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Cell  growth  describes  an  essential  feature  of  biological  tissues.  This  growth  process  may  be  modeled  by
using  a  set  of  relatively  simple  governing  equations  based  on  the  axioms  of  mass  and  momentum  balance,
and  using  a  continuum  framework  that  describes  cells  and  tissues  as  mixtures  of  a solid  matrix,  a  solvent
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and multiple  solutes.  In  this  model  the  mechanics  of cell growth  is driven  by  osmotic  effects,  regulated
by  the  cells’  active  uptake  of  solutes  and  passive  uptake  of  solvent.  By  accounting  for  the  anisotropy  of
the  cells’  cytoskeletal  structures  or extracellular  matrix,  as  well  as  external  constraints,  a  wide  variety  of
growing  shapes  may  be  produced  as  illustrated  in  various  examples.

© 2012 Elsevier Ltd. All rights reserved.
ixture theory

. Introduction

Growth is the process by which mass is added to, or removed
rom a solid material. In biological growth this mass supply is typ-
cally made available in soluble form, such as molecular building
locks that combine to produce a larger structure. These solutes
re carried by a solvent, usually water, which together form a
olution that must interface with the solid constituents of biolog-
cal tissues to allow mass exchanges. Therefore, a natural starting
oint of theoretical frameworks for growth mechanics is the axiom
f mass balance, which can describe exchanges between differ-
nt constituents of a biological mixture. The material properties
nd structure of the solid may  be altered as a result of these
ass exchanges, leading to concomitant alterations in stresses.

onsequently, growth mechanics also requires frameworks that
ccommodate evolving constitutive relations to describe these
hanges in material behavior.

There are multiple pathways for growth in biological tissues, as
ell as for non-living materials. In biological tissues the growth and
ivision of cells is arguably the most distinguishing pathway. Cells
ay  also synthesize and release matrix products that contribute to
he growth of the extracellular matrix. Growth processes may  also
ake place in the intracellular environment, such as the synthesis
f a cytoskeleton from the building blocks of actin, microtubules,
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093-6413/$ – see front matter ©  2012 Elsevier Ltd. All rights reserved.
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and intermediate filaments. More generally, growth processes may
result from any set of chemical reactions that add mass to the solid
content. A nice overview of various modes of biological growth and
their relation to growth mechanics is provided in the review by
Taber (1995).

Continuum mechanics provides a unifying framework that facil-
itates the combination of growth processes via enforcement of
mass balance, with the analysis of stresses via enforcement of
momentum balance. In this article we review our previously
reported mixture theory formulation of the mechanics of cell
growth (Ateshian et al., 2009) by outlining the main governing
equations, solving simple canonical problems analytically, and
illustrating more complex processes of growth using numerical
simulations. Though it may  seem at first that the cell growth pro-
cess is far too complex to describe in the context of continuum
mechanics, it is in fact possible to reduce it to a very fundamental
mechanism involving osmotic gradients between the intracellular
and extracellular fluid environments. The cell membrane plays a
critical role as a barrier that allows passive transport of solvent and
only some solute species, and active transport of others. Therefore,
in a continuum framework of cell growth, it is necessary to account
for these selective transport mechanisms in order to replicate the
effects of osmotic gradients in the growth process, as reviewed in
this article.
2. Overview of cell growth

In general, growth may  occur either inside a body or on its
surface (Skalak et al., 1982; Taber, 1995). The former is called

dx.doi.org/10.1016/j.mechrescom.2012.01.010
http://www.sciencedirect.com/science/journal/00936413
http://www.elsevier.com/locate/mechrescom
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nterstitial (or volumetric) growth and the latter is called apposi-
ional (or surface) growth. Volumetric growth requires interstitial

ass transport (Taber and Humphrey, 2001; Hsu, 1968; Cowin and
egedus, 1976; Rodriguez et al., 1994; Humphrey and Rajagopal,
002; Garikipati et al., 2004), whereas appositional growth relies
n mass transport to and from the growth surface (Skalak et al.,
997; Ateshian, 2007, 2011). Interstitial growth requires that the
olecular building blocks be able to transport through the solid in

rder to allow mass exchange within the solid volume. In biologi-
al growth this requirement typically implies that the growing solid
aterial must be porous and permeable to the fluid solution con-

aining the soluble building blocks. As will become more apparent
n the remainder of this review, cell growth represents an intersti-
ial growth process since it involves solute and solvent transport
nto the intracellular space.

.1. Cell cycle and nutrients

A brief review of the cell cycle is instructive for understanding
he process of cell division and growth (Alberts et al., 2002), as well
s setting the stage for modeling such growth in the context of
ontinuum mechanics.

