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a  b  s  t  r  a  c  t

A  classical  structural  optimisation  problem  consists  of a problem-specific  objective  function  which  has
to be  minimised  in  consideration  of  particular  constraints  with  respect  to design  and  state  variables.
In  this  contribution  we  adopt  a conceptually  different  approach  for the  design  of  a structure  which
is  not  based  on  a classical  optimisation  technique.  Instead,  we  establish  a constitutive  micro-sphere-
framework  in  combination  with  an energy-driven  anisotropic  microstructural  growth  formulation,  which
was originally  proposed  for the  simulation  of  adaptation  and remodelling  phenomena  in  hard  biological
tissues  such  as  bones.

The  goal  of  this  contribution  is  to  investigate  this  anisotropic  growth  formulation  with  a special  empha-
sis on  its  application  to  structural  design  problems.  To  this  end,  four  illustrative  three-dimensional
benchmark-type  boundary  value  problems  are  discussed  and  compared  qualitatively  with  the  results
obtained  by  classical  structural  optimisation  strategies.  The  simulation  results  capture  the  densifica-
tion  effects  and  clearly  identify  the  main  load  bearing  regions.  It turns  out,  that  even  though  making

use  of  this  conceptually  different  growth  formulation  as  compared  to the  procedures  used in a classi-
cal structural  optimisation  context,  we  identify  qualitatively  very  similar  structures  or  rather  regions  of
densification.  Moreover,  in contrast  to common  structural  optimisation  strategies, which  mostly  aim  to
optimise  merely  the  size,  shape  or  topology,  our  formulation  also  contains  the  improvement  of the  mate-
rial itself,  which—apart  from  the  structural  improvement—results  in  the  generation  of  problem-specific

 and t
local  material  anisotropy

. Introduction

A  typical task in solid-mechanics-related engineering consists
n the development, improvement and optimisation of structures
ustaining mechanical loads—in other words, to maximise the
tructural stiffness and/or to minimise the effective stress within
he structure. In order to consistently treat and solve such structural
ptimisation problems, different rigorous mathematical formula-
ions have been established. A classical structural optimisation
roblem consists of a problem-specific objective function, which
as to be minimised in consideration of particular constraints
ith respect to design and state variables. The solution of such
roblems—if existent at all—is anything but trivial and commonly
pproximated by means of advanced numerical methods and algo-
ithms for structural optimisation, cf. the extensive review of

endsøe and Sigmund (2003).  A structural optimisation problem

s typically solved using a sequence of convex approximation in
onjunction with Lagrangian duality. This approach results in a

∗ Corresponding author. Tel.: +49 231 755 3567; fax: +49 231 755 2688.
E-mail address: tobias.waffenschmidt@udo.edu (T. Waffenschmidt).

093-6413/$ – see front matter ©  2012 Elsevier Ltd. All rights reserved.
oi:10.1016/j.mechrescom.2011.12.004
extured  evolution.
© 2012 Elsevier Ltd. All rights reserved.

separable problem that enables an efficient numerical implemen-
tation, cf. Bendsøe and Sigmund (2003).  For a discussion of such
methods of convex approximations and their relations we refer
to the textbook by Christensen and Klarbring (2009).  Recently,
structural optimisation problems have also been solved with a
phase-field approach, see Wallin et al. (2011) and references cited
therein.

In this contribution we adopt a conceptually different approach
for the design of a structure, which is not based on a classical
optimisation technique. We  establish a constitutive micro-sphere-
framework for energy-driven anisotropic microstructural growth
and density evolution originally proposed for the simulation of
isotropic adaptation phenomena in bones. Since the seminal work
by Wolff (1892), it is well-known that bones are able to adapt
their local density when exposed to mechanical loading. Such
growth processes result in densification of the bone in regions of
high loading levels and in degradation of the material in regions
of low loading levels. This evolution process generates hetero-

geneous distributions of bone density accompanied by texture
evolution and pronounced anisotropic material properties, as dis-
cussed by Taber (1995), Jacobs et al. (1997) and references cited
therein.

dx.doi.org/10.1016/j.mechrescom.2011.12.004
http://www.sciencedirect.com/science/journal/00936413
http://www.elsevier.com/locate/mechrescom
mailto:tobias.waffenschmidt@udo.edu
dx.doi.org/10.1016/j.mechrescom.2011.12.004
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The constitutive model used in this work is based on the so-
alled micro-sphere concept which allows to straightforwardly
xtend one-dimensional constitutive models to an anisotropic
hree-dimensional formulation, cf. the contribution by Bažant and
h (1985),  Kuhl et al. (2001) or Carol et al. (2004),  Miehe et al.

