network is able to discover models that explain the data with R2 values of the order of

R2
= 0.85 and above, except for the last column. As a general trend, the network discovers free-energy functions

ith pairs of two terms: one term is a function of one of the isotropic invariants, I1 or I2 shown in the hot reddish
olors, and the other is a function of one of the anisotropic invariants, I4 or I5, shown in the cold bluish colors.
nterestingly, the model only discovers pairs of quadratic exponential terms, exp([I1 −3]2) and exp([I4 −3]2) in the

first and fourth column, exp([I1 − 3]2) and exp([I5 − 3]2) in the second column, exp([I2 − 3]2) and exp([I5 − 3]2)
in the third column, while all linear, quadratic, and linear exponential terms train to zero. We conclude that for
training with a set of strip-x and strip-y data, the network is able to discover models that approximate the data
well. However, model detection is ambiguous and sensitive to network initialization. This suggests that training
with a single set of strip-x and strip-y data, with pairs of {λx , Pxx } and {λy, Pyy} from two independent experiments
provides insufficient information for the discovery of unique models. To explore whether this ambiguity is inherent
to the neural network itself or is simply due to insufficiently rich training data, we now train the model with multiple
datasets from biaxial extension tests.
7
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Fig. 2. Rabbit skin strip-x and strip-y data and discovered model. Nominal stresses Pxx and Pyy as functions of stretches λx at
λy = 1.000 and λy at λx = 1.000 for the transversely isotropic, perfectly incompressible Constitutive Artificial Neural Network with two
hidden layers and 16 nodes from Fig. 1, for training with different initial conditions. Dots illustrate the strip-x and strip-y data of rabbit
skin [24] from Table 1; color-coded areas highlight the 16 contributions to the discovered stress function according to Fig. 1.

For sufficiently rich training data, the network robustly discovers unique models. Fig. 3 illustrates the
discovered model for the biaxial extension data of rabbit skin in Table 1. The four columns show the discovered
model for four different levels of lateral stretch, λy = 1.000, 1.087, 1.235, 1.415, for training with each dataset
ndividually; the two rows show the nominal stresses Pxx and Pyy for increasing stretches λx . Similar to the previous
xample, the neural network is generally able to discover a model that explains the data reasonably well, with R2

alues on the order of R2
= 0.75 and above. Interestingly, for the four sets of biaxial extension data, even when

rained on only one dataset, the neural network robustly discovers the same pair of terms: the quadratic exponential
erms of the first invariant, exp([I1 − 3]2) in light red, and of the fourth invariant, exp([I4 − 3]2) in turquoise. In the

first column, the stretch perpendicular to the fiber direction, λx = 2.0, is up to twice as large as the stretch parallel
o the fiber direction, λy = 1.0, and the behavior of the sample is dominated by the isotropic response of the light
ed exp([I1 − 3]2) term. With increasing fiber stretch, the anisotropic contribution of the fibers increases from the
eft to the right column. In the fourth column, the stretch perpendicular to the fiber direction, λx = 1.5, is almost
dentical to the stretch parallel to the fiber direction, λy = 1.4, and the behavior of the sample is dominated by the
nisotropic response of the turquoise exp([I4 − 3]2) term. Interestingly, the second and fifth invariants I2 and I5 do
ot contribute to the discovered model, nor do the linear, quadratic, and linear exponential terms. From the robust
ctivation of the same two terms across all datasets, we conclude that even a single individual set of biaxial training
ata with data triples of {λx , Pxx , Pyy} allows for a more robust training than a set of strip-x and strip-y data, with
airs of {λx , Pxx } and {λy, Pyy} from two independent experiments. While the parameter values are different for
ach set of training data, the set of active parameters is the same across all four datasets and defines the discovered
odel. To check the robustness of the model finding, we now train our neural network simultaneously with all four

iaxial extension datasets combined.

he network autonomously discovers a two-term quadratic exponential model for rabbit skin. Fig. 4
llustrates the discovered model for the biaxial extension data of rabbit skin in Table 1. The four columns show
he response of the discovered model for four different levels of lateral stretch, λy = 1.000, 1.087, 1.235, 1.415,
ut now for training with all four datasets simultaneously; the two rows show the nominal stresses Pxx and Pyy for
ncreasing stretches λx . When trained with four datasets of triples of {λx , Pxx , Pyy}, the network robustly discovers
single unique model and parameter set. The model and parameters approximate the data well and are insensitive to
arying initial conditions. The network consistently discovers a two-term model for rabbit skin in terms of quadratic
8
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Fig. 3. Rabbit skin biaxial extension data and discovered model. Nominal stresses Pxx and Pyy as functions of the lateral stretch
x at λy = 1.000, 1.087, 1.235, 1.415 for the transversely isotropic, perfectly incompressible Constitutive Artificial Neural Network with two
idden layers and 16 nodes from Fig. 1, trained with each dataset individually. Dots illustrate the biaxial extension data of rabbit skin [24]
rom Table 1; color-coded areas highlight the 16 contributions to the discovered stress function according to Fig. 1.