The cell cycle is divided into four phases, of which the two major
nes consist of the S phase (or synthesis phase), during which DNA
s replicated, and the M phase (or mitosis phase), during which
hromosome segregation and cell division occurs. The S phase is
receded by the G1 phase and followed by the G2 phase (also
nown as gap phases), during which the cell grows and doubles
ts mass; these three phases together comprise the interphase. The

 phase typically occupies nearly half of the cell cycle time, as do the
ap phases, whereas the M phase is much shorter. Depending on
nvironmental conditions, cells may  also enter a resting state, G0,
hich varies in duration but may  persist for years, before returning

o a proliferative state (Alberts et al., 2002).
Cell growth is dependent on the availability of nutrients and

rowth signals in the environment. Growth and division do not
ecessarily proceed in synchrony, as division may  occur without
rowth, and growth without division. These two mechanisms are
egulated independently and it is understood that cell growth does
ot depend on cell-cycle progression. Nevertheless, some coordi-
ation usually occurs, whereby proliferation and growth produce
ells whose size remains unchanged over consecutive generations
Alberts et al., 2002).

Cell growth requires nutrients and is stimulated by growth
actors that activate intracellular signaling pathways, leading to
he accumulation of various proteins and other macromolecules.
ell division requires mitogens, which are generally produced by
eighboring cells. Cells also require survival factors to suppress
poptosis. All of these extracellular controls combine to regulate
rgan growth (Alberts et al., 2002).

In addition to inorganic ions, cell nutrients derive from the
igestion of carbohydrates, lipids, and proteins, to produce basic
utrient units such as sugars, fatty acids and glycerol, and amino
cids, which are transported by blood circulation throughout the
ody. Uptake of nutrients by cells may  take place via diffusion
hrough the cell membrane, facilitated diffusion through spe-
ialized channels, or active transport via solute pumps. Larger
acromolecules may  be transported into the cell by endocytosis.
ater transport occurs by permeation through the plasma mem-

rane and specialized water channels called aquaporins (Alberts
t al., 2002).

The growth of a cell consists of the uptake of nutrients as well as

ater across the cell membrane. Some of these nutrients become

uilding blocks of macromolecules, such as proteins and nucleic
cids, which form large complexes having negligible influence on
he osmolarity of the intracellular environment, whereas other
ommunications 42 (2012) 118– 125 119

nutrients remain solvated. In animal cells, water uptake is prin-
cipally controlled by the osmolarity of the intracellular fluid in
relation to the external environment (Kedem and Katchalsky, 1958;
Weiss, 1996). Therefore, uptake of soluble nutrients via passive or
active mechanisms produces an obligatory uptake in water (Weiss,
1996), though cell volume expansion may  be partially resisted by
the mechanical stiffness of the cytoskeleton and the surrounding
environment (Haider et al., 2006; Ateshian et al., 2009).

2.2. Continuum modeling of cell growth

Modeling of cell growth may  be performed at various scales. For
example, the growth of an individual cell may  be modeled by using
a continuum framework for a heterogeneous medium representing
the principal cell components, such as the cell membrane and cyto-
plasm. At a higher scale, the effect of cell growth on organ growth
may  be modeled by using a homogenized representation that does
not distinguish among individual cells. Conversely, at a lower scale,
continuum modeling may  describe the growth of a wide range of
subcellular components, such as various organelles and their con-
tents, cytoskeletal structures, etc. The principal requirements of
a framework for modeling cell growth are the ability to account
for nutrient and water uptake into the cell and the synthesis
of various macromolecular structures within the cell. Therefore,
the modeling framework should accommodate solutes (nutrients
and osmolytes), solvent (water), and a solid matrix (representing
macromolecular structures that contribute negligible osmolarity to
the intracellular space).

The framework of mixture theory (Truesdell and Toupin, 1960;
Eringen and Ingram, 1965; Bowen, 1968, 1969) is able to address
modeling at these various scales, using either interstitial or appo-
sitional growth, depending on the specific structure or scale under
consideration (Ateshian, 2007, 2011). In addition, when modeling
at the scale of an individual cell, mixture theory can describe var-
ious trans-membrane transport mechanisms, such as passive and
active transport of various nutrients (Ateshian et al., 2006, 2010).
The driving force for passive transport of solvent and solutes across
the cell membrane is the gradient in their mechano-chemical or
mechano-electrochemical potential (Kedem and Katchalsky, 1958;
Katzir-Katchalsky and Curran, 1965).

At the most fundamental level cell growth is driven by the addi-
tion of mass to the cell. This mass is transported across the plasma
membrane in the form of solutes and solvent (water). The solutes
may  remain solvated inside the cell, or bind to the osmotically
inactive constituents such as the cytoskeleton, which may be gener-
ically called the solid matrix of the cell. In either case the osmolarity
of the intracellular environment increases transiently relative to
the extracellular environment. Solvent will thus be driven into
the cell, down its mechano-chemical potential gradient, until this
gradient returns to zero. The transient active transport of solutes
and passive transport of solutes and solvent into the cell may
be modeled explicitly in a general mixture framework (Ateshian
et al., 2006, 2010; Ateshian, 2011) and validated experimentally
(Albro et al., 2007, 2009), extending the classical presentation based
on irreversible thermodynamics (Weiss, 1996). However, for the
purposes of growth modeling it may  suffice to analyze the steady-
state response when mechano-chemical potential gradients have
returned to zero. Therefore, cell growth may be represented simply
by defining the steady-state relationship between osmotic forces
and the cell’s solid and solute content.
3. Mass and momentum balance

