
G
i

D
J
a

b

c

d

e

f

a

A
R
R
A

K
B
G
R
C
I
F

1

i
b
c
d
m
(
c
r
d
2
e
2
2
a
b

0
d

Mechanics Research Communications 42 (2012) 134– 141

Contents lists available at SciVerse ScienceDirect

Mechanics  Research  Communications

jou rna l h om epa ge: www.elsev ier .com/ locate /mechrescom

rowth  and  remodeling  of  the  left  ventricle:  A  case  study  of  myocardial
nfarction  and  surgical  ventricular  restoration

oron  Klepacha,b,  Lik  Chuan  Leea,b,  Jonathan  F.  Wenkf, Mark  B.  Ratcliffea, Tarek  I.  Zohdib,
ose  L.  Naviac, Ghassan  S.  Kassabd,  Ellen  Kuhle,∗, Julius  M.  Guccionea,b

Department of Surgery, Division of Adult Cardiothoracic Surgery, UC San Francisco, San Francisco, CA 94121, USA
Departments of Mechanical Engineering, UC Berkeley, Berkeley, CA 94720, USA
Departments of Thoracic and Cardiovascular Surgery, Biomedical Engineering, Transplantation Center, Cleveland Clinic, Cleveland, OH 44195, USA
Departments of Biomedical Engineering, Surgery, Cellular and Integrative Physiology, Indiana University – Purdue, Indianapolis, IN 46202, USA
Departments of Mechanical Engineering, Bioengineering, and Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
Departments of Mechanical Engineering and Surgery, University of Kentucky, Lexington, KY 40506, USA

 r  t  i  c  l  e  i n  f  o

rticle history:
eceived 12 December 2011
eceived in revised form 2 March 2012
vailable online 21 March 2012

eywords:
iomechanics
rowth

a  b  s  t  r  a  c  t

Cardiac  growth  and  remodeling  in the  form  of  chamber  dilation  and  wall  thinning  are  typical  hallmarks
of  infarct-induced  heart  failure.  Over  time,  the  infarct  region  stiffens,  the  remaining  muscle  takes  over
function,  and  the  chamber  weakens  and  dilates.  Current  therapies  seek  to  attenuate  these  effects  by
removing  the  infarct  region  or by  providing  structural  support  to  the  ventricular  wall.  However,  the
underlying  mechanisms  of these  therapies  are  unclear,  and  the  results  remain  suboptimal.  Here we  show
that myocardial  infarction  induces  pronounced  regional  and  transmural  variations  in cardiac  form.  We
introduce  a mechanistic  growth  model  capable  of  predicting  structural  alterations  in  response  to  mechan-
emodeling
ardiac

nfarct
inite elements

ical overload.  Under  a uniform  loading,  this  model  predicts  non-uniform  growth.  Using  this  model,  we
simulate  growth  in a  patient-specific  left  ventricle.  We  compare  two  cases,  growth  in an  infarcted  heart,
pre-operative,  and  growth  in the  same  heart,  after  the  infarct  was  surgically  excluded,  post-operative.
Our  results  suggest  that  removing  the  infarct  and  creating  a left  ventricle  with  homogeneous  mechanical
properties  does  not  necessarily  reduce  the  driving  forces  for  growth  and  remodeling.  These  preliminary

lly  wi
findings  agree  conceptua

. Introduction

Heart failure is a chronic medical condition in which the pump-
ng efficiency is gradually reduced as the heart muscle progressively
ecomes weaker (Roger et al., 2011). The single most common
ause of heart failure is ischemic heart disease with acute myocar-
ial infarction. Prognosis is poor with 40% mortality within 12
onths of diagnosis, and a 10% annual mortality rate thereafter

Cowie et al., 2000). To treat heart failure, several innovative pro-
edures were introduced within the past two decades. Cardiac
esynchronization therapy (Kerckhoffs et al., 2010), the Dor proce-
ure (Dor et al., 1989; Sun et al., 2010), myosplint (Guccione et al.,
003; McCarthy et al., 2001), adjustable passive constraint (Jhun
t al., 2010), the injection of passive material (Wenk et al., 2009,
011), and surgical ventricular restoration (Athanasuleas et al.,

001; Dang et al., 2005; Jones et al., 2009), as shown in Fig. 1, and
re only a few examples. Most of these procedures were motivated
y engineering intuition, but their mechanical characteristics and

∗ Corresponding author. Tel.: +1 650 450 0855; fax: +1 650 725 1587.
E-mail address: ekuhl@stanford.edu (E. Kuhl).

