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A B S T R A C T

The soft tissue of the brain deforms in response to external stimuli, which can lead to traumatic brain injury.
Constitutive models relate the stress in the brain to its deformation and accurate constitutive modeling is
critical in finite element simulations to estimate injury risk. Traditionally, researchers first choose a constitutive
model and then fit the model parameters to tension, compression, or shear experiments. In contrast, constitutive
artificial neural networks enable automated model discovery without having to choose a specific model before
learning the model parameters. Here we reverse engineer a constitutive artificial neural network that uses
the principal stretches, raised to a wide range of exponential powers, as activation functions. Upon training,
the network autonomously discovers a subclass of models with multiple Ogden terms that outperform popular
constitutive models including the neo Hooke, Blatz Ko, and Mooney Rivlin models. While invariant-based
networks fail to capture the pronounced tension–compression asymmetry of brain tissue, our principal-stretch-
based network can simultaneously explain tension, compression, and shear data for the cortex, basal ganglia,
corona radiata, and corpus callosum. Without fixing the number of terms a priori, our model self-selects the
best subset of terms out of more than a million possible combinations, while simultaneously discovering the
best model parameters and best experiment to train itself. Eliminating user-guided model selection has the
potential to induce a paradigm shift in soft tissue modeling and democratize brain injury simulations. Our
source code, data, and examples are available at https://github.com/LivingMatterLab/CANN.
1. Introduction

Understanding the mechanical behavior of brain tissue is essential to
predict how the brain will respond when injured, during development,
or how disease will progress [1]. Numerous constitutive models, which
relate stress and stretch, have been developed from experimental data
to best describe the behavior of soft tissues, including the brain [2].
These constitutive relations allow us to simulate how the brain will
respond to various stress conditions, like traumatic brain injury, using
techniques like the finite element method [3]. However, selecting the
best constitutive model is not a trivial task as brain tissue is hetero-
geneous, highly nonlinear, displays pronounced tension–compression
asymmetry, and is almost perfectly incompressible [4,5].

Brain tissue testing. Simple loading experiments are frequently used
to try to characterize the behavior of brain tissue [6]. However, because
the brain tissue is ultrasoft, highly fragile, biphasic, heterogeneous,
and deforms under its own weight due to gravity, getting accurate
and reliable tissue responses from mechanical tests is difficult [6]. The
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most common mechanical tests include uniaxial tension [7], compres-
sion [8], shear [9], and indentation [10]. These tests have revealed
that brain tissue has a strain-stiffening behavior and is stiffer under
compression than tension [4]. Increasing the strain rate increases brain
stiffness; the tissue also softens under preconditioning [6], but does
not appear to be significantly anisotropic [4]. These results show just
how complex the mechanical response of brain tissue is, and why it
is so challenging to characterize its behavior with a single, simple
constitutive equation.

Constitutive neural network modeling. Constitutive artificial neural
networks show great promise in modeling the complex behaviors of
soft biological tissues [11]. These networks have physics built into their
architecture, and restricted inputs and outputs to follow the laws of
physics and the governing principles for constitutive equations [12].
Critically, constitutive artificial neural networks do not require the
user to know the form of the constitutive equation ahead of time [13].
Instead, they can discover the entire constitutive relationship automati-
cally [12]. Previously, we have shown that constitutive artificial neural
vailable online 23 March 2023
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networks can be built from invariant-based building blocks like the neo
Hooke, Blatz Ko, Demiray, and Holzapfel models [14]. While invariant-
based neural networks perform well at fitting tension, compression, and
shear individually, they struggle to capture the pronounced tension–
compression asymmetry in brain tissue [14].

Principal-stretch based modeling. The Ogden model for large defor-
mations of incompressible rubber-like solids was first proposed more
than half a century ago [15]. Its strain energy function features a linear
combination of the principal stretches 𝜆1, 𝜆2, 𝜆3 raised to arbitrary
powers 𝛼𝑘 as 𝜓 =

∑𝑛
𝑘=1 𝜇𝑘(𝜆

𝛼𝑘
1 + 𝜆𝛼𝑘2 + 𝜆𝛼𝑘3 − 3)∕𝛼𝑘. The Ogden model

assumes that the material is isotropic [16], which makes it particularly
well-suited for soft tissues such as the liver, kidney, blood clots, and
the brain [17]. In most practical applications, the Ogden model is used
with only one [9,18,19] or two terms [20] when fit to brain tissue data.
A recent study showed that a subclass with up to eight Ogden terms
provides excellent fits for both fat and brain tissue under combined
compression and shear, while the common one- and two-term models
provide inadequate fits [21]. However, identifiability becomes more
difficult for these higher order Ogden models [5], and even the best
algorithms struggle to fit these higher order models uniquely [22]. This
raises the question to which extent higher order Ogden models are
practically useful, and if so, whether and how we can identify them
and fit them to data. The objective of this publication is to address
this challenge by harnessing the power of gradient-based adaptive
optimizers from deep learning and formulating the Ogden model as
a constitutive artificial neural network that simultaneously learns the
relevant Ogden terms and their parameters for human brain tissue.

2. Methods

2.1. Kinematics

During testing, particles X in the undeformed reference config-
uration map to particles x in the deformed configuration via the
deformation map 𝝋 such that 𝒙 = 𝝋(𝑿). The deformation gradient
𝑭 is the gradient of the deformation map 𝝋 with respect to the
undeformed coordinates 𝑿. Its spectral representation introduces the
principal stretches 𝜆𝑖 and the principal directions 𝑵 𝑖 and 𝒏𝑖 in the
undeformed and deformed configurations, where 𝑭 ⋅𝑵 𝑖 = 𝜆𝑖𝒏𝑖, and

𝑭 = ∇𝑿𝝋 =
3
∑

𝑖=1
𝜆𝑖 𝒏𝑖 ⊗𝑵 𝑖 . (1)

The Jacobian, 𝐽 = det(𝑭 ) > 0, denotes volumetric change, where
0 < 𝐽 < 1 is compression, 𝐽 > 1 is expansion, and 𝐽 = 1 means the
material is perfectly incompressible. To measure the deformation in the
undeformed configuration, we introduce the right Cauchy Green tensor
𝑪 and its spectral representation in terms of principal stretches squared
𝜆2𝑖 and the principal directions 𝑵 𝑖,

𝑪 = 𝑭 t ⋅ 𝑭 =
3
∑

𝑖=1
𝜆2𝑖 𝑵 𝑖 ⊗𝑵 𝑖 . (2)

An isotropic material has three principal invariants,

𝐼1 = tr(𝑪) = 𝜆21 + 𝜆
2
2 + 𝜆

2
3

𝐼2 =
1
2 [tr

2(𝑪) − tr(𝑪2)] = 𝜆21𝜆
2
2 + 𝜆

2
2𝜆

2
3 + 𝜆

2
1𝜆

2
3

3 = det(𝑪) = 𝐽 2 = 𝜆21 𝜆
2
2 𝜆

2
3 ,

(3)

hich are linear, quadratic, and cubic in terms of these principal
tretches squared. The principal stretches depend on the type of
xperiment. For uniaxial tension and compression tests, where we ap-
ly a stretch 𝜆, we can write the deformation gradient 𝑭 in matrix
epresentation as

