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unknowns.

W(u, v, w) → min δW(u, v, w) = δW int + δWext .= 0 (4.2.10)

The internal and external virtual work δW int and δWext can then be specified as
follows.

δW int =
∫

A
∫ +h/2
−h/2 σxx δεxx + 2σxy δεxy +σyy δεyy dA

=
∫

A nxx δεcon
xx + 2nxy δεcon

xy + nyy δεcon
yy dz dA

δWext =
∫

A p δw dA

(4.2.11)

Energy considerations can sometimes be very illustrative. They immediately pro-
vide information about the so called energy conjugate pairs. For example, from
the above expression, you can easily see that the shear stresses σxy are energeti-
cally conjugate to the shear strains εxy or that the normal stress resultants nxx are
conjugate to the corresponding strains εcon

xx which are constant over the thickness.

Equibiaxial tension

Let us assume a state for which the in plane normal stresses are the similar for
both directions, i.e. σxx = σyy = σ , while the shear stress vanishes σxy = 0.
Moreover, we shall assume a uniform extension such that σ takes the same val-
ues all over the membrane and is thus independent from the position in space,
i.e., σ �= σ(x, y, z). In structural mechanics, this loading situation is called ho-
mogeneous equilibiaxial tension. For this special case, we have nxx = nyy = n
and nxy = 0. Accordingly, the force equilibrium in x- and y-direction (4.2.9)1 and
(4.2.9)2 is trivially satified. The equilibrium of forces in the transverse direction
(4.2.9)3 then reduces to the classical Laplace equation for membranes,

n [ w,xx + w,yy ] + pz = 0 (4.2.12)

which relates the pressure pz to the second gradient of the transverse displace-
ments w in terms of the surface tension n. Mathematicians would typically ex-
press this equation in a somewhat more compact notation through the Laplace
differential operator Δ = ∇2 = ∂2

∂x2 + ∂2

∂y2 such that w,xx + w,yy = Δw.

pz = −n Δ w (4.2.13)

Recall that the negative second derivative of the transverse displacement w takes
the interpretation of the curvature κ. Accordingly −w,xx = κxx = 1 / ry and
−w,yy = κyy = 1 / rx are the radii of curvature of the membrane about the y- and
x-axis, respectively.

pz = n
[

1
rx

+ 1
ry

]
(4.2.14)
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4.2 Energy

For equal radii rx = ry = r, equation (4.2.14) reduces to the classical membrane
equation for spheres pz = −n Δw = n [ 1/rx + 1/ry ] = 2 n / r similar to the one
derived for soap bubbles Δp = 2 γ / r in the motivation (4.1.3). Recall that γ was
introduced as the surface tension, which is of the unit force per length. The stress
resultant n, the force per cross section length, obviously has the same unit and
takes a similar interpretation.
To this point, we have only looked into changes of geometry in each direc-
tion independently. Sometimes it is interesting to know the response of a two-
dimensional element, say in terms of the membrane area A. What is the re-
lation between the applied pressure and the change of an area element of the
shell mid-surface? Let us first define a measure for this change in area. By in-
creasing the pressure pz, or rather by blowing up the soap bubble in section
4.1.2, a small square shell element of initial area A = L2 will increase its area
to a = l2 = [1 + ε]2L2. Accordingly, the dimensionless change is defined as the
ratio between the deformed and the initial area, ΔA = a / A. Similar to the one
dimensional strain ΔL/L = [ l − L ]/L = ε which is nothing but the length change
ΔL scaled by the original length L, we could thus introduce a two dimensional
area strain as the area change ΔA scaled by the original area A.

ΔA
A

=
a − A

A
=

[1 +ε]2L2 − L2

L2 = 2ε +ε2 ≈ 2ε (4.2.15)

Here, we have made use of the assumption of small strains and therefore ne-
glected the quadratic term O(ε2). In the case of equibiaxial tension with nxx =
nyy = n, the in plane force equilibrium (4.2.7)1, and similarly (4.2.7)2, can obvi-
ously be further simplified. With the help of εxx = εyy = ε with ε = [ΔA / A] / 2,
equation (4.2.7)1 can then be rewritten in the following form.

n =
E h

1 − ν2 [εxx + νεyy ] =
E h

1 − ν2 [1 + ν]ε =
E h

2 [ 1 − ν ]
ΔA
A

(4.2.16)

The proportionality factor of Young’s modulus E devided by [1 − ν] scaled by
the thickness h is often referred to as area expansion modulus KA = E h