Fig. 4. Rabbit skin biaxial extension data and discovered model. Nominal stresses Pxx and Pyy as functions of the stretch λx at
xed λy = 1.000, 1.087, 1.235, 1.415 for the transversely isotropic, perfectly incompressible Constitutive Artificial Neural Network with two
idden layers and 16 nodes from Fig. 1, trained with all four datasets simultaneously. Dots illustrate the biaxial extension data of rabbit

skin [24] from Table 1; color-coded areas highlight the 16 contributions to the discovered stress function according to Fig. 1 for training
with all four datasets combined.

exponentials of the first and fourth invariants I1 and I4,

ψ rabbit(I1, I4) =
1
2

a1

b1
[ exp(b1[I1 − 3]2) − 1] +

1
2

a4

b4
[ exp(b4[I4 − 1]2) − 1] − p [ J − 1 ] , (20)

rom which we can derive the nominal stress for rabbit skin, P = ∂ψ/∂F, as

P rabbit(I1, I4) = a1 [I1 − 3] [ exp(b1[I1 − 3]2) − 1] F + a4 [I4 − 1] [ exp(b4[I4 − 1]2) − 1] n ⊗ n0 − p F−t , (21)

here n = F · n0 and n0 denote the deformed and undeformed collagen fiber directions, respectively. The network
obustly discovers the same set of four non-zero network weights, w , w , w , w , that translate into four
1,4 2,4 1,12 2,12

9
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Fig. 5. Rabbit skin biaxial extension tests and discovered model. Nominal stresses Pxx and Pyy as a function of stretch λx at
xed λy = 1.000, 1.087, 1.235, 1.415, from red to blue, for the transversely isotropic, perfectly incompressible Constitutive Artificial Neural
etwork with two hidden layers and 16 nodes from Fig. 1, trained with all four datasets simultaneously. Dots illustrate the biaxial extension

data of rabbit skin [24] from Table 1; colored curves highlight the discovered stress functions.

physically interpretable parameters with well-defined physical units, the stiffness-like parameters a1 = 2w1,4w2,4
and a4 = 2w1,12w2,12 and the unit-less exponential coefficients b1 = w1,4 and b4 = w1,12.

Fig. 5 summarizes the experimentally reported and computationally discovered stress–stretch relations for the
iaxial extension of rabbit skin. The red curves, associated with the smallest fiber stretch of λy = 1.000, are

dominated by the isotropic response of the tissue and display the softest response. Increasing the fiber stretch
from λy = 1.000 via λy = 1.087 and λy = 1.235 to λy = 1.415, from red to dark blue, gradually activates the
anisotropic response of the collagen fibers and the stresses increase. The blue curves associated with the largest
fiber stretch of λy = 1.415 are dominated by the anisotropic response of the fibers and display the stiffest response
in both directions. Overall, we conclude that the discovered two-term stress–stretch relation (21) provides a good
approximation to the data for both stresses, in the stretch direction Pxx and in the hold direction Pyy . The model
captures well the characteristic stretch stiffening of soft collagenous tissues with increasing stresses, as soon as the
collagen fibers as the load-carrying structural element take over the main load. To validate the model discovery, we
now train our neural network with a different dataset from biaxial extension experiments on pig skin.

The network discovers the same two-term model for rabbit and pig skin. Fig. 6 illustrates the discovered
model for the biaxial extension data of pig skin in Table 2. The four columns show the response of the discovered
model for the strip-x and strip-y, off-x, equi-biaxial, and off-y tests; the two rows show the true stresses σxx and
σyy as functions of the stretches λx and λy . When trained with the five stress–stretch pairs {λx , Pxx } and {λy, Pyy}

individually the network robustly discovers the same model for each dataset. The model is insensitive to varying
initial conditions and approximates the data well with R2 values on the order of R2

= 0.92 and above. Remarkably,
even for a completely different dataset, from different species, tested with a different protocol, the network discovers
the same model for pig skin and for rabbit skin half a century later with much higher precision: a two-term model
in terms of quadratic exponential first and fourth invariants I1 and I4. The stress contributions to σxx and σyy in the
two rows clearly visualize the effect of the collagen fibers: the σxx stresses perpendicular to the fiber direction only
contain the light red quadratic exponential isotropic I1 term, while the σyy stresses parallel to the fiber direction
also contain the turquoise quadratic exponential anisotropic I4 term. For all five datasets, only these two terms are
ctivated, while the weights of the other 14 terms train to zero. While the parameter values are different for each set
f training data, the set of active parameters is the same across all five datasets and defines the discovered model.
able 3 summarizes the non-zero weights w1,4, w2,4, w1,12, w2,12, the resulting stiffness-like parameters, a1 and a4,

and exponential coefficients, b1 and b4, and the goodness-of-fit, R2
x and R2

y , for individual training with the strip-x,
off-x, equi-biaxial, off-y, and strip-y tests.