=

⎡

⎢

⎢

⎢

𝜆 0 0
0 1∕

√

𝜆 0
√

⎤

⎥

⎥

⎥

, (4)
2

⎣

0 0 1∕ 𝜆
⎦

nd calculate the principal stretches as

1 = 𝜆 𝜆2 = 1∕
√

𝜆 𝜆3 = 1∕
√

𝜆 . (5)

For simple shear tests where we apply a shear 𝛾, the deformation
radient 𝑭 in matrix representation is

𝑭 =
⎡

⎢

⎢

⎣

1 𝛾 0
0 1 0
0 0 1

⎤

⎥

⎥

⎦

, (6)

and the principal stretches are

𝜆1 =
√

1 + 1
4 𝛾

2 + 1
2 𝛾 𝜆2 =

√

1 + 1
4 𝛾

2 − 1
2 𝛾 𝜆3 = 1 . (7)

.2. Constitutive equations

Constitutive equations relate a stress like the Piola or nominal stress
, the force per undeformed area that is commonly measured in exper-

ments, to a deformation measure like the deformation gradient 𝑭 . For
hyperelastic material that satisfies the second law of thermodynamics,
e can express the Piola stress, 𝑷 = 𝜕𝜓(𝑭 )∕𝜕𝑭 , as the derivative of the
elmholtz free energy function 𝜓(𝑭 ) with respect to the deformation
radient 𝑭 , modified by a pressure term, −𝑝𝑭 -t, to ensure perfect
ncompressibility,

=
𝜕𝜓
𝜕𝑭

− 𝑝𝑭 -t . (8)

Instead of formulating the free energy function in terms of the de-
formation gradient, several constitutive models define the free energy
function in terms of the three principal stretches 𝜆𝑖. For an isotropic
material, we can express the Piola stress, 𝑷 =

∑3
𝑖=1 𝜕𝜓(𝜆𝑖)∕𝜕𝜆𝑖 𝒏𝑖⊗𝑵 𝑖, as

the derivative of the Helmholtz free energy function 𝜓(𝜆𝑖) with respect
to the principal stretches 𝜆𝑖, modified by the pressure term,

𝑷 =
3
∑

𝑖=1

𝜕𝜓
𝜕𝜆𝑖

𝒏𝑖 ⊗𝑵 𝑖 − 𝑝𝑭 -t . (9)

The hydrostatic pressure, 𝑝 = − 1
3 𝑷 ∶ 𝑭 acts as a Lagrange multiplier

that we determine from the boundary conditions.

2.3. Principal-stretch-based model

The free energy function of the Ogden model [15] is a function of
the three principal stretches, 𝜆1, 𝜆2, 𝜆3,

𝜓 =
𝑛
∑

𝑘=1

𝜇𝑘
𝛼𝑘

[𝜆𝛼𝑘1 + 𝜆𝛼𝑘2 + 𝜆𝛼𝑘3 − 3] =
𝑛
∑

𝑘=1

𝜇𝑘
𝛼𝑘

3
∑

𝑖=1
[𝜆𝛼𝑘𝑖 − 1] . (10)

It consists of 𝑛 terms and introduces 2𝑛 parameters, 𝑛 stiffness-like
parameters 𝜇𝑖 and 𝑛 nonlinearity parameters 𝛼𝑖, which collectively
ranslate into the classical shear modulus 𝜇 from linear theory [2],

= 1
2

𝑛
∑

𝑘=1
𝛼𝑘 𝜇𝑘 . (11)

2.4. Principal-stretch-based constitutive artificial neural network

Based on these guiding physical principles, we reverse-engineer
a hyperelastic, perfectly incompressible, isotropic, principal-stretch-
based constitutive artificial neural network. The network takes the
deformation gradient 𝑭 as input and then computes the principal
stretches 𝜆1, 𝜆2, 𝜆3. From these stretches, it determines 𝑛 Ogden terms,
with fixed exponential coefficients, here ranging from 𝛼1 = −30 to
𝛼𝑛 = +10 in increments of two, that make up the 𝑛 nodes of the hidden

layer of the model. The weighted sum of all terms, defines the strain
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Fig. 1. Principal-stretch-based constitutive artificial neural network. The network represents a 20-term Ogden model with fixed exponents 𝛼𝑘 ranging from −30 to +10 in
increments of two. It takes the deformation gradient F as input and computes the three principal stretches 𝜆1, 𝜆2, 𝜆3. From them, it calculates the Ogden terms for the 20 nodes
of the hidden layer, multiplies each nodal term by the network weight 𝑤𝑘, and adds all terms to the strain energy function 𝜓(𝐅) as output. The derivative of the strain energy
function defines the Piola stress, 𝐏 = 𝜕𝜓∕𝜕𝐅, whose components 𝑃11 or 𝑃12 enter the loss function to minimize the error with respect to the tension, compression, and shear data.
energy function 𝜓 as the network output. Fig. 1 illustrates a principal-
stretch-based constitutive artificial neural network with 𝑛 = 20 nodes,
for which the free energy function takes the following form,

𝜓 =
∑3
𝑖=1 𝑤1 [𝜆−30𝑖 −1] + 𝑤2 [𝜆−28𝑖 −1] + 𝑤3 [𝜆−26𝑖 −1]
+ 𝑤4 [𝜆−24𝑖 −1] + 𝑤5 [𝜆−22𝑖 −1] + 𝑤6 [𝜆−20𝑖 −1]
+ 𝑤7 [𝜆−18𝑖 −1] + 𝑤8 [𝜆−16𝑖 −1] + 𝑤9 [𝜆−14𝑖 −1]
+ 𝑤10 [𝜆−12𝑖 −1] + 𝑤11 [𝜆−10𝑖 −1] + 𝑤12 [𝜆−8𝑖 −1]
+ 𝑤13 [𝜆−6𝑖 −1] + 𝑤14 [𝜆−4𝑖 −1] + 𝑤15 [𝜆−2𝑖 −1]
+ 𝑤16 [𝜆+2𝑖 −1] + 𝑤17 [𝜆+4𝑖 −1] + 𝑤18 [𝜆+6𝑖 −1]
+ 𝑤19 [𝜆+8𝑖 −1] + 𝑤20 [𝜆+10𝑖 −1] .

(12)

Here, 𝑤𝑘 are the network weights and ∑3
𝑖=1[𝜆

𝛼𝑘
𝑖 − 1] are the activation

functions. Fig. 2 illustrates the 𝑛 = 20 activation functions of our neural
network for the load cases of uniaxial tension and compression in the
top block and simple shear in the bottom block. From the free energy
(12), we calculate the stress using Eq. (9),

𝑷 =
∑3
𝑖=1[ − 30 𝑤1 𝜆−31𝑖 − 28 𝑤2 𝜆−29𝑖 − 26 𝑤3 𝜆−27𝑖

− 24 𝑤4 𝜆−25𝑖 − 22 𝑤5 𝜆−23𝑖 − 20 𝑤6 𝜆−21𝑖
− 18 𝑤7 𝜆−19𝑖 − 16 𝑤8 𝜆−17𝑖 − 14 𝑤9 𝜆−15𝑖
− 12 𝑤10 𝜆−13𝑖 − 10 𝑤11 𝜆−11𝑖 − 8 𝑤12 𝜆−9𝑖
− 6 𝑤13 𝜆−7𝑖 − 4 𝑤14 𝜆−5𝑖 − 2 𝑤15 𝜆−3𝑖
+ 2 𝑤16 𝜆+1𝑖 + 4 𝑤17 𝜆+3𝑖 + 6 𝑤18 𝜆+5𝑖
+ 8 𝑤19 𝜆+7𝑖 + 10 𝑤20 𝜆+9𝑖 ] 𝒏𝑖 ⊗𝑵 𝑖−𝑝𝑭 −t .