2 [ 1−ν ] . You
can easily check that it has the dimensions of force per length similar to the stress
resultant n. Accordingly, we obtain the remarkably simple constitutive relation

n = KA
ΔA
A (4.2.17)

between the forces n and the area strain ΔA / A in terms of the area expansion
modulus KA. Typical values of the area expansion modulus for lipid bilayers are
in the range of KA = 0.1 − 1.0 N/m. The cell membrane of red blood cells, for
example, has an area expansion modulus of approximately KA = 0.45 N/m. This
value is incredibly huge as compared to the other moduli which indicates that
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4 Biomembranes

cell membranes can be treated as nearly incompressible. The large resistance to
area change can be attributed to the changes in energy associated with exposing
the hydrophobic core of the lipid bilayer to water as the spacing between the
individual molecules is increased.

Shear

Until now, we have assumed that the in plane normal stresses are the similar
for both directions and that the shear term vanishes. A typical loading scenario
that would involve shear though is the application of tension in one direction,
say σxx such that the membrane stretches in x direction while it contracts under
smaller tension σyy in the y direction. Although we only apply normal stresses of
different magnitude and we do not apply shear stress in the original coordinate
system where σxy = 0, surfaces oriented under an angle of 45o exhibit pure shear
stress which is of the magnitude σxy = [σxx −σyy ] / 2. Biological membranes,
in particular the lipid bilayer that forms the cell membrane, hardly display any
resistance to shear. In that sense, they behave like fluids and are therefore often
treated as a two-dimensional liquids. You can simply check the lack of shear
resistance by putting a flat plate on the surface of water. The force you need to
apply to move the plate around is relatively small as compared to, for instance,
the force you would need in order to press it down. This characteristic behavior
is reflected through a relatively small shear modulus G = E / [ 2 [1 + ν]] and a
relatively large bulk or rather volume expansion modulus K = E / [ 3 [1 − 2ν]].
From the constitutive equation introduced in chapter 2, we can extract the stress
strain relation for the shear component σxy = 2 E / [ 2 [1 + ν]]εxy = 2 Gεxy. It
introduces the following constitutive relation between the shear stress resultant
nxy = σxy h and the shear strain εxy.

nxy = KS εxy (4.2.18)

Here, we have introduced the membrane shear modulus KS = 2 G h =
2 E h / [ 2 [1 + ν]], which has the unit force per length. The cell membrane of a
red blood cell would have a typical value of KS = 6 − 9 · 10−6 N/m. This value
is extremely small, especically when compared to the area expansion modulus of
red blood cell membranes KA = 0.45 N/m. This indicates that the effect of shear
can usually be neglected under static loading. However, it might play a signifi-
cant role under dynamic loading conditions. Fluids typically display a significant
strain rate sensitivity, an effect which is referred to as viscosity.

4.2.3 Transverse deformation - Bending

In the previous subsection, we have elaborated the contributions to the strains
which are constant over the thickness and could be related to in plane tension
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4.2 Energy

and shear. Let us now examine the contributions which vary linearly over the
thickness. These contributions are related to the transverse displacement w or
rather its second derivative. From a structural mechanics point of view they in-
troduce a phenomenon which is referred to as bending, as illustrated in figure
4.10.

myy myy

pz

Figure 4.10: Infinitesimal element of the cell membrane with transverse pressure pz and bending
moment myy

In this section, we derive the classical Kirchhoff plate equation, a fourth order dif-
ferential equation that essentially governs the transverse displacement or rather
out of plane deflection w in response to a given pressure pz acting in the out-of-
plane direction z. The plate equation is a result of four sets of governing equa-
tions, the kinematics, the constitutive equations, the definition of the stres resul-
tants and the equilibrium equations which are illustrated in detail in the sequel.
Similar to the previous subsection, we begin by taking a look at equation (4.2.4).
This time, we extract all non constant terms that involve the z-coordinate. The re-
sulting kinematic equations relate the in in plane normal strains εxx and εyy and
the in plane shear strain εxy to the second derivatives of the membrane deflection
w,xx, w,yy and w,xy.