093-6413/$ – see front matter ©  2012 Elsevier Ltd. All rights reserved.
oi:10.1016/j.mechrescom.2012.03.005
th  clinical  observations.
© 2012 Elsevier Ltd. All rights reserved.

their long-term impact were unclear. To quantify the mechanical
effects of these surgical procedures on cardiac function, patient-
specific mathematical models have been proposed to predict strain
and stress profiles throughout the heart (Wenk et al., 2010; Zhong
et al., 2011). Since it is virtually impossible to measure regional
stresses in the myocardial wall in vivo, these mathematical model-
ing seems to be a reasonable alternative.

To date, most mathematical models focus on characterizing the
acute, short-term impact of surgical procedures (Guccione et al.,
2010; Jhun et al., 2010). Only recently, novel mathematical models
have been proposed to study the chronic, long-term effects of clin-
ical interventions (Baek and Humphrey, 2010; Kroon et al., 2009;
Menzel, 2005). Although the theoretical and computational mod-
eling of cardiac growth is still in its infancy, and the calibration and
validation of these models remain challenging (Arts et al., 2012;
Kerckhoffs et al., 2012), the ultimate goal of these growth models
is to provide additional insight into the driving forces for cardiac
growth, and support the rational design of new treatment options
(Ambrosi et al., 2011; Menzel and Kuhl, 2012; Taber and Humphrey,

2001).

Clinically, the structural remodeling of the left ventricle is con-
sidered a strong indicator of progressive heart failure (Cohn et al.,

dx.doi.org/10.1016/j.mechrescom.2012.03.005
http://www.sciencedirect.com/science/journal/00936413
http://www.elsevier.com/locate/mechrescom
mailto:ekuhl@stanford.edu
dx.doi.org/10.1016/j.mechrescom.2012.03.005
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Fig. 1. Surgical ventricular restoration after myocardial infarction. Pre-operative
left ventricle with apical infarct, shown in red, and boarder zone, shown in blue,
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eft.  Post-operative left ventricle with the infarct removed, right. (For interpretation
f  the references to color in this figure legend, the reader is referred to the web
ersion of this article.)

000; Hill and Olson, 2008). In response to volume overload, the
entricle dilates to maintain the cardiac output at its physiological
evel (White et al., 1987). Cardiac maladaptation is accompanied by
hanges in left ventricular shape from prolate elliptical to spherical
Kostuk et al., 1973). These chronic changes in shape, size, and func-
ion of the left ventricle should be addressed when selecting the
ppropriate interventional treatment to ensure not only short-term
ut also long-term success.

Here, we adopt a recently proposed framework for the consti-
utive modeling of growth in cardiac tissue (Bellomo et al., 2012;
öktepe et al., 2010b; Menzel, 2007). Instead of modeling growth
y assuming it is an isotropic process (Kroon et al., 2009; Kuhl et al.,
007; Taber, 1995), we model ventricular dilation as a natural con-
equence of the serial deposition of sarcomeres at the cellular level
Göktepe et al., 2010a).  The model is thus inherently mechanistic,
nd captures the phenomena associated with anisotropic cardiac
rowth across the scales. In contrast to existing formulations based
n a generic elliptical model of the left ventricle (Arts et al., 2012;
roon et al., 2009), we utilize a patient-specific model created from
agnetic resonance images. Finally, rather than assuming uniform
aterial properties for the myocardial tissue (Göktepe et al., 2010b;

ausch et al., 2011), we model a left ventricle diagnosed with an
pical infarct, and use different material properties for the infarct
egion and the remote region, thus adding an additional source of
eterogeneity.

This manuscript is organized as follows. First, in Section 2, we
riefly summarize the modeling of cardiac dilation based on a
echanistic constitutive model for growth in anisotropic soft bio-

ogical tissues. Then, in Section 3, we illustrate the algorithmic
mplementation within an explicit nonlinear finite element set-
ing. In Section 4, we demonstrate the features of the model by
imulating growth in a patient-specific infarcted left ventricle, first
ith the infarct in place, than with the infarct surgically removed.

inally, in Section 5, we summarize the results and limitations of
he proposed approach, and address potential clinical applications.