2004) and Menzel and Waffenschmidt (2009) with regard to a large
eformation framework. The constitutive approach, as proposed

n this contribution, models bone growth within the framework of
pen system thermodynamics, as discussed by Kuhl and Steinmann
2003), using an enhanced balance of mass which models bone
daptation by its density evolution driven by the local strain
nergy level. We  adopt the well-established model by Harrigan
nd Hamilton (1994) and extend this formulation to energy-driven
volution of directional densities which take, from the algorith-
ic  point of view, the interpretation as internal variables, cf. the

omparative overview by Kuhl et al. (2003) for a related discus-
ion. These directional densities are referred to the integration
irection of the micro-sphere and, as an advantage of the model
t hand, enable to compute and visualise higher-order tensorial
ensity moments which provide detailed insights into the simu-

ated deformation-induced anisotropic local material properties,
f. Waffenschmidt et al. (2011).  Common structural optimisation
trategies mostly aim to optimise the size, shape or topology.
larbring and Torstenfelt (2010, 2011) discuss the connection
etween an optimisation view and an evolution view. The formula-
ion established as this work proceeds also contains improvement
r rather adaptation of the local material properties themselves.
his, apart from the structural design framework, results in an evo-
ution of anisotropy and texture.

The manuscript is organised as follows: in Section 2, we  briefly
eview relevant kinematic and balance relations for the micro-
phere-based density growth formulation. We  investigate the
nite element simulation of anisotropic growth with regard to

ts structure-improving properties by means of four illustrative
umerical examples in Section 3 and conclude with a summary
nd final remarks in Section 4.

. Model formulation

This section briefly reviews the model formulation used to simu-
ate numerical examples later on in the context of structural design.
he particular framework established in this work originates from
he simulation of growth and remodelling phenomena in biological
issues. For a detailed outline including aspects on implementation
f the model in a finite element framework the reader is referred
o Waffenschmidt et al. (2011).

.1. Basic kinematics and balance relations

As this work proceeds we set up an affine micro-sphere model.
his approach allows use of well-established one-dimensional
onstitutive equations and to conveniently extend these to the
hree-dimensional case. As the model established is affine, the

icro-sphere formulation allows similar conceptual interpretation
s, for instance, Taylor-assumption-based models common for the
imulation of polycrystalline materials.

To set the stage, we denote the non-linear motion of material
lacements X ∈ B0 of particles of the body B of interest to their
patial position as x = ϕ(X, t) ∈ Bt , where t represents time. The

otion’s gradient in space is introduced as F and � characterises

he stretch in the direction of a referential unit-vector r ∈ U
2, i.e.

 = ∇Xϕ and � = ‖t‖ = ‖F · r‖ > 0. (1)
arch Communications 42 (2012) 77– 86

The local form of the balance of mass—which intrinsically rep-
resents the growth process modelled as this work proceeds—as
referred to the evolution of referential density �0 reads

�̇0 = ∇X · R + R0, (2)

wherein the notation •̇ denotes the material time derivative. Incor-
poration of Eq. (2) into the local referential balance of linear
momentum relation, [�0ϕ̇]˙ = ∇X · P + b0, results in

�0ϕ̈ = ∇X · [P − ϕ̇ ⊗ R] + [b0 − R0ϕ̇ + Ḟ · R]. (3)

In the following, however, we restrict the formulation to the
quasi-static case and neglect the mass flux contribution as well
as mechanical volume forces. It will turn out that this reduced
framework with

�̇0 = R0 and 0 = ∇X · P, (4)

already nicely captures the structural design characteristics sought.
So-called size effects, however, which can be modelled my means
of the mass flux term R, are excluded in the present formulation.

2.2. Constitutive equations

The subsequently elaborated constitutive equations are reduced
to the one-dimensional case—with referential density �0 and the
stretch � as a measure of deformation—so that the formulation
can be extended to the three-dimension case by means of the
micro-sphere framework later on. As an advantage, the numer-
ical treatment is convenient to implement and, moreover, the
three-dimensional micro-sphere-based growth model intrinsically
includes deformation induced anisotropy and texture evolution. A
hyperelastic form is assumed for the Piola stresses, in other words
P = ∂F 0, whereas the referential density values are introduced as
internal variables determined from the underlying evolution equa-
tions.