(13)

The network weights 𝑤𝑘 are non-negative [13], and relate to the
stiffness-like parameters 𝜇𝑘 and fixed exponential coefficients 𝛼𝑘 as

𝑤𝑘 =
𝜇𝑘
𝛼𝑘

≥ 0 , (14)

where, for our specific network, the coefficients 𝛼𝑘 are 𝛼𝑘 = 2𝑘− 𝑛− 12
for 𝑘 ≤ 𝑛 − 5 and 𝛼𝑘 = 2𝑘 − 𝑛 − 10 for 𝑘 ≥ 𝑛 − 5. For this particular
network, we can express the classical shear modulus 𝜇 from the linear
theory (11) in terms of the stiffness-like parameters 𝜇𝑘,

𝜇 = 1
2 [−30𝜇1 − 28𝜇2 −⋯ + 8𝜇19 + 10𝜇20], (15)

or, equivalently, in terms of the network weights 𝑤𝑘,

𝜇 = 1
2 [30

2𝑤1+ 282𝑤2+⋯ + 82𝑤19+ 102𝑤20]. (16)

Notably, unlike conventional neural networks that use similar activation
functions at all nodes, our constitutive artificial neural network uses
3

different activation functions at all 𝑛 nodes, as indicated in Fig. 2.
During training, our network autonomously identifies the best subset of
activation functions from ( 2𝑛 − 1) = 1, 048, 575 possible combinations,
and naturally trains the weights of the less important terms to zero. As
such, without any further human interaction, it autonomously discovers
the best model from more than a million possible models.

2.5. Special cases

Our principal-stretch-based constitutive artificial neural network in
Fig. 1 is a generalization of popular constitutive models. Specifically,
we obtain the following one- and two-term Ogden models by setting
the remaining 19 and 20 network weights to zero. The neo Hooke
model [23] only uses the fixed exponent 𝛼16 = +2 and its free energy
function is

𝜓 = 𝑤16 [ 𝜆+21 + 𝜆+22 + 𝜆+23 − 3 ] . (17)

Here, 𝑤16 = 𝜇16∕2 and 𝜇 = 𝜇16. So, the shear modulus of the neo Hooke
model is 𝜇 = 2𝑤16. For the Blatz Ko model [24] only uses the fixed
exponent 𝛼15 = −2 and its free energy function is

𝜓 = 𝑤15 [ 𝜆−21 + 𝜆−22 + 𝜆−23 − 3 ] . (18)

Here, 𝑤15 = −𝜇15∕2 and 𝜇 = −𝜇15. So, the shear modulus of the Blatz
Ko model is 𝜇 = 2𝑤15. The Mooney Rivlin model [25,26] only uses the
fixed exponents 𝛼15 = −2 and 𝛼16 = +2 and its free energy function is

𝜓 = 𝑤15 [ 𝜆−21 + 𝜆−22 + 𝜆−23 − 3 ] +𝑤16 [ 𝜆+21 + 𝜆+22 + 𝜆+23 − 3 ] . (19)

Here, 𝑤15 = −𝜇15∕2, 𝑤16 = 𝜇16∕2, and 𝜇 = −𝜇15 + 𝜇16. So, the shear
modulus of the Mooney Rivlin model is 𝜇 = 2 [𝑤15 + 𝑤16]. The general
one-term Ogden model [15] only uses a single free exponents 𝛼 and its
free energy function is

𝜓 = 𝑤0 [ 𝜆𝛼1 + 𝜆
𝛼
2 + 𝜆

𝛼
3 − 3 ] (20)

Here, 𝑤0 = 𝜇0∕𝛼 and 𝜇 = 𝛼𝜇0∕2. So the shear modulus of the general
2
one-term Ogden model is 𝜇 = 𝛼 𝑤0∕2.
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Fig. 2. Activation functions of principal-stretch-based constitutive artificial neural network. The activation functions 𝜆𝛼𝑘1 + 𝜆𝛼𝑘2 + 𝜆𝛼𝑘3 represent the contributions to the free
energy function 𝜓 of a 20-term Ogden model with fixed exponents 𝛼𝑘 ranging from −30 to +10 in increments of two. Activation functions in the top block are associated with
uniaxial tension and compression, with principal stretches { 𝜆; 1∕

√

𝜆; 1∕
√

𝜆 } plotted over the range 0.5 ≤ 𝜆 ≤ 3.0; activation functions in the bottom block are associated with
simple shear, with principal stretches { 𝛾∕2 +

√

1 + 𝛾2∕4; 𝛾∕2 −
√

1 + 𝛾2∕4; 1 } plotted over the range −2.0 ≤ 𝛾 ≤ 2.0. The sum of all activation functions, weighted by the network
weights 𝑤𝑘, represents the free energy function 𝜓 of the Ogden model.
,

2.6. Loss function

Our constitutive artificial neural network learns the network weights
𝒘 = 𝑤1,… , 𝑤𝑘, by minimizing a loss function 𝐿 that penalizes the mean
squared error, the 𝐿2-norm of the difference between model 𝑷 (𝑭 𝑖) and
data �̂� 𝑖, divided by the number of training points 𝑛train,

𝐿 = 1
𝑛train

𝑛train
∑

𝑖=1
‖𝑷 (𝑭 𝑖) − �̂� 𝑖 ‖

2 → min . (21)

To reduce potential overfitting, we also study the effects of Lasso or L1
regularization,

𝐿 = 1
𝑛train

𝑛train
∑

𝑖=1
‖𝑷 (𝑭 𝑖) − �̂� 𝑖‖

2 + 𝛼1‖𝑊 ‖1 → min, (22)

where 𝛼1 is the penalty parameter or regularization coefficient and
‖𝑊 ‖1 =

∑

𝑘 |𝑤𝑘 | is the weighted L1 norm. We train the network
by minimizing the loss functions (21) or (22) and learn the network
parameters 𝑤𝑘 using the ADAM optimizer, a robust adaptive algorithm
for gradient-based first-order optimization, and constrain the weights
to always remain non-negative, 𝑤𝑘 ≥ 0.

2.7. Data

We train and test our principal-stretch-based constitutive artificial
neural network using tension, compression, and shear data of human
gray matter tissue from the cortex and basal ganglia and white matter
tissue from the corona radiata and corpus callosum [4], as reported in
Table 1. [14]. We perform single-mode training using a single loading
case, either tension, compression, or shear, as training data and the
remaining two cases as test data. We also perform multi-mode training
using all three loading cases simultaneously as training data.