. Continuum modeling of cardiac growth

In this section, we briefly summarize the kinematic equations,
he equilibrium equations, and the constitutive equations of cardiac
rowth.

.1. Kinematics of cardiac growth

In the geometrically exact setting, the key kinematic quantity to

haracterize deformation is the deformation gradient, F ,

 = ∂�
∂X

(1)
mmunications 42 (2012) 134– 141 135

where � is the deformation map  between the undeformed and
the deformed configuration and ∂�/∂X denotes its spatial gradi-
ent with respect to the undeformed coordinates X. To characterize
growth, we multiplicatively decompose F into an elastic part Fe

and a growth part Fg (Rodriguez et al., 1994),

F = Fe · Fg (2)

This concept, most known in finite elasto-plasticity (Naghdi,
1990), is widely used in multi-field modeling such as thermo-
elasticity (Lubarda, 2004), poro-elasticity (Mielke, 2003) and
growth (Buganza Tepole et al., 2011; Himpel et al., 2005; Lubarda
and Hoger, 2002). Motivated by physiological observations, we
introduce a single scalar-valued growth multiplier ϑ, which reflects
the longitudinal growth of individual heart muscle cells through
serial sarcomere deposition (Göktepe et al., 2010a). We  assume
that cardiac dilation is an isochoric process characterized through
growth along the fiber direction f 0 and simultaneous shrinkage
orthogonal to f 0 such that the overall tissue volume remains con-
stant (Tsamis et al., 2012).

Fg = ϑ f 0 ⊗ f 0 + 1√
ϑ

[I − f 0 ⊗ f 0] (3)

The corresponding Jacobians J = Je Jg follow accordingly with
J = det( F), Je = det( Fe) and, for the case of isochoric growth, Jg = det(
Fg) = 1. With the definition of the growth tensor (3),  we can imme-
diately extract the elastic part of the deformation gradient Fe = F ·
Fg−1, which will be essential to evaluate the constitutive equations.
Accordingly, we  introduce the elastic right Cauchy Green deforma-
tion tensor

Ce = Fe t · Fe (4)

and the elastic Green Lagrange strains in terms of the elastic tensor
Fe and the unit tensor I.

Ee = 1
2

[Fe t · Fe − I] (5)

Through its rotation into the local fiber-sheet coordinate system
(Göktepe et al., 2011; Guccione et al., 1991), we obtain the strain
components in the fiber, cross-fiber, and sheet plane normal direc-
tions Ee

ff, Ee
ss, Ee

nn, and the corresponding shear components Ee
fs, Ee

sn,
and Ee

fn.

Remark 1. Alternative to Eq. (3),  we  could postulate an isochoric
growth tensor in the following form,

Fg = ϑf 0 ⊗ f 0 + 1
ϑ
s0 ⊗ s0 + n0 ⊗ n0.

for which growth would occur along the fiber direction f 0 and
simultaneous shrinkage would occur along the cross-fiber direction
s0. This formulation implies that the microstructure would remain
unaffected along the sheet plane normal n0. This formulation is
based on the concept of myocardial sheets (Harrington et al., 2005),
where the individual muscle fibers are arranged in layers resulting
in a locally orthotropic material characterization (Göktepe et al.,
2011; Holzapfel and Ogden, 2009).

2.2. Equilibrium equation of cardiac growth

In the absence of external forces, the balance of linear momen-
tum can be expressed as

div(�) = � �̈, (6)

where div(·) denotes the divergence with respect to the spatial

position x = �( X , t) and � is the Cauchy stress. In view of the compu-
tational algorithm we  will apply in the sequel, we have explicitly
introduced the acceleration term here, with � denoting the local
density and �̈ denoting the acceleration.
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Fig. 2. Growth upon uniaxial tension. The stretch is gradually increased from � = 1.0
to � = 2.0, top left. For each new stretch level �, the stress 	 increases rapidly and
then  relaxes as the tissue grows, bottom left. Stress relaxation is caused by a serial
deposition of sarcomere units in each cell. The number of sarcomeres increases from
n  = 50 to n = 75 as the growth multiplier increases from the ungrown state at ϑ = 1.0
to  the growth limit of ϑ = ϑmax = 1.5, top right. For each new stretch level �, the length
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.3. Constitutive equations of cardiac growth