εxx = −w,xx z = κxx z

εyy = −w,yy z = κyy z

εxy = −w,xy z = κxy z

(4.2.19)

Recall that, from a kinematical point of view, the second derivatives of the deflec-
tion represent the curvatures −w,xx = κxx, −w,yy = κyy and −w,xy = κxy. From
chapter 2, we can extract the relevant constitutive equations, i.e. the equations
relating stress and strain. In particular they relate the in plane normal stresses
σxx and σyy and the in plane shear stress σxy to the corresponding strains ε or
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4 Biomembranes

curvatures κ

σxx = E
1−ν2 [εxx + νεyy ] = E

1−ν2 [κxx + νκyy ] z

σyy = E
1−ν2 [εyy + νεxx ] = E

1−ν2 [κyy + νκxx ] z

σxy = E
1+ν εxy = E

1+ν κxy z

(4.2.20)

Similar to the previous section, we could rewrite the last equation of this set as
σxy = Gεxy where G = E

2 [ 1+ν ] is the shear modulus. Equation (4.2.20) tells us
something about the stresses in a particular cross section. Stresses, however, can-
not be directly used to evaluate equilibrium. To state the equilibrium equations,
we therefore derive the stress resultants mxx, myy and mxy in terms of correspond-
ing stresses integrated over the surface thickness h. These resultants are the mo-
ments per cross section length which unlike the forces introduced in the previous
section are not continuous across the cross section. Therefore, as indicated before,
we really have to evaluate them through an integration across the thickness.

mxx =
∫ +h/2
−h/2 σxx z dz = E h3

12 [1−ν2] [κxx + νκyy ]

myy =
∫ +h/2
−h/2 σyy z dz = E h3

12 [1−ν2] [κyy + νκxx ]

mxy =
∫ +h/2
−h/2 σxy z dz = E h3

12 [1+ν] κxy

(4.2.21)

Unlike in the previous section, where the stress resultants had the charcter of
forces per length we have now introduced resultants which are of the unit force
times length per length which is characteristic for distributed moments. By as-
suming a uniform thickness and homogeneous material properties across the
thickness, we can introduce the bending stiffness KB =

∫ +h/2
−h/2

E
1−ν2 z2 dz =

E h3

12 [ 1−ν2 ] . The equilibrium equations for bending which can be motivated from
figure ?? consist of the force equilibrium in z-direction and the equilibrium of
momentum around the x- and y-axis.

∑ fx
.= 0 : −nxxdy + [nxx + nxx,xdx]dy − nyxdx + [nyx + nyx,xdy]dx = 0

∑ fy
.= 0 : −nyydx + [nyy + nyy,ydy]dx − nxydy + [nxy + nxy,ydx]dy = 0

∑ fz
.= 0 : −nxxdy w,x + [nxx + nxx,xdx]dy[w,x + w,xxdx]

−nxydy w,y + [nxy + nyx,xdx]dy[w,y + w,yxdx]

−nyxdx w,x + [nyx + nxy,ydy]dx[w,x + w,xydy]

−nyydx w,y + [nyy + nyy,ydy]dx[w,y + w,yydy] + pz dxdy = 0

(4.2.22)
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4.2 Energy

Just like for the in plane deformation equilibrium, we divide each equation by
dxdy and cancel the remaining terms with dx or dy which are small when com-
pared to the remaining terms. The remaining terms then yield the following sim-
plified set of equations.

∑ fz
.= 0 qx,x + qy,y + pz = 0

∑ my
.= 0 mxx,x + myx,y − qx = 0

∑ mx
.= 0 myy,y + mxy,x − qy = 0

(4.2.23)

With the use of the x-derivative of the balance of momentum (4.2.23)2 q,xx =
mxx,xx + myx,yx, the y-derivative of the balance of momentum (4.2.23)3 q,yy =
myy,yy + mxy,xy and the fact that mxy,xy = myx,yx, we can rewrite the balance of
forces in thickness direction (4.2.23)1. The equilibrium equations (4.2.23) can thus
be summarized in just one simple equation.

mxx,xx + 2 mxy,xy + myy,yy + pz = 0 (4.2.24)

The above equation can be reformulated by inserting the definition of the stress
resultants, by making use of the constitutive equations and the kinematic assup-
tions to finally yield the classical fourth order differential equation for thin plates,
the Kirchhoff plate equation.

pz = KB [ w,xxxx + 2 w,xxyy + w,yyyy ] (4.2.25)

It relates the pressure pz to the fourth gradient of the transverse displacements w
in terms of the bending stiffness KB. Mathematicians would typically rewrite the
plate equation in compact notation in terms of the Laplace differential operator
Δ = ∇2 = ∂2

∂x2 + ∂2

∂y2 .

pz = KB Δ2w (4.2.26)

Typical values for the bending stiffness KB are in the order of 10−19 Nm for lipid
bilayers such as the cell membrane of the red blood cell. This is a really low value
as compared to the area expansion modulus KA. It is even low when compared
to the membrane shear modulus KS! This indicates that the effect of bending is
of minor order in biomembranes. This is not surprising though since membrane
structures are, by their very definition, structures that try to achieve an optimal
stiffness to weight ratio by carrying loads exclusively through in plane normal
forces and avoiding out of plane bending as much as possible!
Again, we can write derive the equilibrium equations through an energy prin-
ciple. To this end, we would minimize the overall energy with respect to the
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4 Biomembranes

transvere displacement w, or, equivalently, evaluate its vanishing first variation
δW with respect to w.