The network simultaneously discovers both a unique model and parameter set. Fig. 7 confirms the
robust model discovery, now for training with all five datasets simultaneously. The network discovers the same
two-term model for pig skin as in the previous example for rabbit skin, with the same free-energy function as in
10
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Fig. 6. Pig skin biaxial extension data and discovered model. True stresses σxx and σyy as functions of stretches λx and λy for
the transversely isotropic, perfectly incompressible Constitutive Artificial Neural Network with two hidden layers and 16 nodes from Fig. 1,
trained with each dataset individually. Dots illustrate the biaxial extension data of pig skin [15] from Table 2; color-coded areas highlight
the 16 contributions to the discovered stress function according to Fig. 1.

Fig. 7. Pig skin biaxial extension data and discovered model. True stresses σxx and σyy as functions of the stretches λx and λy
or the transversely isotropic, perfectly incompressible Constitutive Artificial Neural Network with two hidden layers and 16 nodes from
ig. 1, trained with all five datasets simultaneously. Dots illustrate the biaxial extension data of pig skin [15] from Table 2; color-coded
reas highlight the 16 contributions to the discovered stress function according to Fig. 1.

q. (20),

ψpig(I1, I4) =
1
2

a1

b1
[ exp(b1[I1 − 3]2) − 1] +

1
2

a4

b4
[ exp(b4[I4 − 1]2) − 1] − p [ J − 1 ] , (22)

from which we can derive the true stress, σ = 1/J ∂ψ/∂F · Ft
= 1/J P · Ft, similar to Eq. (21),

σ pig(I1, I4) = a1 [I1 − 3] [ exp(b1[I1 − 3]2) − 1] b + a4 [I4 − 1] [ exp(b4[I4 − 1]2) − 1] n · n − p I , (23)

here n = F·n0 denotes the deformed collagen fiber direction. Simultaneous training with all five combined datasets
onfirms that the second and fifth invariants I2 and I5 do not contribute to the discovered model, nor do the linear,
uadratic, and linear exponential terms. In contrast to the individual training, the simultaneous training results in
single unique set of parameter values that best explain all five experiments combined. Naturally, simultaneous

raining slightly reduces the goodness-of-fit R2 compared to individual training. Importantly, the four non-zero

eights of the discovered model, w1,4 = 0.8207, w2,4 = 0.8097 MPa, w1,12 = 0.3921, w2,12 = 0.3388 MPa,

11
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Fig. 8. Pig skin biaxial extension tests and discovered model. True stresses σxx and σyy as functions of stretches λx and λy for
the transversely isotropic, perfectly incompressible Constitutive Artificial Neural Network with two hidden layers and 16 nodes from Fig. 1,
trained with all five dataset simultaneously. Dots illustrate the biaxial extension strip-x, off-x, equibiaxial, off-y, strip-y data of pig skin [15]
from Table 2; colored curves highlight the discovered stress functions.

Table 3
Pig skin parameters from biaxial extension tests. Discovered material parameters for training with strip-x,
off-x, equi-biaxial, off-y, strip-y tests from Table 2, trained with each dataset individually, parameter means, and
trained with all five datasets simultaneously. Summary of the four non-zero weights w1, 4, w2, 4, w1, 12, w2, 12;
resulting stiffness-like parameters a1 and a4 and exponential coefficients b1 and b4; and goodness-of-fit R2

x and
R2

y .

Pig Pig Pig Pig Pig Pig Pig
strip-x off-x equi-biax off-y strip-y mean all

λy = 1.00 λy =
√
λx λy = λx λx =

√
λy λx = 1.00

w1, 4 [–] 0.8085 0.7888 0.9400 0.8052 1.3075 0.9300 0.8207
w2, 4 [MPa] 0.7938 0.7770 0.9205 0.7872 1.3004 0.9158 0.8097
w1, 12 [–] 0.0006 0.3266 0.3332 0.3779 0.3429 0.2762 0.3921
w2, 12 [MPa] 0.0011 0.3226 0.3067 0.2832 0.2809 0.2389 0.3388

a1 [MPa] 1.2837 1.2257 1.7304 1.2677 3.4004 1.7816 1.3291
b1 [–] 0.8085 0.7888 0.9400 0.8052 1.3075 0.9300 0.8207
a4 [MPa] 0.0000 0.2107 0.2044 0.2140 0.1927 0.1644 0.2656
b4 [–] 0.0006 0.3266 0.3332 0.3779 0.3429 0.2762 0.3921