2.2.1. One-dimensional relations
We adopt a nowadays classical form for the density source term

according to Harrigan and Hamilton (1993),  to be specific

R0 = k∗
�

[[
�0

�∗
0

]−m∗

 0 −  ∗
0

]
, (5)

with k∗
� , �∗

0, m∗ and  ∗
0 being material parameters and so-called

dead zones being neglected. Eq. (5) enables saturation-type local
density evolution, which does not allow to control the total mass
directly. In other words, the driving energy term [�0/�∗

0]−m
∗
 0

must decrease with increasing normalised referential density
�0/�∗

0 and vice versa. This can be guaranteed by introducing the
density-weighted strain energy

 0 =
[
�0

�∗
0

]n∗

 e
0(�), (6)

wherein  e
0(�) monotonically increases with � and the material

parameter is constrained by n∗ < m∗. The specific form chosen for
the elastic strain energy contribution is of neo-Hookean type, which
in its one-dimensional representation reads

 e
0(�) = �∗

2
ln2(�) + �∗

2
[�2 − 1 − 2 ln(�)], (7)

including two  additional parameters, �∗ and �∗ which, for the
model at hand, do not address different modes of deformation.
In classical structural optimisation formulations, it is common
to prescribe an upper and lower bound for the density. Even if not
applied to the simulations following in Section 3, lower and upper
bounds for the density �0 can be straightforwardly incorporated
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Fig. 1. Generalised bell function as introduced in Eq. (8), plotted for different values
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3.1. Cantilever

As a first example, we consider a cantilever, see Fig. 3(a), with
L = 100 mm.  Its back side is clamped while a square region of the

Table 1
Set of material parameters used for the calculations.

Parameter Value Unit

�∗ 2186.0 [N/mm2]
�∗ 1458.0 [N/mm2]
�∗

0 1.0 [g/cm3]
 ∗

0 0.01 [N/mm2]
k∗
� 0.4 [s/cm2]

n∗ 2.0 [–]
m∗ 3.0 [–]

lo
ad
sc
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in
g
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ra
m
et
er

δ
[−
]

0 5 10 15 20 3025 35 40
0.00

0.25

0.50

0.75

1.00
f  b. For b = 0 the original approach without any bounds is restored (here referred
o a constant value of k∗

� = 0.5) whereas for b→ ∞ a sharp lower and upper bound
an be included by means of the parameters �min

0 and �max
0 respectively.

n the present approach, for example by means of replacing the
onstant growth velocity k∗

� by a function in �0. As one possibility
mong others, a generalised bell function defined as

∗
�(�0) = 1

1 +
∣∣[�0 − �mid

0 ]/[�max
0 − �mid

0 ]
∣∣2b

with �mid
0 = �max

0 + �min
0

2
(8)

an be introduced, thereby restricting the density to vary between
he bounds �min

0 and �max
0 . The bell function (8) is visualised in Fig. 1

or different values of b, where b ≥ 0 and �min
0 < �∗

0 < �max
0 .

.2.2. Three-dimensional micro-sphere framework
The three-dimensional micro-sphere formulation is based on

ntegration of one-dimensional constitutive relations on the unit-
phere U

2. Including a normalisation, the notation for the general
ntegration operation is introduced as

•〉 = 1
4�

∫
U2

• dA. (9)

ased on this, the hyper-elastic form for the Piola stresses is now
etermined from the density-weighted strain energy  0 = 〈 0(�)〉
nd takes the representation

 = ∂ 0

∂F
=

〈
∂ 0

∂�
∂�
∂F

〉
=

〈[
�0

�∗
0

]n∗
∂ e

0

∂�
1
�

t ⊗ r

〉
, (10)

f. Eqs. (1) and (6).  It is important to note that both, the stretch �
s well as the referential density �0 are referred to the direction of
he referential unit-vector r ∈ U

2. Moreover, the unit-sphere itself
hould not be confused with a representative volume element since
he unit-sphere does not take the interpretation of a physical space.

The integration operation introduced in Eq. (9) is generally too
omplicated to be evaluated analytically so that numerical integra-
ion schemes are applied.

.2.3. Higher-order referential density moments
The directional referential density �0 takes different values for

ifferent levels of deformation �. As these stretches � depend on
he motion gradient F and the respective direction r, the direction

ependent density values render the constitutive relation for the
iola stresses P to be anisotropic. This texture can be represented
y means of different anisotropy quantities and visualisation tech-
iques, such as directional Young’s moduli plots. In this work we
rch Communications 42 (2012) 77– 86 79

make use of higher-order referential density moments, which are
defined by means of Eq. (9) as

A = 〈�0〉, (11)

A = 3〈�0r ⊗ r〉, (12)

A = 5〈�0r ⊗ r ⊗ r ⊗ r〉, (13)

so that �0 = 1 renders A, A and A as (symmetric) identity tensors of
zeroth, second and fourth order.