3. Results

Our 20-node constitutive artificial neural network from Figure con-
verges robustly and efficiently within 5000 epochs for both single-
and multi-mode training. Without L1 regularization, it takes between
4–8 min to train and output the results. For rich enough data, the
method generalizes well. Analyzing different datasets is simple and only
4

requires changing the input file, e.g., an Excel sheet, and reading in the
corresponding stress–stretch pairs into the code.

Fig. 3 illustrates the automatically discovered constitutive models
for the human cortex using the twenty-term isotropic, perfectly incom-
pressible, principal-stretch-based constitutive artificial neural network.
It shows the Piola stress as a function of the stretch or shear strain. The
first three columns indicate single-mode training for tension, compres-
sion, or shear, training on the diagonal and testing on the off-diagonal.
The last column shows the results of multi-mode training with all three
loading modes as training data. The circles indicate the experimental
data from Table 1, while the color-coded regions designate the con-
tributions of the twenty model terms to the free energy function 𝜓 .
Warm red-type colors indicate negative exponents, while cold blue-type
colors indicate positive exponents. Each graph reports the coefficient of
determination, 𝑅2, as a measure for the goodness of fit. First, for single-
mode training, our principal-stretch-based constitutive artificial neural
network succeeds in fitting the individual sets of training data with
𝑅2
train values of 0.9085, 0.9997, and 0.9994 for tension, compression,

and shear. Second, for single-mode training, the network performs mod-
erately well in predicting the test data with 𝑅2

test values ranging from
0.1753 for the compression prediction with tension training to 0.9735
for the shear prediction with compression training. Third, for multi-
mode training, the training fit 𝑅2

train slightly decreases for compression
to 0.9851 but increases for tension and shear to 0.9377 and 0.9873.
Overall, the sum of all three 𝑅2 values increases significantly compared
to single-mode training. Fourth, for single-mode training, the network
finds a wide spectrum of non-zero terms ranging from dark red with
𝛼 = −30 to dark blue with 𝛼 = +10, while for multi-mode training, the
red-type negative exponential terms dominate over the blue-type terms.

Fig. 4 illustrates the automatically discovered models for the human
corona radiata for the tension, compression, and shear data. The corona
radiata is part of the white matter in the brain. Its results confirm
similar model trends to that of the gray matter results for the cortex in
Fig. 3. First, for single-mode training, the network succeeds in fitting the
individual sets of training data with 𝑅2

train values of 0.9626, 0.9957, and
0.9994 for tension, compression, and shear. Second, for single-mode
training, the network performs moderately well in predicting the test
data with 𝑅2

test values ranging from 0.4251 for the tension prediction
with compression training to 0.9176 for the shear prediction with
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a
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Table 1
Cortex, basal ganglia, corona radiata, and corpus callosum tested in tension, compression, and shear. Stresses are reported as means from the
loading and unloading curves of 𝑛 samples tested in the ranges 1.0 ≤ 𝜆 ≤ 1.1 for tension, 0.9 ≤ 𝜆 ≤ 1.0 for compression, and 0.0 ≤ 𝛾 ≤ 0.2 for
shear [4] .

cortex cortex cortex basal ganglia basal ganglia basal ganglia
tension compression shear tension compression shear
𝑛 = 15 𝑛 = 17 𝑛 = 35 𝑛 = 15 𝑛 = 15 𝑛 = 29

𝜆 𝑃11 𝜆 𝑃11 𝛾 𝑃12 𝜆 𝑃11 𝜆 𝑃11 𝛾 𝑃12
[–] [kPa] [–] [kPa] [–] [kPa] [–] [kPa] [–] [kPa] [–] [kPa]

1.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000 0.0000 1.0000 0.0000 0.0000 0.0000
1.0063 0.0251 0.9938 −0.0308 0.0125 0.0147 1.0063 0.0149 0.9938 −0.0174 0.0125 0.0070
1.0125 0.0462 0.9875 −0.0659 0.0250 0.0294 1.0125 0.0251 0.9875 −0.0358 0.0250 0.0140
1.0188 0.0666 0.9812 −0.1040 0.0375 0.0486 1.0188 0.0345 0.9812 −0.0534 0.0375 0.0210
1.0250 0.0838 0.9750 −0.1479 0.0500 0.0633 1.0250 0.0446 0.9750 −0.0778 0.0500 0.0305
1.0312 0.1010 0.9688 −0.1908 0.0625 0.0814 1.0312 0.0540 0.9688 −0.1021 0.0625 0.0397
1.0375 0.1175 0.9625 −0.2375 0.0750 0.0983 1.0375 0.0619 0.9625 −0.1265 0.0750 0.0488
1.0437 0.1324 0.9563 −0.2920 0.0875 0.1186 1.0437 0.0705 0.9563 −0.1479 0.0875 0.0579
1.0500 0.1488 0.9500 −0.3504 0.1000 0.1412 1.0500 0.0791 0.9500 −0.1752 0.1000 0.0703
1.0562 0.1661 0.9437 −0.4127 0.1125 0.1649 1.0562 0.0862 0.9437 −0.2102 0.1125 0.0805
1.0625 0.1856 0.9375 −0.4866 0.1250 0.1942 1.0625 0.0963 0.9375 −0.2414 0.1250 0.0930
1.0688 0.2091 0.9313 −0.5684 0.1375 0.2292 1.0688 0.1050 0.9313 −0.2842 0.1375 0.1088
1.0750 0.2366 0.9250 −0.6579 0.1500 0.2698 1.0750 0.1151 0.9250 −0.3270 0.1500 0.1257
1.0813 0.2710 0.9187 −0.7630 0.1625 0.3227 1.0813 0.1277 0.9187 −0.3776 0.1625 0.1449
1.0875 0.3125 0.9125 −0.8837 0.1750 0.3791 1.0875 0.1426 0.9125 −0.4321 0.1750 0.1686
1.0938 0.3650 0.9062 −1.0005 0.1875 0.4557 1.0938 0.1582 0.9062 −0.4905 0.1875 0.1969
1.1000 0.4151 0.9000 −1.1484 0.2000 0.5435 1.1000 0.1778 0.9000 −0.5528 0.2000 0.2262

corona radiata corona radiata corona radiata corpus callosum corpus callosum corpus callosum
tension compression shear tension compression shear
𝑛 = 18 𝑛 = 18 𝑛 = 36 𝑛 = 19 𝑛 = 20 𝑛 = 39

𝜆 𝑃11 𝜆 𝑃11 𝛾 𝑃12 𝜆 𝑃11 𝜆 𝑃11 𝛾 𝑃12
[–] [kPa] [–] [kPa] [–] [kPa] [–] [kPa] [–] [kPa] [–] [kPa]