R2
x [–] 0.9945 0.9404 0.9969 0.9955 0.9670 – –

R2
y [–] 0.9433 0.9265 0.9678 0.9761 0.9764 – –

naturally translate into as set of meaningful, physically interpretable parameters, a1 = 2w1,4w1,4 = 1.3291 MPa,
1 = w1,4 = 0.8207, a4 = 2w1,12w1,12 = 0.2656 MPa, and b4 = w1,12 = 0.3921 with real physical units. Table 3
ompares the discovered non-zero weights w1,4, w2,4, w1,12, w2,12, the resulting stiffness-like parameters a1 and a4
nd exponential coefficients b1 and b4, and goodness-of-fit R2

x and R2
y for simultaneous training to the means of their

ounterparts for individual training. Fig. 8 summarizes the experimentally reported and computationally discovered
tress–stretch relations for biaxial extension of pig skin. The red curves of the strip-x test with λy = 1.000 are
ominated by the isotropic response of the tissue and display the softest response. Increasing the fiber stretch from
y = 1.000 via λy = λ

1/2
x , λy = λx , and λy = λ2

x , to the strip-y test with λx = 1.000, from red to dark blue,
radually activates the anisotropic response of the collagen fibers and the stresses increase. The dark blue curves
re dominated by the anisotropic response of the fibers and display the stiffest response. Similar to rabbit skin,
he discovered two-term stress–stretch relation for pig skin (23) provides a good approximation of the data for the
tresses in both σxx and σyy directions. We conclude that the discovered model is not only well-suitable for rabbit
kin, but also for pig skin.

he network not only discovers the best model and parameters, but also the best experiment. Fig. 9
isualizes the coefficients of correlation for the pig skin experiments. The six columns correspond to the six sets of
12
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Fig. 9. Pig skin biaxial extension coefficients of correlation. Coefficients of determination R2 for discovered model, with quadratic
exponential terms in the first and fourth invariants, exp([I1 −3]2) and exp([I4 −1]2), trained with the strip-x, off-x, equibiaxial, off-y, strip-y,
and all data of pig skin [15] from Table 2. Color-coded bars highlight the individual experiment. In each column, one experiment is used
as training data and the other four as test data. In the right column, all data are used as training data.

training data, strip-x, off-x, equibiaxial, off-y, strip-y, and all experiments combined; the two rows illustrate the fit
in the x− and y−directions. The color-coded bars summarize the R2 values from each experiment; the highlighted
bar indicates the goodness-of-fit to the training data, R2

train, while all other bars indicate the goodness-of-fit to the
test data, R2

test. The discovered model clearly trains well, with all but two values well above R2
train > 0.95. As

xpected, the strip-x experiment has no predictive potential for the y−stresses σyy and neither does the strip-y
xperiment for the x−stresses σxx , both with R2

test values of zero. At the same time, the off-x, equi-biaxial, and
ff-y experiments contain information about both stresses, σxx and σyy , and provide insight into both, the isotropic

I1 term and the anisotropic I4 term, where most of the R2
test values are close to R2

test = 0.90. Importantly, comparing
he mean coefficient of correlation, mean(R2), across all five experiments helps us select the experiment with the
ichest information: the mean coefficient of correlation is largest for the off-y and off-x experiments with values
f mean(R2) = 0.8510 and 0.8423 and smallest for the strip-y experiment with mean(R2) = 0.2519. We conclude
hat our network can not only discover the best model and parameters, but also discover the best experiment. In
ther words, if we could choose just one experiment, the off-y experiment with λy = λ2

x would provide the most
omplete information about the mechanics of skin.

he network can discover microstructural features. Skin is a transversely isotropic material with a
ronounced collagen fiber direction. If we do not know the fiber direction a priori, we can discover it simultaneously
ith the model and its parameters. We assume that the fibers are oriented at an angle α to the x-direction such that
0 = [ cos(α), sin(α), 0 ]t. Fig. 1 of our Constitutive Artificial Neural Network introduces the fiber angle α as an
dditional weight w0 between the deformation gradient F and the fourth and fifth invariants, I4 = F ·n0⊗n0 · Ft and

I5 = Ft
· F ·n0 ⊗n0 · Ft

· F. For the rabbit skin experiments in Table 1, the model discovers a weight of w0 = 0.9760
orresponding to an angle of α = ±55.920; for the pig skin experiments in Table 2 the model discovers a weight
f w0 = 1.5708 corresponding to an angle of α = 90.000. Both values seem reasonable for skin tissue samples
aken from the back of the animals with a pronounced lateral fiber orientation. Intuitively, the rabbit is probably too
mall to provide 30 × 30 mm2 tissue samples with homogeneous collagen fiber orientations that could explain why
he learned fiber angle deviates from the lateral direction. However, the pig is much larger and its samples might
e more homogeneous with a single unique collagen fiber orientation along the 900 lateral direction. Overall, we
onclude that, given sufficient training data, the network robustly discovers microstructural features, e.g., distinct
ollagen fiber directions of soft biological tissues.