Leaving aside the effects of active contraction (Göktepe and
uhl, 2010; Tsamis et al., 2011), we focus on the passive part of

he constitutive equations here. We  introduce the following strain
nergy function

 = 1
2
C [exp(bfE

e2
ff + bt(Ee2

ss + Ee2
nn + 2 Ee2

sn ) + bfs(2 Ee2
fs + 2 Ee2

fn )) − 1],

(7

here C, bf, bt, and bfs are diastolic myocardial parameters
Guccione et al., 1991). We  derive the second Piola stress Se by
aking the partial derivative of   with respect to the elastic right
auchy Green stretch tensor Ce , and take into account the quasi-

ncompressibility condition, which applies for most soft biological
issues (Schmid et al., 2012; Sun et al., 2009). This results in the
ollowing expression (Jhun et al., 2010)

e = � Je Ce−1 + 2 (Je)−2/3 dev(
∂ ̃
∂Ce ) (8)

here the dev operator is defined as follows,

ev(◦) = (◦) − 1
3

((◦) : Ce) Ce−1 (9)

nd  ̃ is the isochoric part of the free energy  . Using the kinematic
q. (2),  we obtain the total second Piola stress as the pull back of
he elastic stress to the ungrown reference configuration

 = Fg−1 · Se · Fg−t. (10)

he total Cauchy stress � is calculated by a classical push forward
peration

 = 1
J
F · S · F t = 1

J
Fe · Se · Fe t. (11)

e introduce a stress-driven evolution equation for cardiac growth
Himpel et al., 2005)

˙
 = k(ϑ) �(�) (12)

n terms of the scaling function k(ϑ) and the growth criterion �(�),
here

 = 1
�ϑ

[
ϑmax − ϑ

ϑmax − 1

]�
. (13)

n the above equation, �ϑ denotes the adaptation speed, ϑmax is the
aximum sarcomere lengthening, and � is the degree of nonlin-

arity of sarcomere deposition (Göktepe et al., 2010a; Lubarda and
oger, 2002). Following thermodynamic considerations (Göktepe
t al., 2010b), we use the following growth criterion

 = max
{

tr(J �) − pcrit, 0
}

(14)

here tr (J�) = J � : I denotes the trace of the Kirchhoff stress. The
ifference between tr(J�) and the critical growth threshold pres-
ure pcrit is a physiological over-stress, which we assume to act
s the driving force for growth (Himpel et al., 2005; Rausch et al.,
011). Alternatively, we could introduce cardiac growth as a strain-
riven growth process (Göktepe et al., 2010a,b). Fig. 2 illustrates
he features of our growth model for the simple model problem of
niaxial tension.

emark 2 (Definition of the stress tensor). The definition of the sec-
nd Piola stress tensor, S, in Eq. (10) is a natural consequence of the
ultiplicative decomposition of the deformation gradient tensor
n Eq. (2).  The stress definition is in complete analogy to the con-
ept of finite strain plasticity. It implies, that the stress is attributed
xclusively to the elastic part of the deformation Fe and that cardiac
rowth Fg does not produce stress.
of  the individual sarcomeres increases rapidly and then relaxes as new sarcomeres
are deposited, bottom right.

Remark 3 (Evolution of growth). The modeling of growth is con-
ceptually similar to other types of inelastic behavior, e.g., plasticity
or damage. The growth criterion � acts similar to a yield function,
and the critical growth threshold pressure pcrit is similar to the
yield stress. This implies that growth is only activated if the current
pressure p exceeds the critical threshold level, i.e., p = tr(J�) > pcrit.
The scaling function k is similar to a nonlinear hardening function,
characterizing the nonlinearity of the inelastic response.

3. Computational modeling of cardiac growth

While previous growth models were based on implicit compu-
tational algorithms (Himpel et al., 2005; Zöllner et al., 2012), here
we  illustrate the algorithmic realization of finite growth within an
explicit nonlinear finite element setting. This will allow us to utilize
commercial finite element packages such as LS-DYNA®, which are
based on explicit time integration schemes. In particular, we illus-
trate the temporal discretization of the growth multiplier ϑ and of
the deformation �, and summarize the algorithm in an illustrative
flowchart.