1.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000 0.0000 1.0000 0.0000 0.0000 0.0000
1.0063 0.0157 0.9938 −0.0193 0.0125 0.0079 1.0063 0.0078 0.9938 −0.0096 0.0125 0.0036
1.0125 0.0235 0.9875 −0.0387 0.0250 0.0159 1.0125 0.0149 0.9875 −0.0164 0.0250 0.0072
1.0188 0.0345 0.9812 −0.0543 0.0375 0.0238 1.0188 0.0196 0.9812 −0.0300 0.0375 0.0109
1.0250 0.0423 0.9750 −0.0800 0.0500 0.0318 1.0250 0.0251 0.9750 −0.0427 0.0500 0.0170
1.0312 0.0509 0.9688 −0.1040 0.0625 0.0409 1.0312 0.0298 0.9688 −0.0564 0.0625 0.0217
1.0375 0.0572 0.9625 −0.1305 0.0750 0.0488 1.0375 0.0337 0.9625 −0.0730 0.0750 0.0319
1.0437 0.0642 0.9563 −0.1674 0.0875 0.0601 1.0437 0.0376 0.9563 −0.0895 0.0875 0.0342
1.0500 0.0721 0.9500 −0.2024 0.1000 0.0681 1.0500 0.0415 0.9500 −0.1051 0.1000 0.0422
1.0562 0.0791 0.9437 −0.2453 0.1125 0.0817 1.0562 0.0454 0.9437 −0.1363 0.1125 0.0468
1.0625 0.0869 0.9375 −0.2959 0.1250 0.0964 1.0625 0.0486 0.9375 −0.1596 0.1250 0.0558
1.0688 0.0940 0.9313 −0.3543 0.1375 0.1133 1.0688 0.0533 0.9313 −0.1946 0.1375 0.0627
1.0750 0.1050 0.9250 −0.4127 0.1500 0.1347 1.0750 0.0580 0.9250 −0.2297 0.1500 0.0751
1.0813 0.1151 0.9187 −0.4827 0.1625 0.1596 1.0813 0.0634 0.9187 −0.2764 0.1625 0.0853
1.0875 0.1292 0.9125 −0.5723 0.1750 0.1878 1.0875 0.0697 0.9125 −0.3270 0.1750 0.1011
1.0938 0.1418 0.9062 −0.6657 0.1875 0.2227 1.0938 0.0775 0.9062 −0.3854 0.1875 0.1192
1.1000 0.1582 0.9000 −0.7591 0.2000 0.2611 1.1000 0.0862 0.9000 −0.4555 0.2000 0.1429
compression training. Third, for multi-mode training, the training fit
𝑅2
train slightly decreases for all three loading modes to 0.9453, 0.9889,
nd 0.9388 for tension, compression, and shear. However, the sum of
ll three 𝑅2 values increases significantly compared to the single-mode

training. Fourth, for single-mode training, the network finds a wide
spectrum of terms ranging from dark red with 𝛼 = −30 to dark blue
with 𝛼 = +10, while for multi-mode training, it primarily discovers the
red-type negative exponential terms.

Fig. 5 and Table 2 summarize the automatically discovered mod-
els for the human cortex, basal ganglia, corona radiata, and corpus
callosum in multi-mode training on tension, compression, and shear
data. First, the fit for the compression data is the best across all four
brain regions with 𝑅2

train values of 0.9851, 0.9803, 0.9899, and 0.9592.
However, the fits for the tension and shear are also comparable, with
𝑅2
train values ranging from 0.9114 for the corpus callosum in tension

to 0.9946 for the basal ganglia in shear. Second, the red-type color
terms with negative exponents dominate over the positive blue-type
terms for all brain regions. This confirms the trends in Figs. 3 and 4.
Third, from the discovered weights in Table 2, we can derive the overall
shear moduli of 1.4753 kPa, 0.6828 kPa, 0.6940 kPa, and 0.2933 kPa
5

for the cortex, basal ganglia, corona radiata, and corpus callosum
suggesting that the cortex is the stiffest region, followed by both the
basal ganglia and the corona radiata, which are approximately half as
stiff as the cortex, and the corpus callosum, which is in turn half as stiff
as these two regions. These findings agree well with the shear moduli of
1.43 kPa, 0.70 kPa, 0.66 kPa, and 0.35 kPa fitted for a one-term Ogden
model with all three loading modes [4]. Notably, this study identified
single-term exponential powers 𝛼 of −43.6, −32.5, −30.5, and −26.6
for the four regions. Trained on the same data, our invariant-based
neural network discovered moduli of 1.82 kPa, 0.88 kPa, 0.94 kPa, and
0.54 kPa for these four brain regions [14].

Fig. 6 illustrates the special case of the one-term principal-stretch-
based model related to the −24, −22, −20, and −18 terms, in multi-
mode training for the human cortex. These four terms are the terms
with the largest contributions to the stress in Fig. 3. Visually, this
means they correspond to the dominant colors in the graphs. First, the
−18 term provided the best overall fits with 𝑅2

train values of 0.9123,
0.9858, and 0.9871. Second, the best single-term model with −18 was
not as good at fitting the data as the discovered model in Fig. 3 with
the biggest decrease in performance for the tension fit. Third, from
Table 3 the shear moduli were 1.0294 kPa, 1.3130 kPa, 1.3263 kPa,

and 1.4010 kPa for the −24, −22, −20, and −18 term models. The
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Fig. 3. Cortex data and model. Nominal stress as a function of stretch or shear strain for the principal-stretch-based constitutive artificial neural network with one hidden layer
and twenty nodes from Fig. 1. Training individually with tension, compression, shear data from the human cortex, and with all three load cases simultaneously. Circles represent
the experimental data. Color-coded regions designate the contributions of the 20 model terms to the stress function according to Fig. 1. Coefficients of determination R2 indicate
goodness of fit for train and test data.
Fig. 4. Corona radiata data and model. Nominal stress as a function of stretch or shear strain for the principal-stretch-based constitutive artificial neural network with one hidden
layer and twenty nodes from Fig. 1. Training individually with tension, compression, shear data from the human corona radiata, and with all three load cases simultaneously. Circles
represent the experimental data. Color-coded regions designate the contributions of the 20 model terms to the stress function according to Fig. 1. Coefficients of determination R2

indicate goodness of fit for train and test data.
modulus for the −18 term is comparable to the reported modulus of
1.43 kPa identified for the one-term Ogden model trained on all three
loading modes with 𝛼 = −19.0 [4]. These results suggest that the one-
term principal-stretch-based models tend to underestimate the shear
modulus of brain tissue compared to multi-term models.
6