. Discussion

The objective of this study was to design a Constitutive Artificial Neural Network for transversely isotropic

erfectly incompressible materials and to demonstrate its features using the example of skin. Our design paradigm
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was to reverse-engineer the network architecture to ensure that the network satisfies common physical and
thermodynamic constraints by design and includes popular constitutive models as special cases. We have shown
that a basic set of 16 functional building blocks – generated from two isotropic and two anisotropic invariants, their
first and second powers, and their exponentials – provides a reasonable basis to characterize this class of materials.
To leverage the robustness and stability of optimization tools in neural network modeling, we have integrated these
terms into a neural network with two hidden layers and 32 weights. When the network is trained with biaxial
extension data from the skin, it autonomously discovers a subset of non-zero weights that define the discovered
model while training the majority of the weights to zero. Importantly, in contrast to classical neural network
modeling, the non-zero weights are physically interpretable and translate naturally into engineering parameters and
microstructural features such as shear modulus and fiber angle. The method not only discovers a unique model and
parameter set that best describe the data, but also autonomously discovers the richest experiment to train itself.

Our discovered model compares well against proposed constitutive models for skin. For more than
half a century scientists have developed constitutive models to characterize the stress–stretch relation in skin [27,
29,30,45–47]. We can classify these models into microstructurally-based and invariant-based approaches [28]. Our
neural network in Fig. 1 with the free-energy function in Eq. 10 is a natural generalization of the most popular
invariant-based models [17] and provides insight into their functional correlations:

The Lanir model [33], the simplest of all models for transversely isotropic materials, has a free-energy function that
contains an isotropic linear neo-Hookean term [48] of the first invariant [ I1 − 3 ] and an anisotropic linear term of
the fourth invariant [ I4 − 1 ],

ψ =
1
2
µ1 [ I1 − 3 ] +

1
2
µ4 [ I4 − 1 ] ,

scaled by the shear modulus µ1 = 2w1,1w2,1 and the fiber stiffness µ4 = 2w1,9w2,9. While the Lanir model captures
well the transversely isotropic behavior of skin with stiff collagen fibers embedded in a soft matrix, this is evident
from the experimental stress–stretch curves in Figs. 5 and 8. The linear neo-Hookean format does not capture the
characteristic stretch-stiffening behavior of collagenous tissues [29].

The Weiss model [49] originally designed for ligaments combines the isotropic linear Mooney–Rivlin terms [50,51]
of the first and second invariant [ I1 − 3 ] and [ I2 − 3 ] with an anisotropic linear exponential Demiray term [52] of
the fourth invariant [ I4 − 1 ],

ψ =
1
2
µ1 [ I1 − 3 ] +

1
2
µ2 [ I2 − 3 ] + a4 [ exp([ I4 − 1 ]) − 1 ] ,

caled by the shear moduli, µ1 = 2w1,1w2,1 and µ2 = 2w1,5w2,5, and the stiffness-like parameter a4 = 2w1,10w2,10.
hile the exponential format of the anisotropic term naturally captures the stretch-stiffening parallel to the collagen

ber direction, the linear format of the isotropic term does not capture the stretch-stiffening of the red curves
erpendicular to the fiber direction in Figs. 5 and 8.

he Groves model [53], a generalization of the Weiss model, combines an isotropic exponential term in the first
nvariant [ I1 −3 ] and an isotropic linear Blatz and Ko term [54] of the second invariant [ I2 −3 ] with an anisotropic
inear exponential Demiray term [52] of the fourth invariant [ I4 − 1 ],

ψ =
a1

b1
[ exp(b1[ I1 − 3 ]) − 1] −

1
2
µ2 [ I2 − 3 ] +

a4

b4
[ exp(b4[ I4 − 1 ]) − 1]

caled by the stiffness-like parameters, a1 = 2w1,2w2,2, µ2 = 2w1,5w2,5, and a4 = 2w1,10w2,10, and the coefficients
1 = w1,2 and b4 = w1,10. While the exponential format of both the isotropic and anisotropic terms qualitatively
aptures the characteristic stretch-stiffening of the skin, the linear dependence in the exponential term accounts
or only moderate stiffening and does not quantitatively capture the characteristic J-shape, particularly of the blue
urves in Figs. 5 and 8.

he Holzapfel model [55], combines the isotropic linear neo-Hookean term [48] of the first invariant [ I1 − 3 ] with
n anisotropic quadratic exponential term of the fourth invariant [ I4 − 1 ],

ψ =
1
µ [ I1 − 3 ] +

1 a4 [ exp( b4[ I4 − 1 ]2 ) − 1 ] ,

2 2 b4
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Fig. 10. Pig skin biaxial extension data and neo-Hooke-Holzapfel model. True stresses σxx and σyy as functions of the stretches
x and λy for the neo-Hooke-Holzapfel model, trained with all five dataset simultaneously. Dots illustrate the biaxial extension data of pig
kin [15] from Table 2; color-coded areas highlight the neo-Hookean and the Holzapfel contributions to the stress function.