Mass exchanges with the solid generally involve any number
of soluble species, therefore a suitable framework for describing
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rowth processes is the theory of mixtures (Truesdell and Toupin,
960; Eringen and Ingram, 1965; Bowen, 1968, 1969). In mixture
heory, each constituent  ̨ of the mixture has its own  motion, such
hat the current position of an elemental mixture region is rep-
esented by x = �˛(X˛, t), where X˛ is the reference position of
onstituent ˛. Each constituent  ̨ of the elemental mixture region
urrently located at x may  have originated from different reference
ocations X˛.

.1. Mass balance for interstitial growth

Since mixtures may  involve any number of constituents, it
s useful to classify them into various categories based on their
ontribution to growth and the method by which they trans-
ort into the cell across its plasma membrane. (1) Solutes that
nter the cell and bind to its solid matrix, thereby increasing
he intracellular solid mass, may  transport passively (down their

echano-electrochemical gradient), actively (via pumps or trans-
orters), or via endocytosis. In any case, their transient presence

n soluble form inside the cell is not considered in a steady-state
rowth theory, they are therefore associated directly with the intra-
ellular solid matrix, denoted by  ̨ = s. (2) Membrane-impermeant
olutes that are actively transported into the cell, and remain in
oluble form, regulate the intracellular osmolarity relative to the
xtracellular environment; they are denoted by  ̨ = i.

Membrane-permeant solutes that transport passively and
emain in soluble form may  influence the balance between extra-
ellular and intracellular osmolarity if they, and the cell solid
atrix, are electrically charged. In this review the effects of charge
ill be neglected because it is assumed they have limited rele-

ance to growth processes; therefore, the contribution of these
embrane-permeant solutes will not be considered. Finally, the

olvent transports passively into the cell during growth processes,
ia aquaporins or directly through the plasma membrane.

For the intracellular solid (  ̨ = s) and membrane-impermeant
olute (  ̨ = i), the statement of mass balance in integral form is given
y

d

dt

∫
V

�˛ dV =
∫

V

�̂˛ dV,  ̨ = s, i, (3.1)

here �˛ is the apparent density of constituent  ̨ of the mixture
mass of  ̨ per volume of the mixture), and �̂˛ is the volume density
f mass supply to constituent  ̨ due to growth. Here, V repre-
ents a mixture region whose boundary is defined on constituent
; for example, the smallest region V may  represent is a single
ell, in which case the boundary of V is the cell membrane that
ncloses both the intracellular solid and membrane-impermeant
olute within the same region. This equation states that the net
ass of constituent ˛ in V,

∫
V

�˛ dV , changes only when there is
et uptake (or loss) of  ̨ into V as represented by �̂˛ /= 0.

Since it is generally more convenient to use the differential form
f the axiom of mass balance, the time derivative on the left-hand-
ide of (3.1) may  be conveniently brought inside the integral by
erforming the integration on the (time-invariant) referential vol-
me  Vr of the mixture region, which represents the mixture volume

n a stress-free state prior to growth. Since the mixture region is
efined on the solid matrix, elemental mixture volumes dV and dVr

re related by dV = J dVr, where J = det F and F is the deformation
radient of the solid. Recognizing that the domain Vr is arbitrary,
he axiom of mass balance may  be rewritten in differential form as

˙ ˛ = �̂˛,  ̨ = s, i (3.2)
r r

here �˛
r = J �˛ is the apparent density, and �̂˛

r = J �̂˛ is the vol-
me density of mass supply, relative to the mixture volume in
he reference configuration. The superscripted dot on the left-hand
ommunications 42 (2012) 118– 125

side represents the material time derivative, which may  be eval-
uated either in the spatial frame following constituent ˛, when
�˛

r = �˛
r (x, t), or in the material frame when �˛

r = �˛
r (X˛, t). Based

on its definition, any change in �˛
r can only represent a change in

the mass of that constituent in the mixture. Therefore, the rela-
tion of (3.2) makes it clear that chemical reactions involving mass
exchanges with constituent  ̨ ( �̂˛

r /= 0) produce a change in the
apparent density �˛

r , independently of changes in �˛ that may also
occur as a result of deformation. At a very fundamental level, inter-
stitial growth mechanics is embodied in Eq. (3.2) (Ateshian, 2007,
2011).

Since �˛
r varies only as a result of chemical reactions, it is natu-

ral to include it as a state variable in growth mechanics (Ateshian,
2007; Ateshian and Ricken, 2010). Biological complexity arises from
the fact that the number of constituents  ̨ in a biological mixture,
such as the cell, may  number in the thousands or tens of thousands.
Therefore, constitutive relations for �̂˛

r , as a function of �ˇ
r ’s of all

constituents, may  or may  not be easy to formulate and validate in
a complex system intended to describe whole cell responses. How-
ever, as in all modeling strategies, a range of assumptions may  be
adopted when examining a particular system under specific condi-
tions, whereby only a few state variables are assumed to drive the
system’s response.