3.1. Explicit update of growth multiplier

Our goal is to determine the current growth multiplier ϑ for a
given deformation state Fn, and a given growth multiplier ϑn, both
at the end of the previous time step tn. We  introduce the follow-
ing finite difference approximation of the first order material time
derivative,

ϑ̇ = ϑ − ϑn


tn
(15)
where 
tn = t − tn > 0 denotes the current time increment. Using
explicit time stepping schemes, we now reformulate the evolution
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Table 1
Computational algorithm for cardiac growth within an explicit finite element
framework.

given Fn and ϑn

Calculate growth tensor Fgn (3)
Calculate elastic tensor Fen = Fn ·Fg−1

n (2)
Calculate elastic Green tensor Cen = Fe t

n ·Fen (4)
Calculate elastic second Piola stress Sen = ∂ /∂Cen (8)
Calculate Cauchy stress �n = 1/Jn Fen ·Sen ·Fe t

n (11)

Growth criterion � = tr(Jn�n) − pcrit (14)
Calculate growth function k(ϑn) (13)
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Fig. 3. Generation of a patient-specific left ventricular geometry. Two-dimensional
magnetic resonance image with contour lines, top, surface representation of the
endocardium and epicardium, left, and volume mesh of the left ventricle, right. The
finite element mesh consists of 4249 elements, 4296 nodes, and 12,888 degrees
of  freedom for the pre-operative model with distinct infarct region, shown in red,
Calculate growth multiplier ϑ (16)

Calculate deformation � (18)

q. (12) with the help of the following finite difference approxima-
ion

 = ϑn + �tn
�ϑ

[
ϑmax − ϑn
ϑmax − 1

]�
max{tr(J	) − pcrit, 0}. (16)

.2. Explicit update of deformation

For the deformation �, we apply the following finite difference
pproximation of the second order time derivative,

= �

�t2n
− �n
�tn

(
1
�tn

+ 1
�tn-1

) + �n-1
�tn�tn-1

(17)

here �n and �n−1 are the deformation maps of the previous two
ime steps, and 
tn−1 = tn − tn−1 denotes the last time increment.

e can then reformulate the equilibrium Eq. (6) using this finite
ifference approximation.

= (1 + �tn
�tn-1

)�n − �tn
�tn-1

�n-1 + (�tn)2 1
�

div(	n) (18)

.3. Algorithmic treatment of growth

Table 1 illustrates the algorithmic treatment of stress-driven
ransversely isotropic growth.

. Simulation of left ventricular growth

We  hypothesize that cardiac growth is heterogeneously dis-
ributed with regional and transmural variations. To test our
ypothesis, we implement our model in a commercial finite ele-
ent program, LS-DYNA®, and perform a first prototype analysis.
e create a patient-specific model of the left ventricle, identify

ts elastic material parameters in an inverse analysis, and quan-
ify regional and transmural variations of growth. We  compare
wo cases, growth in an infarcted heart, pre-operative, and growth
n the same heart, after the infarct was surgically removed, post-
perative.

.1. Patient-specific model of the left ventricle

Fig. 3 illustrates the stages of the model generation procedure.
ig. 3, top, shows a two-dimensional magnetic resonance image of a
hort axis view with contours of the endocardium and epicardium,
ig. 3, left, shows the three-dimensional surfaces representing the
eft ventricle, and Fig. 3, right, shows the finite element discretiza-
ion. The magnetic resonance images used in this study are based
n a patient with myocardial infarction scanned before and after
urgery (Zhong et al., 2011). Using image processing software,

e contour the left ventricular endocardium and epicardium and

reate their three-dimensional surface models. From these, we
reate a volumetric finite element discretization, consisting of tri-
inear hexahedral elements. Our finite element mesh contains 4249
distinct borderzone, shown in blue, and a remote region shown in green. (For inter-
pretation of the references to color in this figure legend, the reader is referred to the
web  version of this article.)

elements, 4296 nodes, and 12,888 degrees of freedom for the pre-
operative case, illustrated in Fig. 1, left, and 5100 elements, 5165
nodes, and 15,495 degrees of freedom for the post-operative case,
illustrated in Fig. 1, right.