Fig. 7 illustrates four special cases, the neo Hooke, Blatz Ko, Mooney
Rivlin, and one-term Ogden models, in multi-mode training for the
human cortex. The neo Hooke model uses the +2 term, the Blatz Ko the
−2 term, the Mooney Rivlin both the +2 and −2 terms, and the one-
term Ogden model the −18 term from Fig. 6. First, the commonly used
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Fig. 5. Cortex, basal ganglia, corona radiata, and corpus callosum data and models. Nominal stress as a function of stretch or shear strain for the principal-stretch-based
constitutive artificial neural network with one hidden layer and twenty nodes from Fig. 1. Training with tension, compression, shear data simultaneously. Circles represent the
experimental data. Color-coded regions designate the contributions of the 20 model terms to the stress function according to Fig. 1 multiplied by the weights from Table 2.
Coefficients of determination R2 indicate goodness of fit for train data.
Fig. 6. Cortex data and special case of one-term models with −24, −22, −20, −18 terms. Nominal stress as a function of stretch or shear strain for the principal-stretch-based
one-term model with −24, −22, −20, −18 terms, selected as the terms with the largest pressure contribution in Fig. 3 when trained with all three loading cases from the human
cortex simultaneously. Circles represent the experimental data. Color-coded regions designate the −24, −22, −20, −18 model terms to the stress function according to Fig. 1.
Coefficients of determination R2 indicate goodness of fit for train data.
neo Hooke, Blatz Ko, and Mooney Rivlin models all fail to explain the
tension data with 𝑅2

train values of 0.0000. Second, the neo Hooke, Blatz
Ko, and Mooney Rivlin models are able to provide adequate fits for the
cortex data in compression and shear with 𝑅2

train values ranging from
0.7753 to 0.9444. Third, the one-term Ogden model from the fourth
7

column of Fig. 6 outperforms the neo Hooke, Blatz Ko, and Mooney
Rivlin models for all three loading modes. Fourth, the shear moduli
calculated from the weights was 2.1256 kPa, 2.1468 kPa, 2.1376 kPa,
and 1.4010 kPa for the neo Hooke, Blatz Ko, Mooney Rivlin, and one-
term Ogden model with the −18 term. The neo Hooke and Mooney
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Fig. 7. Cortex data and special cases of neo Hooke, Blatz Ko, Mooney Rivlin, and one-term Ogden models. Nominal stress as a function of stretch or shear strain for the
principal-stretch-based models when trained with all three loading cases from the human cortex simultaneously. The neo Hooke model uses only the +2 term, the Blatz Ko the −2
term, the Mooney Rivlin the −2 and +2 terms, and the one-term Ogden the −18 term. Color-coded regions designate the +2, −2, +2/−2, −18 model terms to the stress function
according to Fig. 1 multiplied by the weights from Table 3. Coefficients of determination R2 indicate goodness of fit for train data.
Table 2
Cortex, basal ganglia, corona radiata, and corpus callosum models and parameters.
Models and parameters are discovered for simultaneous training with tension, com-
pression, and shear data using the principal-stretch-based constitutive artificial neural
network with twenty nodes from Fig. 1. Summary of the weights 𝑤𝑘, shear moduli 𝜇
calculated from Eq. (16), and goodness of fit 𝑅2 for training in tension, compression,
and shear.

cortex basal ganglia corona radiata corpus callosum
ten+com+shr ten+com+shr ten+com+shr ten+com+shr
𝑛 = 15, 17, 35 𝑛 = 15, 15, 29 𝑛 = 18, 18, 36 𝑛 = 19, 20, 39
[kPa] [kPa] [kPa] [kPa]

𝑤1 0.000127 0.000000 0.000189 0.000227
𝑤2 0.000128 0.000000 0.000252 0.000199
𝑤3 0.000292 0.000097 0.000307 0.000164
𝑤4 0.000507 0.000229 0.000350 0.000120
𝑤5 0.000781 0.000355 0.000378 0.000068
𝑤6 0.000991 0.000472 0.000386 0.000015
𝑤7 0.001132 0.000576 0.000370 0.000010
𝑤8 0.001200 0.000670 0.000326 0.000005
𝑤9 0.001196 0.000748 0.000248 0.000005
𝑤10 0.001120 0.000802 0.000132 0.000005
𝑤11 0.000978 0.000827 0.000018 0.000005
𝑤12 0.000779 0.000852 0.000012 0.000004
𝑤13 0.000583 0.000847 0.000006 0.000003
𝑤14 0.000382 0.000800 0.000001 0.000002
𝑤15 0.000239 0.000711 0.000000 0.000000
𝑤16 0.000235 0.000399 0.000000 0.000000
𝑤17 0.000244 0.000179 0.000000 0.000000
𝑤18 0.000265 0.000004 0.000000 0.000000
𝑤19 0.000826 0.000000 0.000000 0.000000
𝑤20 0.001594 0.000000 0.000000 0.000000

𝜇 = 1.4753 kPa 𝜇 = 0.6828 kPa 𝜇 = 0.6940 kPa 𝜇 = 0.2933 kPa

𝑅2
t 0.9377 0.9777 0.9453 0.9114

𝑅2
c 0.9851 0.9803 0.9899 0.9592

𝑅2
s 0.9873 0.9946 0.9388 0.9763

Rivlin shear moduli agree well with the values of 2.07 kPa and 2.08 kPa
reported for the cortex with simultaneous fitting on all three loading
modes [4].
8

Fig. 8 illustrates the effect of added L1 regularization in multi-mode
training for the human cortex. The L1 penalty parameters are 10, 1, 0.1,
and 0. First, the moderately penalized models with 1 and 0.1 provide a
good fit for all three loading cases, with 𝑅2

train ranging from 0.8774 for
the penalty parameter of 1 in tension to 0.9917 for the penalty param-
eter of 0.1 in shear. Second, similar to the non-regularized multi-mode
training in Figs. 3, 4, and 5, the red-type negative exponents dominate
over the positive blue-type terms, especially with an increasing penalty
parameter. Third, the largest L1 penalty parameter of 10 decreases
the number of discovered terms the most, to only one, suggesting
this model is over-regularized. The penalty parameter of 0.1 discovers
15 terms, five terms less than the non-regularized model, indicating
that moderate L1 regularization successfully decreases the number of
discovered terms.

Fig. 9 illustrates the effect of added L1 regularization in multi-mode
training for the human cortex using 100 terms, from 𝜆−50𝑖 to 𝜆+50𝑖 , as
compared to the 20 nodes in Fig. 8. The L1 penalty parameters are
10, 1, 0.1, and 0. First, the moderately penalized and unregularized
models with L1 = 1, 0.1, and 0 find that exponents less than −30 are
not necessary to fit the data. Second, for penalty parameters of 0 and
0.1, the largest improvement in 𝑅2 compared to the 20 term model is
0.0256 for tension with L1 = 0. For penalty parameters of 1 and 10,
the improvement in 𝑅2 is much greater for the tension fits compared
to Fig. 8 with a difference of 0.0999 for L1 = 1 and 0.6598 for L1 =
10. Third, for the physically unreasonable penalty parameter of L1 =
10, the model becomes over-regularized, similarly to that of Fig. 8. The
goodness of fit decreases significantly for all three testing modes from
the rightmost column of L1 = 0 with the largest decrease of 0.1350 for
compression.