3.2. Mixture momentum balance

In any porous material whose individual constituents are intrin-
sically incompressible, the Cauchy stress tensor T for the mixture
is given by

T = −pI + Ts, (3.3)

where p is the interstitial fluid pressure and Ts is the effective stress
in the porous solid matrix. The fluid pressure may  represent a com-
bination of mechanical and osmotic effects,

p = p̃ +  R�c, (3.4)

where p̃ is the mechanical pressure arising from loading and defor-
mation of the porous solid, as well as ambient pressure conditions;
R is the universal gas constant; � is the absolute temperature
(assumed uniform); and c is the osmolarity of the fluid (sol-
vent+solute) medium. This expression embodies a constitutive
relation from physical chemistry whereby the osmotic contribu-
tion to the fluid pressure, R�c, is described by the ideal behavior
known as the van’t Hoff relation (Atkins, 1982).

In physical chemistry the osmolarity of a solution is evaluated as
the number of moles of solute per volume of fluid. In a mixture that
includes a porous solid, the osmolarity must be similarly evaluated
as the number of moles of solute per volume of interstitial fluid
in the mixture in the current configuration (since the amount of
interstitial fluid inside a deformable porous solid may  vary with
deformation). Therefore, as described in our earlier study (Ateshian
et al., 2009), the interstitial osmolarity may  be related to the solute
and solid contents according to

c = �i
r

Mi(J − (�s
r/�s

T ))
,  (3.5)

where �i
r is the mass of interstitial solutes per volume of the mix-

ture in the reference configuration; Mi is the molecular weight of
the solute, an invariant quantity; �s

r is the mass of the solid per vol-
ume of the mixture in the reference configuration; and �s

T is the
true density of the solid (mass of solid per volume of solid), also

an invariant quantity since the solid is intrinsically incompressible.
Even though the material forming the skeleton of the porous solid
matrix is considered to be intrinsically incompressible, the porous
solid may  change in volume as a result of compressibility of the
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ore space, as fluid enters or leaves the pores. Thus, whereas J = 1 in
he reference (stress-free) configuration of the porous solid matrix,

 is not in general equal to unity.
Since �s

T is invariant, it is notationally convenient to define

s
r ≡ �s

r

�s
T

, (3.6)

hich represents the ratio of solid volume in the current configu-
ation to the mixture volume in the reference configuration. Both
s
r and ϕs

r represent direct measures of the total content of the solid
onstituent in cells as it increases with growth; �s

r is the total mass
f solid normalized to the referential volume of cells (the initial
olume prior to growth, under a stress-free state); ϕs

r is the total
olume of solid normalized to the referential volume of cells. Even
hen accounting for growth, it can be shown that ϕs

r ≤ J, since J is
he ratio of mixture volume in the current configuration to mixture
olume in the reference configuration, and the solid volume cannot
xceed the mixture volume in a common configuration (Ateshian
t al., 2009). The variables ϕs

r and �s
r may  be used interchangeably

o refer to the solid content of the mixture.
Similarly, since Mi is invariant it is convenient to define

r ≡ �i
r

Mi
, (3.7)

hich represents the number of moles of solute per mixture vol-
me  in the reference configuration. Both �i

r and cr represent direct
easures of the total content of solute in cells as it increases with

rowth; �i
r is the total mass of solute normalized to the referential

olume of cells; cr is the total number of moles of solute normal-
zed to the referential volume of cells. The variables cr and �i

r may
e used interchangeably to refer to the solute content of the mix-
ure. cr is a natural variable for describing the solute molar content
n cells irrespective of cell size, whereas c is a natural variable for
escribing the intracellular osmolarity, taking cell size into account.
herefore cr may  be used to describe cell growth by solute uptake,
hereas c may  be used to evaluate the osmotic contribution to the
uid pressure in (3.4). Using (3.5)-(3.7), it is evident that c and cr

re related by cr = (J − ϕs
r)c.

Under quasi-static conditions, in the absence of external body
orces, the momentum balance for the mixture is

ivT = −gradp + divTs = 0 . (3.8)

oundary conditions require that the mixture traction, t = T · n, be
ontinuous, where n is the unit outward normal to the boundary
urface. Similarly, the mechanical pressure p̃ must be continuous
cross the boundary (Ateshian et al., 2006; Ateshian, 2007).