4.2. Model parameters and prescribed loading

Fig. 3, right, shows the left ventricle of a patient with an infarct
in the apex region shown in red, the infarct borderzone shown in
blue, and the remote region shown in green. The patient underwent
magnetic resonance image examinations, one pre-operative, before
surgery was performed, and one post-operative, after the infarct
was  excluded. For the pre-operative model, we  assume that only
the borderzone and the remote region are allowed to grow follow-
ing the constitutive model described in Section 2, while the infarct
zone itself does not grow. For the post-operative model, all regions
are allowed to grow. As illustrated in Fig. 4, we prescribe homoge-
neous Dirichlet boundary conditions at the base of the left ventricle
along the heart’s long axis. We  allow the inner, endocardial nodes
to move freely in the basal plane, while fixing the outer, epicar-
dial basal nodes in all directions. The inner, endocardial surface is
loaded with a uniform pressure. We  increase the pressure linearly
up to 12 mmHg  and then keep it constant to allow the ventricle to
grow.

We identify the material parameters of the baseline elastic
model by identifying the stiffnesses C in Eq. (7) such that it
minimizes the error between the computationally predicted dias-
tolic left ventricular volume and the volume extracted from the
corresponding magnetic resonance images. The stiffness of the
infarct region CI is set to be ten times stiffer than at the remote and
borderzone region CR (Walker et al., 2005). Accordingly, we  identify
a stiffness of CR = 0.087 kPa for the remote and borderzone regions,
and CI = 0.87 kPa for the infarct region. For the anisotropic elastic

material parameters introduced in Eq. (7),  we choose bf = 49.25,
bt = 19.25, and bfs = 17.44. We  assign the fiber angles to vary linearly
transmurally through the left ventricular wall. Their range is set
from −60◦ to 60◦, from epicardium to endocardium (Guccione et al.,
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Fig. 4. Boundary conditions and loading for pre-operative case, left, and post-
operative case, right. The base of the left ventricle is fixed vertically along the heart’s
long axis. Inner, endocardial basal nodes are allowed to move in the basal plane.
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uter, epicardial basal nodes, are fixed in all directions. The inner, endocardial sur-
ace  is loaded with a uniform pressure, which is increased linearly to 12 mmHg, and
hen kept constant to allow the ventricle to grow.

001). For the growth parameters introduced in Eq. (12), we  choose
 maximum sarcomere lengthening of ϑmax = 1.5, an adaptation
peed of �ϑ = 10, a critical growth threshold of pcrit = 10−4 kPa, and

 growth exponent of � = 2.0. Fig. 2 illustrates the growth model for
he set of elastic and growth material parameters introduced above
n the context of uniaxial tension. For the temporal discretization,

e apply an explicit time integration scheme and divide the time
nterval of interest T into 1.5 × 106 time steps of 2/3 × 10−6 T. For
he spatial discretization, we apply tri-linear eight-noded brick ele-

ents with full integration.

.3. Regional and transmural variations of growth

Fig. 5, top, shows the spatio-temporal evolution of the growth
ultiplier ϑ across the left ventricle for the pre-operative case. It
onfirms our hypothesis as it clearly displays regional variations in
rowth. Although we apply a uniform loading, because of regional
hickness variations and a non-growing infarct, the growth profile
isplays pronounced regional heterogeneities. Interestingly, the

ig. 5. Pre-operative growth. Spatio-temporal evolution of growth across the left ventric
nd  transmural variations, bottom row, of growth. Snap shots display the gradual increas
hat  growth has reached its maximum predefined value, ϑ = ϑmax = 1.5. (For interpretatio
ersion  of this article.)
mmunications 42 (2012) 134– 141

highest values of the growth multiplier are located in regions of
high curvature, or rather high changes in curvature.

Fig. 5, bottom, shows a cross section of the left ventricle to illus-
trate transmural variations in growth. The five snap shots indicate
that in most remote and borderzone regions, growth is larger in
the epiocardium, the outer wall than in the endocardium, the inner
wall. Since we have modeled the infarct as non-growing tissue, the
growth multiplier remains at its baseline value of ϑ = 1.0 in the apex
region.