caled by the shear modulus µ = 2w1,1w2,1, the stiffness-like parameter a4 = 2w1,12w2,12, and the coefficient
4 = w1,12. With only three parameters and a clear microstructural interpretation, the Holzapfel model naturally
aptures the three characteristic features of collagenous tissues, anisotropy, stretch-stiffening and a strong J-type
ehavior, and is probably the most popular model for soft biological tissues to date [26].

ur network discovers interpretable parameter values that agree well with the values for skin.
nstead of following the usual paradigm to first select a constitutive model and then identify its material
arameters [28], our network discovers simultaneously both model and parameters. Notably, we offer the network
wide variety of functional building blocks [17] from which a relevant subset of two can be selected,

ψ(I1, I4) =
1
2

a1

b1
[ exp(b1[I1 − 3]2) − 1] +

1
2

a4

b4
[ exp(b4[I4 − 1]2) − 1] − p [ J − 1 ],

hile all other network parameters train to zero. Unlike in classical neural networks, for which the weights have
o physical interpretation [15,44], our non-zero weights w0 = 1.5708, w1,4 = 0.8207, w2,4 = 0.8097 MPa, w1,12 =

.3921, w2,12 = 0.3388 MPa, naturally translate into a set of meaningful, physically interpretable parameters: a
ollagen fiber angle of α = 900, matrix and fiber stiffnesses of a1 = 1.3291 MPa and a4 = 0.2656 MPa, and
atrix and fiber coefficients of b1 = 0.8207 and b4 = 0.3921, that can teach us something about the underlying
icrostructure and physics of skin [29].

special application of our neural network is parameter identification. By constraining the majority
f weights to zero and only training for a selective subset of weights [18], we can utilize our neural network
o identify the parameters of common constitutive models, including the Lanir [33], Weiss [49], Groves [53], or
olzapfel [55] models. For example, by training specifically for the weights w1,1, w2,1, w1,12, w2,12, we recover

he classical Holzapfel parameters. For a simultaneous training with all five load cases from Table 2, the network
iscovers weights of w1,1 = 0.3240, w2,1 = 0.3845 MPa, w1,12 = 10.7914, and w2,12 = 0.0049 MPa that translate
nto a shear modulus of µ = 0.2492 MPa, a Holzapfel stiffness-like parameter of a4 = 0.1054 MPa, and a coefficient
f b4 = 10.7914.

Figs. 10 and 11 summarize the training of our neural network when restricted to the classical Holzapfel
odel, [55] and trained with the biaxial extension data from pig skin in Table 2. Consistent with our intuition,

he stress plots in Fig. 10 confirm that the Holzapfel model performs well in the y−direction parallel to the primary
ollagen fiber orientation, but does not capture strain stiffening in the x-direction, perpendicular to the fibers. The
oefficients of correlation in Fig. 11 indicate an excellent fit for the off-y and strip-y data in the y-direction, but a
oderate fit for all other data. Compared to the popular and widely used Holzapfel model with linear and quadratic

xponential terms in Figs. 10 and 11, our discovered model with two quadratic exponential terms in Figs. 7 and 9
2
as larger overall coefficients of correlation R and provides a better fit of the data.
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Fig. 11. Pig skin biaxial extension coefficients of correlation. Coefficients of determination R2 for neo-Hooke-Holzapfel model, with
linear and quadratic exponential terms in the first and fourth invariants, [I1 − 3] and exp([I4 − 1]2), trained with strip-x, off-x, equibiaxial,
off-y, strip-y, and all data of pig skin [15] from Table 2. Color-coded bars highlight each experiment. In each column, one experiment is
used as training data and the other four as test data. In the right column, all data are used as training data.

To address the shortcomings in the isotropic response of the classical Holzapfel model [55] in Figs. 10 and 11,
the new Holzapfel model [56] accounts for a fiber dispersion around the pronounced direction n0 with an additional
dispersion parameter κ . It includes both the first and fourth invariants I1 and I4 in the quadratic exponential while
preserving the isotropic linear neo-Hookean term,

ψ =
1
2
µ [ I1 − 3 ] +

1
2

a4

b4
[ exp( b4[ κ I1 + [1 − 3 κ]I4 − 1 ]2 ) − 1 ] .