3. Finite element simulations

This section covers illustrative structural-design-related exam-
ples based on the anisotropic micro-sphere growth formulation
as summarised in Section 2. Motivated by Borrvall and Petersson
(2001), we  investigate four three-dimensional benchmark-type
problems.

In view of the material parameters used for the following exam-
ples, we  adopt the values summarised in Table 1 and choose a
constant time step size of �t  = 0.5 s for all simulations. Further-
more, the loading magnitude f = ı� is defined in terms of the
respective traction magnitude � multiplied by the stepwise load
scaling parameter ı, see Fig. 2. The local densities �i0, as referred
to the underlying discrete integration directions ri ∈ U

2—with
i = 1, . . .,  21 as this work proceeds, cf. Bažant and Oh  (1986)—are
stored as internal variables at the finite element integration point
level, with �i0

∣∣
t0

= �∗
0. In consequence, the model becomes path-

dependent. Local anisotropic material properties are visualised
via Eqs. (11)–(13) by means of orientation-distribution-function-
type (odf) representations, as shown in Section 3.5,  see also
Waffenschmidt et al. (2011).
time t [s]

Fig. 2. Stepwise constant load scaling parameter ı used for the simulations. The
magnitude of the respective loading is f = ı�,  where � is specified for the respective
examples.
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Fig. 3. (a) Geometry, finite element mesh and boundary conditions of the cantilever. The back side of the beam is clamped while the white region at the front of the beam is
exposed  to shear traction �. (b) Evolution of displacement u2 = u · e2 recorded at middle node (◦) within white region at front side.

Fig. 4. Finite element simulation of the cantilever exposed to shear traction, cf. Borrvall and Petersson (2001). Evolution of the zeroth-order density moment A at four different
points  in time where regions with values of A < �∗

0 are blanked.
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ig. 5. (a) Geometry, finite element mesh and boundary conditions of the crank. T
xposed to shear traction �. (b) Evolution of displacement u3 = u · e3 recorded at mid

ront is loaded by a shear traction in vertical direction, i.e. � = − ı�e2
ith � = 1.6 N/mm2. The cantilever is discretised with 32 × 20 × 6

inear displacement-based hexahedral elements with 4851
odes.

The deformation in terms of the vertical displacement u2 = u · e2
ecorded at the middle node (◦) of the white loading region over
ime is plotted in Fig. 3(b). Due to the stepwise application of
onstant shear traction forces, we observe a distinct creep-type
daptation behaviour. The magnitude of the displacement clearly
ends to decrease with time for a constant loading level �, which
esults from the adaptation process accompanied by a change in
ocal density A and corresponds to an increase in stiffness respec-

ively a decrease in compliance. However, we observe that the
isplacement highlighted tends to saturate towards a characteristic
quilibrium state—a state where the deformation and the density

ig. 6. Finite element simulation of the crank exposed to shear traction, cf. Borrvall and P
oints  in time where regions with values of A < �∗

0 are blanked.
ck side of the crank is clamped while the white region at the front of the crank is
ode (◦) within the white region at the front side.

remains constant for a given load, but does not fully reach this state
for any of the loading levels. To capture these saturation plateaus,
one could either increase the time period of the constant loading
levels or increase the adaptation velocity k∗

� , see Waffenschmidt
et al. (2011) for a detailed sensitivity-type analysis of the material
parameters.

To analyse the growth or rather structural design process in
the cantilever under the prescribed loading conditions, we display
the evolution of the zeroth-order density moment A at four dif-
ferent points in time, t = {10, 20, 30, 40} s, see Fig. 4. Here and in
the following, degrading regions corresponding to values of A < �∗

0
are blanked which means that only isosurfaces corresponding to a

densification of the material, i.e. A ≥ �∗

0, are visible. However, the
blanked degenerated regions still exist and also contribute to the
overall load-bearing capacity.

etersson (2001).  Evolution of the zeroth-order density moment A at four different
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ig. 7. (a) Geometry, finite element mesh and boundary conditions of the stool. Fo
ube  is loaded by means of a traction in vertical direction. (b) Evolution of displacem