Fig. 6 illustrates the transmural variation of the growth mul-
tiplier ϑ at different depths across the left ventricular wall. It
confirms the observations from Fig. 5, bottom. While the infarct
itself does not grow, growth is heterogeneous in the borderzone
and in the remote region. The borderzone has higher levels of
growth in the epicardium, compared to the remote region. In the
endocardium, growth magnitudes are reversed for both regions.

4.4. Comparison of pre-operative and post-operative growth

Finally, we  investigate whether surgical ventricular restoration
has a positive impact on cardiac mechanics, as engineering intu-
ition would suggest (Athanasuleas et al., 2001; Jones et al., 2009).
We use data of the same patient, after the infarct was surgically
excluded, and perform a computational simulation of growth. All
other parameters, loading, and boundary conditions are similar to
the example in the previous section. The material parameters are
identified following the same procedure described in the previous
section, yielding a homogeneous stiffness of C = 0.105 kPa.

Fig. 7, top, documents the spatio-temporal evolution of the
growth multiplier ϑ across the left ventricle for the post-operative
case. In contrast to the pre-operative case, now, the mechanical
properties of the ventricle are set to be homogeneous. Surprisingly,

even though excluding the infarct region avoids stress concen-
trations in and around the boarderzone, the simulations display
pronounced regional variations of growth. In agreement with Fig. 5,
we observe high growth multipliers in regions of high curvature, or

le of an infarcted heart. The simulations demonstrate regional variations,  top row,
e of growth over time. Blue colors indicates no growth, ϑ = 1.0, red colors indicate
n of the references to color in this figure legend, the reader is referred to the web
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ig. 6. Transmural variation of the growth multiplier ϑ at three different locations,
nside the infarct, in the borderzone, and away from the infarct. The thickness is
ormalized.

ore precisely, regions with high changes in curvature. A typical
xample is the apical region where the infarct has been removed
nd the two boarder zones are stitched together non-smoothly. The
imulation suggests that surgical ventricular restoration success-
ully removes constitutive heterogeneities. However, it may  at the
ame time induce new heterogeneities of kinematic nature, which
ight become a trigger for ventricular growth and remodeling.
Fig. 7, bottom, displays a cross section of the left ventri-

le to illustrate transmural heterogeneities of growth for the
ost-operative case. The five snap shots indicate that growth is het-
rogeneous, and that it initiates at the apex, where the infarct was
xcluded, and the left ventricle was stitched together. Although
hese results are just preliminary at this stage, they might provide
dditional insight in the long-term success of surgical ventricular
estoration.

. Discussion

Myocardial infarction is the single most common cause of heart
ailure. We  hypothesized that mechanical non-uniformities around
he infarct region initiate regional variations in cardiac growth. Our
pproach was to simulate cardiac growth using a novel mechanistic
rowth model, in which the dilation of the ventricle is character-
zed through the lengthening of cardiomyocytes, initiated by the
erial deposition of sarcomere units. Embedded in a finite element
imulation environment, our model proved capable of predicting
rowth of a patient-specific left ventricle in response to mechanical
verload.

Our model is in excellent agreement with growth phenomena
bserved in dilated cardiomyopathies reported in the literature.
n a recent long-term study in infarcted sheep, we  have found a
ignificant chronic fiber lengthening, accompanied by a chronic
adial shortening (Tsamis et al., 2012), which agrees nicely with
he format of our growth tensor in Eq. (3).  In freshly isolated car-
iac tissue, compared with a healthy control group, cardiomycytes
rom patients with dilated cardiomyopathy were reported to be 40%
onger, while the cell widths displayed no statistically significant
ifferences (Gerdes et al., 1992). The length of the individual sar-
omeres, however, was the same in both groups. This is in excellent
greement with the effects captured by our model with a growth
ultiplier ϑ increasing from ϑmax = 1.0 to ϑmax = 1.5, correspond-
ng to a cell cardiomyocyte lengthening of 50%. In a 16-week long
n vivo study in rabbits, the serial sarcomere number per cardiomy-
cyte increased chronically from 62 to 95 sarcomere units (Yoshida
t al., 2010). This corresponds to a growth multiplier of ϑ = 1.53,
mmunications 42 (2012) 134– 141 139

which is in excellent agreement with our model. The study further
suggests that cardiomyocytes are capable to add one sarcomere per
day. However, this initially linear sarcomere deposition rate decays
after approximately 4 weeks. In our model, the sarcomere deposi-
tion rate is governed by two parameters, the sarcomere deposition
time � and the sarcomere deposition nonlinearity � . Since we were
only interested in the final converged end result of growth, the
values of these parameters did not play a key role in the present
analysis. We are currently in the process of identifying these param-
eters using longitudinal studies reported in the literature (Yoshida
et al., 2010).