Fig. 10 compares the performance of the neo Hooke, Blatz Ko,
Mooney Rivlin, and principal-stretch-based constitutive artificial neu-
ral network without and with L1 regularization. For comparison, we
also include the invariant-based constitutive artificial neural network
without and with L2 regularization [14]. The bars represent the means
and standard deviations of the coefficients of determination 𝑅2 across
all four brain regions. The first three columns are the results of single-
mode training on tension, compression, and shear with training on the
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Table 3
Cortex special cases of neo Hooke, Blatz Ko, Mooney Rivlin, and one-term Ogden models and parameters. Cortex parameters discovered for
simultaneous training with tension, compression, and shear data. Summary of the non-zero weights, shear moduli 𝜇, and goodness of fit 𝑅2 for
the training data.

neo Hooke Blatz Ko Mooney Rivlin Ogden 𝜶 =−24 Ogden 𝜶 =−22 Ogden 𝜶 =−20 Ogden 𝜶 =−18
ten+com+shr ten+com+shr ten+com+shr ten+com+shr ten+com+shr ten+com+shr ten+com+shr
𝑛 = 15, 17, 35 𝑛 = 15, 17, 35 𝑛 = 15, 17, 35 𝑛 = 15, 17, 35 𝑛 = 15, 17, 35 𝑛 = 15, 17, 35 𝑛 = 15, 17, 35

cortex cortex cortex cortex cortex cortex cortex

[kPa] [kPa] [kPa] [kPa] [kPa] [kPa] [kPa]

𝑤4 – – – 0.003574 – – –
𝑤5 – – – – 0.005426 – –
𝑤6 – – – – – 0.006632 –
𝑤7 – – – – – – 0.008648
𝑤15 – 1.073379 1.066600 – – – –
𝑤16 1.062813 – 0.002222 – – – –

𝜇=2.1256 kPa 𝜇=2.1468 kPa 𝜇=2.1376 kPa 𝜇=1.0294 kPa 𝜇=1.3130 kPa 𝜇=1.3263 kPa 𝜇=1.4010 kPa

𝑅2
t 0.0000 0.0000 0.0000 0.6583 0.8941 0.8909 0.9123

𝑅2
c 0.7753 0.8670 0.8636 0.9646 0.9750 0.9921 0.9858

𝑅2
s 0.9455 0.9442 0.9448 0.9887 0.9945 0.9929 0.9871
Fig. 8. Effect of L1 regularization for varying penalty parameters. Nominal stress as a function of stretch or shear strain for the principal-stretch-based constitutive artificial
neural network with one hidden layer and twenty nodes from Fig. 1. L1 regularization is added to the loss function with regularization coefficients of 10, 1, 0.1, and 0. Training
with tension, compression, shear data from the human cortex simultaneously. Circles represent the experimental data. Color-coded regions designate the contributions of the 20
model terms to the stress function according to Fig. 1. Coefficients of determination R2 indicate goodness of fit for train data.
diagonal and testing on the off-diagonal. The last column is the result of
multi-mode training on all three loading modes simultaneously. First,
both principal-stretch-based networks outperform both invariant-based
networks for tension in multi-mode training and in all cases except for
tension and shear predictions with tension training where the error bars
are still within the same range. For multi-mode training in tension,
the 𝑅2 values more than double. Notably, the principal-stretch-based
models with and without L1 regularization are the only models capable
of predicting tension from compression training. Second, regularization
improves generalization regardless of whether the network is invariant-
based or principal-stretch-based. The L2 penalty parameter was 0.001
for the invariant-based model, and the L1 penalty parameter was
1 for the principal-stretch-based model. Both L1 and L2 regularized
networks produced better fits than their non-regularized counterparts
for shear testing with compression training. Notably, the L1-regularized
principal-stretch-based network also performed better than its non-
regularized counterpart for the tension data with compression training.
9

Third, the neo Hooke, Blatz Ko, and Mooney Rivlin models showed
similar results to each other and to both invariant-based networks.
Compared to both principal-stretch-based networks, however, these
special cases did not perform as well for the tension fit with multi-mode
training, compression fit with tension or shear training, and tension fit
with compression training. Finally, we conclude that both principal-
stretch-based networks provide the best fit across all three loading
modes and all four brain regions with multi-mode training. Similarly
to the invariant-based model, we notice that the principal-stretch-based
networks consistently show high 𝑅2 values and low standard deviations
across the shear row, indicating that shear is the best experiment to fit
and predict with. For single-mode training, the most informative test
for the non-regularized principal-stretch-based network is the shear test
with the largest 𝑅2 values across all three loading modes. Interestingly,
for the L1 regularized principal-stretch-based network, compression is
the most informative test. Taken together, the principal-stretch-based

network outperforms the invariant-based network in seven cases, does
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Fig. 9. Effect of L1 regularization for a 100 term network. Nominal stress as a function of stretch or shear strain for the principal-stretch-based constitutive artificial neural
network with one hidden layer and one hundred nodes from 𝜆−50𝑖 to 𝜆+50𝑖 . L1 regularization is added to the loss function with regularization coefficients of 10, 1, 0.1, and 0.
Training with tension, compression, shear data from the human cortex simultaneously. Circles represent the experimental data. Color-coded regions designate the contributions of
the 100 model terms to the stress function, an expansion of the terms listed in Fig. 1. Coefficients of determination R2 indicate goodness of fit for train data.
Fig. 10. Goodness of fit for all seven models. Mean R2 and standard deviation for the four brain regions for each model, invariant-based constitutive artificial neural network
without and with L2 regularization, neo Hooke, Blatz Ko, Mooney Rivlin, and principal-stretch-based constitutive artificial neural network without and with L1 regularization. The
neo Hooke, Blatz Ko, and Mooney Rivlin models represent special cases of the principal-stretch-based constitutive artificial neural network with +2, −2, +2/−2. Rows correspond
to tension, compression, and shear data.
equally as well in two cases, and does slightly worse in three. For
single- or multi-mode training, the principal-stretch-based constitutive
artificial neural network is clearly the best choice of model.

4. Discussion

The constitutive behavior of the human brain is highly complex,
nonlinear, tension–compression asymmetric, and heterogeneous [6,27].
10
Recent studies have shown that the classical principal-stretch-based
Ogden model [15], initially developed for rubber, characterizes these
features better than traditional invariant-based models [28]. How-
ever, because of its exponential nature, the general Ogden model is
cumbersome to fit to experimental data [5]. Instead, most practical
applications use only a limited subset of the Ogden model by either
fixing its exponent [29], the number of terms [17,22], or both [21].
The full potential of Ogden-type modeling remains yet to be explored.
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Constitutive artificial neural networks [11] are a powerful new technol-
ogy to integrate existing constitutive models into a neural network. As
such, they harness the power of modern gradient-based optimizers that
can robustly handle thousands of parameters [12]. We have recently
prototyped this approach for an invariant-based neural network [14]
and demonstrated that the network can autonomously discover the
best constitutive model and parameters from a wide variety of existing
models and combinations thereof [30]. Here we ask whether we can
expand the concept of constitutive artificial neural network modeling to
principal-stretch-based models and, if so, how these networks perform
compared to invariant-based networks.

Principal-stretch-based constitutive artificial neural networks outperform
invariant-based ones for human brain. After several preliminary studies,

e selected a principal-stretch-based neural network with 20 Ogden-
ype terms [15] and exponents ranging from −30 to +10 in increments

of two. For example, Fig. 9 with 100 Ogden-type terms shows that
training did not activate terms with exponents less than −30 for
enalty parameters of 1 or less. For these 100 node networks, the
mprovement in the goodness of fit 𝑅2 is small compared to the 20
ode networks. From a wide variety of similar parametric studies, we
onclude that networks with more Ogden-type terms, a broader range
f exponents, or narrower increments activated similar terms as the
0-term Ogden network and did not significantly alter our findings.
hen trained on all three loading modes, tension, compression, and

hear [4], and averaged across the four brain regions, the principal-
tretch-based network more than doubles the goodness of fit 𝑅2 for

tension and improves the compression fit compared to the invariant-
based network [14], bringing the 𝑅2 value close to the desired value
of one for all loading modes. Additionally, for single-mode training
in tension, compression, or shear, the principal-stretch-based network
improves or nearly equals the fits across all loading modes compared to
the invariant-based network. This agrees well with previous studies on
brain tissue, in which the principal-stretch-based hyperfoam and Ogden
models outperformed the invariant-based polynomial model [28]. In
further support of Ogden type models, a study on brain and fat tissues
found that only principal-stretch-based models were able to capture
the characteristic behavior under combined stretch and shear, while
classical invariant-based models failed to accurately capture the effects
of combined loading [21].