. Cell growth

.1. Traction-free homogeneous growth

Consider a single cell, or an aggregate of cells, bathing in a fluid
ontaining nutrients and osmolytes at normal levels for a biolog-
cal environment. For simplicity consider that cell properties and
omposition are uniform. The cells are bathing in an extracellu-
ar fluid environment with a prescribed osmolarity ce, subject only
o an ambient pressure p̃e. The boundary conditions between the
ntracellular and extracellular space require that
s · n = R�(c − ce)n, (4.1)

mplying that any imbalance in osmotic pressure between the
ntracellular and extracellular environments must be compensated
ommunications 42 (2012) 118– 125 121

by solid matrix stresses. For a homogeneous state of stress under
these boundary conditions it follows from (3.8) and (4.1) that

Ts = R�(c − ce)I = R�
[

cr(t)
J − ϕs

r(t)
− ce

]
I. (4.2)

Explicit dependence on spatial position x was  dropped from the
notation because of the assumption of homogeneity. In the ref-
erence, stress-free configuration of the solid matrix (Ts = 0), the
internal and external osmolarities must balance out, thus c = ce

when J = 1. Equivalently, using (3.5),

cr(t0)
1 − ϕs

r(t0)
= ce, (4.3)

where t0 represents a time prior to growth, when the solid is also
in its reference configuration.

Example 1. When modeling cells, ϕs
r(t0) represents the volume

fraction of solid (osmotically inactive) constituents in the intra-
cellular space in the reference configuration; it must satisfy 0 ≤
ϕs

r(t0) ≤ 1. Depending on the cell type, this value typically ranges
from 0.2 to 0.4 under normal physiological conditions. The osmo-
larity of the extracellular environment, ce, is typically around
300 mM.  cr(t0) represents the molar concentration of membrane-
impermeant solute on a mixture volume basis, in the reference
configuration. Based on (4.3), cr(t0) typically varies in the range
180–240 mM.  Given that R = 8.314 × 10−6 mJ/nmol K and � = 310 K
at body temperature, the osmotic pressure term R�c is on the order
of 1 MPa. Osmotic pressures are normally balanced across the cell
boundary, c ≈ ce, therefore isolated cells do not experience osmotic
pressure differences of that magnitude. Indeed, the typical mod-
ulus of a cell is on the order of 10−3 MPa  and isolated cells do
not have the strength to resist osmotic pressure differences on
the order of 1 MPa. It is a well-known fact that when cells are
transferred from a physiological environment (ce = 300 mM)  into
distilled water (ce = 0) they rapidly expand by taking up water, then
burst (lyse) when their volume approximately doubles or triples.
However, when surrounded by a sufficiently strong extracellular
matrix, their resistance to lysis may  increase considerably as sug-
gested by (4.2), since the solid matrix may  prevent excessive cell
volume expansion.

If the extracellular osmolarity is kept constant, as is generally
the case under physiological conditions, it follows from (4.2) and
(4.3) that the state of stress may  be rewritten as

Ts = R�
[

cr(t)
J − ϕs

r(t)
− cr(t0)

1 − ϕs
r(t0)

]
I. (4.4)

Cell growth (mass addition) may  now be modeled by allowing �i
r(t)

and �s
r(t) to increase over time according to the mass balance rela-

tion of (3.2). An increase in �i
r typically represents uptake of solutes

from the extracellular environment (though it may also represent
the release of ligands from intracellular substrates). An increase in
�s

r typically represents the binding of a ligand to the intracellular
solid matrix, leading to solid matrix growth. During cell growth it
may  be convenient to assume that the solute and solid contents,
�i

r and �s
r , increase proportionally since daughter cells are typi-

cally nearly identical to their progenitor, though not an obligatory
relationship.

In the continuum representation of biological tissues adopted
here, it is possible to consider that the extracellular matrix (ECM)
also influences the solid matrix stress Ts. If the volume fraction
of ECM is negligible compared to the volume fraction of cells in

the tissue, the above relations may  be used identically, with the
understanding that the solid matrix stiffness should account for
ECM structures as well. When the ECM volume fraction is non-
negligible, some homogenization scheme may  be adopted to weigh
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he contribution of cells and ECM to the overall tissue response
Ateshian et al., 2009).

xample 2. Consider the case when the solid matrix contributes
egligible stiffness, Ts ≈ 0. In this case (4.4) produces

 = [1 − ϕs
r(t0)]

cr(t)
cr(t0)

+ ϕs
r(t). (4.5)

This linear relation shows that an increase in �i
r(t) and �s

r(t)
roduces a proportional increase in J, and thus the volume of the
ells. This increase in volume occurs as a result of solvent uptake
nto the cells, driven by transient osmotic gradients, as well as the
ncreases in solute and solid content. There are no constraints on
he shape of the growing body in the limit when the solid matrix
as no stiffness, as this solution only prescribes the change in vol-
me. It is particularly noteworthy that there is no constraint on
ow large the volume of these growing cells may  be. For exam-
le, with an extracellular osmolarity ce = 300 mM and reference
onditions ϕs

r(t0) = 0.3 and cr(t0) = 210 mM,  a tenfold increase in
olume (J = 10) may  be achieved by a tenfold increase in solid and
olute content over time, such as ϕs

r(t) increasing from 0.3 to 3
nd cr(t) increasing from 210 mM to 2100 mM.  (Since ϕs

r(t) is the
urrent cell solid volume content normalized to the initial cell vol-
me, it can exceed unity with growth.) When there is negligible
olid matrix resistance to growth, the actual intracellular osmolar-
ty c = cr(t)/[J − ϕs

r(t)], as given in (3.5), remains constant and equal
o ce. Each cell need not increase tenfold in volume, as cells may  in
act divide during the growth process.