W(w) → min δW(w) = δW int + δWext .= 0 (4.2.27)

The internal and external energy expression could then be expressed as follows.

δW int =
∫

A
∫ +h/2
−h/2 σxx δεxx + 2σxy δεxy +σyy δεyy dz dA

=
∫

A mxx δκxx + 2mxy δκxy + myy δκyy dA

δWext =
∫

A p δw dA

(4.2.28)

We can immediately see that the stress resultants m are energetically conjugate
to the curvature κ. Again, by carrying out an intergration by parts, energy mini-
mization would yield the equilibrium equations (4.2.23) which in that context,
would be referred to as the Euler-Lagrange equations.

4.2.4 In plane and transverse deformation - Tension and bending

For the sake of clarity, we have treated the load cases of tension and bending
as individual phenomena so far. Of course, in reality, both usually occur si-
multaneously, however, most of the times one really dominates the other. An
overall description that captures both phenomena and is thus representative for
biomembranes in general summarizes both transverse force equilibrium equa-
tions (4.2.9)3 and (4.2.23)1 or rather equations (4.2.12) and (4.2.25) in one single
equation.

n [ w,xx + w,yy ] + KB [ w,xxxx + 2 w,xxyy + w,yyyy ] + pz = 0 (4.2.29)

The ratio between the two constants n and KB would then immediately tell us
which of the two phenomena is dominant. Let w be the transverse displacement
and λ be a characteristic length over which these transverse displacements may
vary. The membrane term would thus scale with n w / λ2 while the bending term
scales with KB w / λ4. The ratio of these scaling factors KB / [n λ2] could give us an
indication of whether tension or bending is relevant under the given conditons.

KB
n λ2 � 1 tension dominated
KB

n λ2 � 1 bending dominated
(4.2.30)

A typical value for cells at KB = 10−18Nm, n = 5 · 105N/m and λ = 1μm would
be KB

n λ2 = 0.02 which would indicate that in biological cells, membrane effects are
typically dominant over bending.
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4.3 Problems

4.3 Problems

1. We have seen that surface tension is important to give the cell membrane
its spherial shape. A way to visualize surface tension is to float a paper clip
on the surface of water. Think of other ways to illustrate surface tension!
(other examples: If you fill a glass with water, you will be able to add water
above the rim of the glass because of surface tension! Small insects such as
the water strider can walk on water because their weight is not enough to
penetrate the surface.)

Figure 4.11: Phenomenon of surface tension

2. Look up the number of sides and the surface to volume ratio for the five pla-
tonic solids. Show that the surface to volume ratio decreases with increasing
number of sides. Compare your results against the surface to volume ratio
of a sphere with infinely many sides.

solid no of sides volume surface
tetrahedron 4 1 cubic inch
cube 6 1 cubic inch
octahedron 8 1 cubic inch
dodecahedron 12 1 cubic inch
icosahedron 20 1 cubic inch
sphere ∞ 1 cubic inch

Table 4.1: Surface to volume ratio of platonic solids

3. In the text, we have described the derivation of the von Kármán strains

εxx = u,x + 1
2 w2

,x − z w,xx εxy = 1
2 [u,y + v,x] + w,xw,y − z w,xy

εyy = v,y + 1
2 w2

,y − z w,yy εyz = 0

εzz = 0 εzx = 0
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4 Biomembranes

in words. Verify these equations by following what is described in the text
in going from the nonlinear Green Lagrange strains E to the small strains ε

by neglecting higher order terms. Make sure you understand which terms
can be neglected and why! Then, insert the definitions of the total displac-
ments utot, vtot and wtot to end up with the Kármán strains.

4. You have seen that the force equilibrium in transverse direction nxx w,xx +
2 nxy w,xy + nyy w,yy + pz = 0 is really important. In the text we have de-
scribed how this simplified form can be obtained from the more general
format [nxx w,x + nxy w,y],x + [nxy w,x + nyy w,y],y + pz = 0 by making use
of equations (4.2.9)1 and (4.2.9)2. Verify that the two expressions above are
identical!
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