Low exponent Ogden-type models are not flexible enough to capture the
pronounced tension–compression asymmetry in brain tissue. Popular con-
stitutive models for fitting brain tissue data include the neo Hooke [23],
Blatz Ko [24], and Mooney Rivlin [25,26] models. The neo Hooke
model uses a one-term Ogden model with an exponent of +2, the
Blatz Ko uses a one-term model with exponent −2, and the Mooney
Rivlin uses a two-term model with exponents −2 and +2. For single-
mode training, compared to our twenty-term Ogden model, these low
exponent models perform poorly at predicting tension behavior from
compression data and vice versa. For multi-mode training with all three
loading modes used in the training set, these low exponent models do
not provide adequate fits in tension and are slightly worse in compres-
sion compared to the full principal-stretch-based constitutive artificial
neural network. This poor performance becomes clear when comparing
our twenty activation functions in Fig. 2, where positive exponents 𝛼
are associated with a stiffer behavior in tension than in compression
and therefore not adequate for brain tissue. Negative exponents 𝛼 are
generally associated with a stiffer behavior in compression than in
tension, but for the small stretch ranges, 0.9 ≤ 𝜆 ≤ 1.1, used in this
tudy, large 𝛼 values are necessary to translate into sufficient tension–
ompression asymmetry. This explains why our method in Figs. 4, 5, 6,
nd 8 consistently discovers orange-colored terms, which are associated
ith exponents of 𝛼 = −18 to −24. For example, the L1 regularized
iscovery with a penalty parameter of 0.1 in Fig. 8 suggests that, if we
ad to select only one Ogden term, we would select the 𝛼 =−22 term,

= − 1 𝜇 [ 𝜆−22 + 𝜆−22 + 𝜆−22 − 3 ],
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22 1 2 3
to best explain the tension, compression, and shear data for the human
cortex. These observations agree well with the initial analysis of the
brain data [4], in which a principal-stretch-based one-term Ogden
model outperformed the classical neo Hooke, Mooney Rivlin, Demiray,
and Gent models, and the exponents were consistently negative in the
range of 𝛼 = −19 to −25 [6].

Combined tension, compression, and shear data provide the most infor-
mative training data. Similarly to previous results from invariant-based
neural networks [12], having all three loading modes in the train-
ing dataset for the principal-stretch-based network allows for the
best model performance across all modes. Interestingly, the principal-
stretch-based network without L1 regularization provides nearly as
good a fit across all loading modes with just training on shear data. So,
if we can only do a single experiment, for example because we want
to limit post mortem time or have only limited availability of human
brain tissue [6], our results indicate that shear is the most informative.
Of course, if we desire the highest accuracy across all loading modes,
training simultaneously on tension, compression, and shear data [4] is
generally the best option.

Limitations and future work. First, our observations confirm the
findings of the initial manuscript in which the brain tissue data were
collected and fit to a number of pre-selected models [4]: Tension
experiments on ultrasoft tissue are inevitably challenging. To mount
the samples into the triaxial testing device, little tissue cubes have to
be glued to the holder, which could induce large inhomogeneities, espe-
cially when sample dimensions are small [6]. As a result, the measured
stresses are like greater than the simulated stresses that assume a homo-
geneous stiffness across the sample [6]. Although recent studies suggest
that these edge effects are very localized while the large bulk of the
sample deforms homogeneously [31], we can and should numerically
probe the effect of heterogeneities through finite element analyses [32].
Second, the current data were recorded at physiologically low loading
rates [4]. It would be interesting to investigate loading rate sensitivity
more rigorously to discover models and parameters for loading rates
that are comparable to traumatic brain injury [20,33,34]. Third, fol-
lowing most approaches in the literature, our current loss functions (21)
and (22) minimize the absolute error in the Piola stress, ‖𝑷 (𝑭 𝑖)− �̂� 𝑖 ‖

2.
In the future, we will use the relative error, ‖ (𝑷 (𝑭 𝑖)−�̂� 𝑖)∕�̂� 𝑖 ‖

2, instead
to avoid bias with respect to the stress measure selection [35]. Fourth,
the probably most important limitation and lesson from this study is
that our method tends to discover Ogden terms with exponents that are
relatively close to one another. While our new principal-stretch-based
network generally provides a better fit than our previous invariant-
based network [14], the proximity of the activated terms suggests that
choosing similar functional forms, 𝜓 =

∑𝑛
𝑘=1 𝜇𝑘∕𝛼𝑘

∑3
𝑖=1[𝜆

𝛼𝑘
𝑖 − 1], as

in the classical Ogden model [15] might not be ideal. Instead, we are
currently investigating a generalization of Eq. (10), 𝜓 =

∑3
𝑖=1𝑤(𝜆𝑖), in

the spirit of the Valanis Landel model [36], inspired by the general
idea that the neural network would autonomously discover the best
functional forms for the function 𝑤(𝜆𝑖) [37].

5. Conclusion

Principal-stretch-based models hold great promise to explain and
predict the non-linear, tension–compression asymmetric behavior of
soft biological tissues. However, the most prominent principal-stretch
based model, the Ogden model, is cumbersome to calibrate because of
its exponential nature. As a result, most existing Ogden-type models
only represent a very small subset of possible models by a priori fixing
the exponent, the number of terms, or both. Yet, the full potential of
Ogden-type models remains underexplored. Here we propose a novel
strategy to investigate principal-stretch-based constitutive modeling
and embed the model into a constitutive artificial neural network
to simultaneously discover both the relevant exponential terms and
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parameters that best describe experimental data. Rather than using
a classical optimization approach, we harness the power of robust
and efficient gradient-based adaptive optimizers developed for deep
learning and train and test the network on human brain data. Our
new principal-stretch-based network shows significant improvement
over a recent invariant-based network at simultaneously training and
testing on tension, compression, and shear data of gray and white
matter tissue. When supplemented with L1 regularization, it tends
to generalize better across all brain regions than the non-regularized
network. Compared to other classical one-term models like the neo
Hooke, Blatz Ko, and Mooney Rivlin models, our principal-stretch based
network is able to discover the best model and parameters out of a
possible combination of more than a million models, making it orders
of magnitude more flexible to characterize the complex nonlinear,
tension–compression asymmetric, ultrasoft behavior of human brain
tissue. Taken together, our new principal-stretch-based constitutive
artificial neural network autonomously discovers an optimal subclass
of Ogden terms, their best parameters, and the best experiments for
human brain tissue, making it a powerful tool for soft tissue modeling.
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