In contrast to existing growth models (Göktepe et al., 2010a,b),
the proposed model is based on an explicit time integration scheme,
see Table 1. This allows us to use explicit commercial codes. In
particular, it enables us to utilize an existing algorithmic infras-
tructure with well-established patient-specific mesh generation
modules (Walker et al., 2005), passive tissue response modules
(Guccione et al., 1991), and parameter identification modules (Sun
et al., 2009). We  have shown that the model is portable into a com-
mercially available finite element code, and that it captures similar
phenomena as implicit codes (Göktepe et al., 2010a,b; Rausch et al.,
2011).

The proposed model is an advancement of existing models
in that it was  created from patient-specific magnetic resonance
images, rather than from a generic, elliptic geometry with a pre-
defined uniform thickness. This is important, as our results have
shown, since real geometries are not uniform, see Fig. 3. It is this
non-uniformity that may  trigger the onset of growth as indicated
in Figs. 5 and 7.

While existing models assume that the material behavior is uni-
form across the heart (Göktepe et al., 2010a),  we have studied the
impact of a non-uniform material response. This allows us to model
growth not only in the context of dilated cardiomyopathies, where
the heart dilates fairly uniformly, but also in the context of ischemic
cardiomyopathies, where dilation is triggered locally through an
infarcted region, see Fig. 5.

Under a uniform loading, our model predicts significant regional
and transmural variations in growth. These variations can be
attributed to different wall thicknesses of our patient-specific
model. Previous studies based on idealized elliptic geometries with
uniform wall thicknesses were unable to capture these character-
istics (Göktepe et al., 2010b; Kroon et al., 2009). When examining
the post-operative left ventricle, where the infarcted tissue has
been surgically removed and the ventricle was initially expected
to display a more homogeneous state, we  still observe significant
regional variations in growth. Specifically, we observe highest val-
ues of growth near the stitching region where curvature changes
are high, see Fig. 6. Our simulation suggests that surgical ventricular
restoration is capable to successfully remove constitutive hetero-
geneities, however, it may  at the same time induce new kinematic
heterogeneities, which might turn into new triggers for ventric-
ular growth and remodeling. The ability to predict cardiac growth
and remodeling might provide insight into the long-term success of
surgical ventricular restoration. To build confidence in the model, it
would be desirable to analyze the surgically removed infarct tissue
histologically, in particular in the borderzone. It would be impor-
tant to explore whether the individual cells have truly undergone
the computationally predicted lengthening and thinning (Tsamis
et al., 2012; Yoshida et al., 2010).

This prototype model is only a very first step toward a better
mechanistic understanding of the chronic phenomena associ-
ated with ventricular growth and remodeling. While many issues

remain to be addressed before the model can be used to reliably
predict cardiac dilation and the outcomes of related interventional
procedures, we  believe that it can already serve as a useful tool to
qualitatively compare different treatment options. The next logical
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Fig. 7. Post-operative growth. Spatio-temporal evolution growth of across the left ventricle after surgical ventricular restoration. The simulations demonstrate regional
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ariations,  top row, and transmural variations,  bottom row, of growth. Snap shots d
ed  colors indicate that growth has reached its maximum predefined value, ϑ = ϑm

eferred  to the web  version of this article.)

tep would be to further calibrate and validate the mathematical
odel. While the calibration of the elastic baseline parameters is

lready partly embedded in the proposed approach, the calibration
f the growth parameters presents a scientific challenge. Human
ata typically lack a well-defined starting point and systematic
tudies of ventricular growth across the scales are rare. Neverthe-
ess, we think that computational modeling can provide valuable
nsight into the interplay of clinically relevant mechanical fields
uch as strain, stress, and growth, which are virtually impossible to
easure in vivo during the chronic progression of heart failure.
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