While our current neural network architecture is not fully connected and – by design – contains explicit coupling
between individual invariants, it discovers two exponential quadratic terms that are formally similar to the
exponential term in the new Holzapfel model. In contrast to the Holzapfel model, the w1,1 and w2,1 weights

f the isotropic linear neo-Hookean term, 1
2 µ [ I1 − 3 ], consistently train to zero. This indicates that in our

arameterization the isotropic linear term plays a negligible role and all isotropic contributions can be collectively
epresented by our exponential quadratic term, 1

2 a1/b1 [exp( b1[ I1 − 3 ]2 ) − 1], through non-zero w1,4 and w2,4

weights alone. Importantly, for a dispersion parameter of κ =
1
3 , the new Holzapfel model [56] exactly recovers

our exponential quadratic isotropic term, while for κ = 0, it recovers our exponential quadratic anisotropic term,
1
2 a4/b4 [exp( b4[ I4 − 1 ]2 ) − 1]. These direct comparisons with classical constitutive models [33,49,53,55,56]
suggests that our network not only discovers a physically reasonable model with a small number of well-rationalized
functional building blocks, but also helps rationalize the features and shortcomings of existing models with regard
to the development history of constitutive models [27–29].

Our neural network is polyconvex by design. From the general representation theorem [57] we know that
he free-energy function of an isotropic material can be expressed in its most generic form as an infinite series of
ower products of its invariants, ψ(I1, I2, I3) =

∑
∞

j,k,l=0 c jkl [I1 − 3] j [I2 − 3]k[I3 − 1]l , where c jkl are material
onstants. It is easy to see that the format of this function is more general than our free-energy function 10: it
ontains mixed products of invariants, for which the free-energy function is generally not convex. However, we can
esign the free-energy function as a sum of convex functions of invariants such that the overall free-energy function
emains polyconvex [43]. This has motivated us to represent the free energy as the sum of four individual polyconvex
ubfunctions ψ1, ψ2, ψ4, ψ5 [14,17], such that ψ(F) = ψ1(I1)+ψ2(I2)+ψ4(I4)+ψ5(I5), is polyconvex by design.
or our neural network, this implies that instead of using a fully connected network architecture, in which coupling

erms in the invariants I1, I2, I4, I5 emerge naturally, we propose a selectively connected network architecture in
hich the four inputs I1, I2, I4, I5 remain decoupled at all times, and combine only additively to the final free-energy

unction, ψ = ψ1 + ψ2 + ψ4 + ψ5, after the last hidden layer [15,16]. In other words, if we want to include an

xplicit coupling of the invariants, e.g., through the dispersion term [ κ I1 + [ 1 − 3κ ]I4 − 1 ] of the new Holzapfel
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model [56], we would have to extend our current network by adding connections between the first and second
layers, but then we might have to add alternative strategies to ensure polyconvexity [42].

Our network autonomously discovers the best experiment with the largest correlation coefficient.
For almost half a century, scientists have proposed different experiments to characterize flat collagenous tissues,
including uniaxial tension [31], biaxial extension [24,58], torsion [32], suction [59], bulging [60], and indenta-
tion [27,30]. By far the simplest method is plain uniaxial tension. Intuitively we would think that testing the sample
parallel and perpendicular to the collagen fiber orientation, e.g., at angles of 00, 450, 900, should provide the best
insight into its overall response [31]. However, as we have seen in Fig. 2, from single {λx , Pxx } and {λy, Pyy} stretch–
stress pairs alone, it is difficult to interpret the complex anisotropic behavior of skin. The first pioneering biaxial
test system for skin was proposed almost five decades ago [23], and has since then become the method of choice to
characterize flat composite materials with stiff fibers embedded in a soft matrix. Instead of data pairs, this system
provides data triplets, {λx , σxx , σyy} and {λy, σxx , σyy}, where the second stretch λy or λx is either held constant or
increased as a function of λx or λy [15,24,25,44]. From Fig. 3 for rabbit skin and Fig. 6 for pig skin, we conclude
that this method provides rich enough data to discover both a unique model and a parameter set, even from single
experiments. Interestingly, analytical optimization of biaxial test protocols reveals that two uniaxial stretch tests at
mutually normal directions at 22.50, 67.50 provide richer information than tests performed at 00, 450, 900 [61]. This
agrees well with our correlation coefficients in Fig. 9, for which the off-x and off-y experiments at 22.50, 67.50 are
he best correlations across all five experiments with mean(R2) values of 0.8423 and 0.8510. This suggests that our

ethod is able to autonomously discover the experiment that provides the best information to train itself.

ur Constitutive Artificial Neural Networks interpolate, extrapolate, and explain constitutive behavior.
nlike traditional neural networks, which do not require any prior physics knowledge to interpolate data within a
ell-defined window [1], Constitutive Artificial Neural Networks explicitly modify the network input, output, and

rchitecture to incorporate physical constraints into the network design [8]. This allows them to interpolate and
xtrapolate the stress–stretch response within and beyond a known stretch regime. Interestingly, the first neural
etwork to approximates incremental principal strains in concrete from given stress increments, stresses, and strains
s more than three decades old [3]. In the early days, neural networks served primarily as black box regression
perators without accounting for physical considerations or thermodynamic constraints. Now there is a strong push
n constitutive modeling to ensure that neural networks satisfy these constraints a priori [8,14–16,62]. The first
amily of Constitutive Artificial Neural Networks designed with these goals uses multiple hidden layers to map
he deformation gradient to a free-energy function, from which they derive the stress [8]. Their layers are densely
onnected by conventional activation functions, typically of hyperbolic tangent or logistic type [17]. This introduces
undreds if not thousands of network weights and biases, which the network has to learn from data. Of course,
ith so many degrees of freedom, these early Constitutive Artificial Neural Networks have excellent interpolation
roperties: they can fit any stress–stretch curve flawlessly, including potential measurement outliers [15]. However,
ith more unknowns than data, they have a clear tendency of overfit [1]. Importantly, simply measuring more points