The cytoskeletal structure of cells directs their growth. If the
olid matrix exhibits material anisotropy, cell growth will occur
referentially along directions of least resistance to osmotically-
riven expansion. Specific forms of growth may  be modeled by
dopting isotropic or anisotropic constitutive relations for Ts.

xample 3. Consider the canonical example of growth of a collec-
ion of cells forming a tubular structure. If the cellular cytoskeleton
lasticity is isotropic, suppose for simplicity that its constitutive
elation is given by a special form of Saint-Venant’s constitutive
elation (Truesdell and Noll, 1992),

s = �s

J
B · (B − I), (4.6)

here B is the left Cauchy-green deformation tensor for the solid
atrix and �s is its modulus. In this case the homogeneous state of

train will be isotropic, given by B = �2I where � is the stretch ratio
n all directions. Substituting this solution into (4.4) and recognizing
hat J = �3 produces a single equation for the unknown �,

s
(

� − 1
�

)
− R�

[
cr(t)

�3 − ϕs
r(t)

− cr(t0)
1 − ϕs

r(t0)

]
= 0. (4.7)

A solution for � may  be obtained at any time t, given the growth-
riven composition variables �i

r(t) and �s
r(t). In this case the tube

rows isotropically, simply increasing in size (Fig. 4.1). The resulting
omogeneous solid matrix residual stress is given by (4.6), though
he total stress is zero. Consistent with Example 2, a solution to this
quation can be found even in the limit as the stiffness reduces to
ero, �s → 0. For example, when �s = 10−3 MPa, a tenfold increase
n solute and solid content produces J = 9.986. This useful result
emonstrates that having a non-zero cytoskeletal stiffness provides
he necessary equations to predict the shape of a growing cell, even
hen the stiffness is very low. It also shows that residual stresses
ay  not constrain growth significantly when the stiffness is very
ow.

xample 4. Let the cytoskeletal structure exhibit orthotropic sym-
etry, with planes of symmetry represented by the orthonormal

ectors a0
a (a = 1, 2, 3) in the stress-free configuration. For example,
Fig. 4.1. Unconstrained growth of a tubular cellularized tissue with isotropic solid
matrix. Growth is induced by increasing the cell solute and solid content fivefold.
(a)  Initial configuration and (b) final configuration.

assume that the solid matrix constitutive relation is given by a gen-
eralization of (4.6) to the orthotropic case (Tong and Fung, 1976;
Ateshian and Costa, 2009),

Ts = 1
2J

3∑
a=1

�s
a�2

a[Aa · (B − I) + (B − I) · Aa], (4.8)

where �s
a are moduli and Aa = aa ⊗ aa are structural tensors in the

current configuration, with F · a0
a = �aaa and �a = |F · a0

a |. In the
case of homogeneous tube growth, let the planes of symmetry
be orthogonal to the radial, circumferential and axial directions,
{a0

a} = {eR, e�, eZ }. Then, the deformation gradient is given by F =∑3
a=1�aa0

a ⊗ a0
a , where {�a} = {�R, ��, �Z} are the radial, circum-

ferential and axial stretches. It follows that

Ts = 1
J

3∑
a=1

�s
a�2

a(�2
a − 1)A0

a, (4.9)

and the three stretch ratios can be obtained from the simultaneous
solution of

�s
R
�R(�2

R
− 1) − ���Z R�

[
cr (t)

�R���Z − ϕs
r (t)

− cr (t0)
1 − ϕs

r (t0)

]
= 0,

�s
�

��(�2
�

− 1) − �R�Z R�

[
cr (t)

�R���Z − ϕs
r (t)

− cr (t0)
1 − ϕs

r (t0)

]
= 0,

�s
Z
�Z (�2

Z
− 1) − �R��R�

[
cr (t)

�R���Z − ϕs
r (t)

− cr (t0)
1 − ϕs

r (t0)

]
= 0.

(4.10)

The solution shows that growth will occur preferentially along
directions of least stiffness (Fig. 4.2). An axial growth elongation of
the tube will occur if �s

Z � �s
R, �s

�
(Fig. 4.2b); a radial and circum-
ferential growth elongation will occur if �s
R = �s

�
� �s

Z (Fig. 4.2c).
In each case, if the cytoskeletal stiffness is negligible along any
direction (�s

a → 0), residual stresses in the cytoskeleton will be
negligible for all components of Ts, because impending osmotic
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Contact interfaces are introduced between the cell and the top and
bottom rigid platens. As the cell grows its shape is constrained
by the platens, as shown in the figure. In the absence of these
ig. 4.2. Unconstrained growth of a tubular cellularized tissue with orthotropic s
a)  Initial configuration and (b) final configuration when axial stiffness is negligib
egligible, �s

R
= �s

�
� �s

Z
.

ressurization is relieved by growth along the direction with neg-
igible stiffness. Even when cytoskeletal residual stresses do arise
s a result of growth, cytoskeletal remodeling could attenuate or
elieve these stresses during (or following) the growth process.

.2. Externally constrained growth

External constraints can easily redirect the growth of cells. For
xample, cells and tissues consisting of cell aggregates may  be
onstrained by surrounding structures such as ECM, basal mem-
ranes, or other types of substrates. These external constraints can
e modeled in the continuum framework by prescribing suitable
isplacement and traction boundary conditions.

xample 5. In the case of isotropic growth described in Example
, consider that the original tissue geometry is cuboidal, with its
aces orthogonal to Cartesian coordinate axes. Consider that the
aces orthogonal to the Y and Z axes are constrained, such that the
orresponding stretch ratios are �Y = �Z = 1. In this case, growth can
roceed only as an elongation along X and the deformation gradient

s given by F = �XeX ⊗ eX + eY ⊗ eY + eZ ⊗ eZ. Substituting this defor-
ation into (4.6) and enforcing traction-free conditions on the X

aces using (4.1) produces an equation for the unknown �X,

(
�X − 1

�X

)
− R�

[
cr(t)

�X − ϕs
r(t)

− cr(t0)
1 − ϕs

r(t0)

]
= 0. (4.11)

This equation may  be solved for �X. In the limit as the modulus
educes to zero, the solution is given by

lim
→0

�X = cr(t)
cr(t0)

[1 − ϕs
r(t0)] + ϕs

r(t), (4.12)
howing that the tissue grows in linear proportion to �i
r(t) and �s

r(t)
hen there is negligible solid matrix stiffness.

These illustrations demonstrate that directed growth may  be
asily modeled by internal and external constraints. They also show
hat residual stresses can be negligible during growth, even when
arge changes in tissue volume take place.
atrix. Growth is induced by increasing the cell solute and solid content fivefold.
� �s

R
, �s

�
. (c) Final configuration when radial and circumferential stiffnesses are

4.3. Inhomogeneous growth

External constraints may  induce inhomogeneous growth even
when growth rates and material properties are homogeneous. More
generally, growth rates may  vary across a population of cells,
�̂˛

r = �̂˛
r (x, t),  ̨ = s, i. Solid matrix anisotropy and moduli may  also

vary with location. In these general cases it is convenient to solve
the governing equations described in Section 3.2 using numerical
schemes such as the finite element method. An implementation
of this growth process has been incorporated in the open source
finite element code FEBio (http://www.febio.org), which was used
to produce the illustrative examples presented here.

An example of inhomogeneous growth driven by external con-
straints is illustrated in Fig. 4.3,  which shows the growth of a cell
abutting against stiff structures that alter its shape as it grows. The
stress tensor in the cell is given by the relations of (3.3)–(3.5), with
an isotropic cytoskeleton having stiffness on the order of 10−3 MPa.
Fig. 4.3. Constrained growth of an initially round cell abutting against rigid platens.
Growth is induced by increasing the cell solute and solid content fivefold. (a) Initial
configuration and (b) final configuration.

http://www.febio.org
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Fig. 4.4. Growth and buckling of a tissue layer constrained at lateral ends. Growth
is  induced by increasing the cell solute and solid content fivefold. The solid matrix is
isotropic, with an elastic modulus of 10−3 MPa. (a) Layer in initial configuration and
(b)  layer in final configuration. Buckling is induced by nudging the structure with
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 small, transient vertical force at the center of the layer at the start of the growth
rocess.

xternal constraints the growth would simply produce a larger
ircular shape, in analogy to the tube in Fig. 4.1.

External constraints can induce buckling to produce a wide
ange of growth outcomes. Consider a cellularized tissue layer
hich is externally constrained from expanding laterally (Fig. 4.4a).

he growth of cells in the tissue may  produce buckling of the layer
n various modes, such as the case shown in Fig. 4.4b. This type
f growth is reminiscent of the common process of invagination
bserved in morphogenesis.

An illustration of inhomogeneous growth rates is provided in
ig. 4.5,  which shows a bilayered strip of tissue where growth
ccurs only in the top layer. Both layers have an isotropic solid
atrix with moduli on the order of 0.1 MPa. This example demon-

trates that inhomogeneous growth produces curling of the tissue

ayer into a nearly perfect cylindrical geometry, with the concave
ide corresponding to the region of no growth.

ig. 4.5. Inhomogeneous growth in a bilayered strip. Growth is induced only in the
op  layer, by increasing the cell solute and solid content by a factor of 2.5. Both strips
ave a compressible neo-Hookean isotropic solid matrix with a Young’s modulus of
0−1 MPa  and Poisson’s ratio of 0. (a) Initial configuration and (b) final configuration.
ommunications 42 (2012) 118– 125

5. Summary

A dominant mechanism of growth in biological tissues is via
cell growth and division. The growth of cells requires the active
uptake of soluble mass that provides building blocks for various
intracellular structures, such as the cytoskeleton or chromosomes,
and contributes to the osmolarity of the intracellular space. The
resulting mechano-chemical gradient drives solvent into the cell
as well, contributing to its volumetric growth. The signaling mech-
anisms that trigger these processes remain a major research
topic in biology, however the mechanics of cell growth may  be
reduced to a fundamental set of equations as summarized in this
review.