long the same stress–stretch curve or testing more samples with the same protocol does not fix the overfitting
roblem. For successful training, the network does not simply need more data, but rich data, ideally from multi-
ode tests, not only individually in uniaxial tension, biaxial extension, and torsion, but also at different fiber

ngles [44], and combined with all modes [18,63]. Even with the best of all training data, two essential limitations
emain: the lack of extrapolation and the lack of interpretability. Many popular conventional activation functions,
uch as the hyperbolic tangent or logistic functions, tend to plateau beyond a certain range, and this plateau naturally
ranslates into the approximated stress function [17]. Furthermore, their weights are typically non-unique, lack clear
hysical interpretation, and offer only limited insight into the underlying constitutive response. Our new family of
onstitutive Artificial Neural Networks addresses these limitations through a simple design paradigm: it reverse-
ngineers its activation functions from functional building blocks of well-accepted and widely used constitutive
odels, including the isotropic neo-Hookean [48], Blatz and Ko [54], Mooney–Rivlin [50,51], and Demiray [52]
odels and their transversely isotropic counterparts, the Lanir [33], Weiss [49], Grooves [53], and Holzapfel [55]
17
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models. By design, our neural networks can interpolate, extrapolate, and explain the constitutive behavior just like
these individual models, and moreover as all these models combined.

Limitations. Although we have successfully demonstrated the potential of our proposed approach, we see three
major limitations: First, and most obviously, the fit of the discovered model and parameters is not perfect and
clearly not as good as a fit of first generation Constitutive Artificial Neural Networks or Neural Ordinary Differential
Equations. This perceived shortcoming of our method is a result of a combination of two factors, its much lower
number of degrees of freedom, and its inherent objective of identifying models that are not just a combination
of hyperbolic tangent functions, but rather a generalization of existing computational models. We could address
this limitation by adding more terms that still satisfy the polyconvexity condition, for example, more polynomial
terms of the invariants or more polyconvex activation functions. However, the downside of this strategy is the loss
of a parsimonious representation with interpretable parameters. Second, and this is easily addressed, our current
network architecture is limited to discovering constitutive models in which the invariants are fully decoupled. This
implies that we cannot discover dispersion-type models in which the individual invariants interact with one another.
This limitation is intended to make it easier to account for polyconvexity, but can be easily addressed by a fully
connected network architecture in which all nodes of the two hidden layers are interconnected. Third, and probably
most difficult to handle, our method remains slightly sensitive to its initial conditions, particularly to the initialization
of the network weights. Specifically, even when trained with all available data combined, it occasionally discovers
a quadratic term in the second invariant or a quadratic exponential term in the fifth invariant. We tried to regularize
the loss function, but neither L1 nor L2 regularization completely eliminates this uniqueness problem. We conclude
that this is not an artifact of our method, but rather an indication for the existence of secondary models to explain
the data. A crucial next step to gain quantitative insight into all three limitations would be to embed our method
into a Bayesian approach to identify the type of outliers in terms of both models and model parameters.

7. Conclusion

Constitutive modeling and parameter identification are the cornerstones of continuum mechanics. For decades,
the usual standard in constitutive modeling was to first choose a model and then fit its parameters to data. However,
this approach depends largely on user experience and personal preference. Here we proposed a new method to
simultaneously and fully autonomously discover the best model and parameters to explain experimental data. As a
by-product, the method also discovers the best set of experiments to train itself. This is clearly a non-trivial task
that, in mathematical terms, translates into a complex non-convex optimization problem. Our solution strategy is to
leverage the success, robustness, and stability of the powerful optimization schemes developed for classical neural
networks. We formulated the model finding problem as a Constitutive Artificial Neural Network with activation
functions representing traditional constitutive models and parameters that have a clear physical interpretation. We
have demonstrated the potential of our method for biaxial extension experiments on skin, showing that the network
autonomously discovers a small set of non-zero weights that define the discovered model, while the majority of
the weights are trained to zero. In contrast to classical neural network modeling, our non-zero weights have a clear
physical interpretation and can be translated into well-defined engineering parameters and microstructural features.
Our findings suggest that Constitutive Artificial Neural Networks have the potential to enable automated model,
parameter, and experiment discovery and could induce a paradigm shift in constitutive modeling, from user-defined
to automated model selection and parameterization.
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