By modeling cells as a mixture of solid, solvent and solutes, it is
possible to describe the active uptake of solutes into the intracellu-
lar space by including a supply term in the axiom of mass balance
as shown in (3.1). Standard manipulations from kinematics make it
more explicitly evident that mass supply terms directly determine
mass content in a mixture, as shown in (3.2), by using the refer-
ential volume of the mixture for normalizing the apparent density
and mass supply. The volume density of mass supply �̂˛

r must be
described by a constitutive relation that establishes the conditions
under which mass uptake is triggered. This type of constitutive
relation would normally be informed by biological experiments.
Therefore it is expected that state variables should include the local
concentration, �ˇ

r , of various growth factors, mitogens and survival
factors. However, even without explicit forms of constitutive rela-
tions for �̂˛

r , it is possible to model growth by letting intracellular
solute and solid constituents increase in mass over time.

The intracellular solute and solid content control the osmolarity
of the intracellular environment as shown in (3.5). An increase in
solute or solid content during cell growth increases the intracellular
osmolarity, leading to a reduction in the mechano-chemical poten-
tial of the solvent relative to the extracellular environment. Though
boundary conditions require that the solvent mechano-chemical
potential always be continuous across the cell boundary, transient
processes arise because the intracellular (and possibly extracellu-
lar) value of this potential may  be transiently non-uniform. Solvent
then transports into the cell to raise the mechano-chemical poten-
tial until it becomes uniform throughout the mixture. In effect, the
solvent uptake re-dilutes the intracellular environment toward an
osmolarity value closer to the extracellular osmolarity.

Because all the constituents of the mixture are idealized as
intrinsically incompressible, solvent uptake must be accompanied
by an increase in cell volume. Indeed, solvent uptake is most
responsible for producing cell growth, since the solvent volume
fraction is typically greater than the solid and solute volume frac-
tions in the cell. This volume increase is resisted by the solid
matrix of the intracellular (cytoskeleton) and extracellular (matrix)
environment, as indicated by (4.1). If the solid matrix produces
negligible resistance to the osmotic forces being generated, the
intracellular osmolarity will once again equal the extracellular
osmolarity at steady-state, as illustrated in Example 2. The resis-
tance offered by the solid matrix may  also be transient, since cells
may  remodel their cytoskeleton or extracellular matrix by solubi-
lizing their solid constituents and reforming new ones.

The anisotropy of the solid matrix plays an important role in
guiding the shape of the growing cell, as illustrated in Examples 3
and 4. In these examples, the relative magnitudes of the solid matrix
moduli along various preferred material directions play a more
significant role than their absolute value, implying that the solid
matrix need not meet a particular threshold of stiffness to guide

the growth process. Similarly, external constraints, such as sub-
strates that offer significant resistance to cell growth along certain
directions, may  guide the shape of growing cells as illustrated in
Figs. 4.3–4.5.  In some of these examples, such as the bilayered strip
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f Fig. 4.5,  the final shape of the growing tissue may  vary accord-
ng to the relative magnitude of osmotic forces and solid matrix
tiffness.

The governing equations for cell growth presented in this review
re also applicable to the related process of cell volume regulation
Hoffmann et al., 2009). Many cells are known to regulate their vol-
me  in a manner that counteracts changes in the osmolarity of the
xtracellular environment. They control their volume by selectively
aking up or expelling solutes from the intracellular environment
ia active transport mechanisms. Regulatory volume increases may
hus be produced by increasing �i

r; conversely, regulatory volume
ecreases may  also be produced by decreasing �i

r . Since the mag-
itude of osmotic pressure that may  be achieved in this manner
an reach as high as ∼1 MPa, cell volume regulation may  have a
ignificant effect on the surrounding extracellular matrix. Thus, in
ddition to growth, osmotic effects may  also produce contraction of
ells and tissues, possibly contributing to some of the well-known
bservations in fibroblast-seeded collagen gels (Dallon and Ehrlich,
008).

In conclusion, cell growth describes a mechanism of intersti-
ial or volumetric growth characteristic of biological tissues. This
rowth process may  be reduced to a set of relatively simple gov-
rning equations based on the axioms of mass and momentum
alance for mixtures. The mechanics of cell growth must account
or the presence of interstitial fluid, since the growth mechanism is
riven by osmotic effects. By accounting for solid matrix anisotropy
nd external constraints, a wide variety of growing shapes may  be
roduced, with some canonical examples illustrated above.
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