In Fig. 4, we observe a remarkable densification of the cantilever
fter 10 s particularly in those regions that are predominantly
ffected by the loading and in consequence associated with high

evels of strain energy. For the problem at hand, these regions are
he load-bearing upper and lower flanges of the cantilever as well
s the region where the traction is applied. At 40 s, the expected
istribution of the material, such that the cantilever provides

ig. 8. Finite element simulation of the stool exposed to traction, cf. Borrvall and Peterss
n  time where regions with values of A < �∗

0 are blanked.
uare regions at the bottom edges are clamped while a square region on top of the
3 = u · e3 recorded at middle node (◦) within white region at the top side.

improved structural support for the applied shear traction, is
observed. Compared to the distribution obtained by Borrvall and
Petersson (2001), we find qualitatively similar results for the

cantilever example, even if the reported “I-beam design with
varying dimensions of waist and flanges” cannot be reproduced
exactly and the blanked degenerated regions still contribute to
the overall load-carrying capacity. Moreover, the discretisation in

on (2001). Evolution of the zeroth-order density moment A at four different points
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Fig. 9. (a) Geometry, finite element mesh and boundary conditions of the coathanger. Clamped square regions of the lateral parts of the cross while shear tractions are
a n of d
s

t
t
2

3

w
s
s
t
e

F
d

pplied at small square regions at the front and the back of the domain. (b) Evolutio
ide.

he present study is much coarser—we use only 6 elements over
he width of the beam whereas Borrvall and Petersson (2001) use
4 elements.

.2. Crank

As the second example, we consider an L-shaped crank structure
ith L = 100 mm.  The back side is clamped (u1 = u2 = u3 = 0) while a
hear traction of � = − ı�e3 with � = 1.5 N/mm2 is applied at a small
quare region at the front of the crank, cf. Fig. 5(a). The geome-
ry is discretised by 24,000 displacement-based quadrilateral finite
lements resulting in 26,901 nodes.

ig. 10. Finite element simulation of the coathanger exposed to shear traction, cf. Borrv
ifferent points in time where regions with values of A < �∗

0 are blanked.
isplacement u3 = u · e3 recorded at middle node (◦) within white region at the front

The deformation in terms of the vertical displacement u3 = u · e3
recorded at the middle node (◦) within the white loading region
over time is plotted in Fig. 5(b). Compared to Fig. 3(b), a quali-
tatively similar mechanical response is observed. Fig. 6 illustrates
the evolution of the zeroth-order density moment A at four differ-
ent points in time where regions with values of A < �∗

0 are blanked.
Even if we use only 24,000 finite elements, the resulting structure is
very similar to the results reported by Borrvall and Petersson (2001)
who applied 256,000 elements. The present loading case leads to a

combination of bending and torsion: we  observe a slanting I-beam
character at the outer part of the structure as a result of the bend-
ing, while close to the clamped wall the improved shape consists
of a tubular section which stems from the torsional loading.

all and Petersson (2001). Evolution of the zeroth-order density moment A at four
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.3. Stool

As a third example, we consider a cube, see Fig. 7(a), with
 = 100 mm.  We  apply the loading at the top of the cube by means
f a traction in vertical direction, i.e. � = − ı�e3 with � = 5.0 N/mm2

nd clamp the cube at four square edge regions at the edges. In
he work by Borrvall and Petersson (2001),  however, these regions
re supported only in e3-direction with the displacements in e1-
nd e2-direction being unconstrained. The cube is discretised into
2 × 32 × 32 linear displacement-based hexahedral elements with
5,937 nodes.

The evolution of the vertical displacement u3 = u · e3 recorded at
he middle node (◦) within white region is plotted in Fig. 7(b).
Fig. 8 shows the evolution of A at four different points in time
here regions with values of A < �∗

0 are blanked. Similar to Borrvall
nd Petersson (2001),  we observe that the resulting structure con-
ists of four legs which somewhat resemble the design of a stool. For

ig. 11. Anisotropy evolution for the four examples (a)–(d) at t = 40 s displayed at represen
ourth-order density moments A, whereby the isotropic initial state is plotted additionall
o  densification/degradation; a change in shape of the odf is attributed to the evolution of a
he  evolution of the anisotropy by means of visualising the difference between the ma
eferences to colour in this figure legend, the reader is referred to the web  version of the 
arch Communications 42 (2012) 77– 86

the simulations performed in this work, however, the lower parts
of the legs of the stool are separated from each other, whereas in
Borrvall and Petersson (2001) the legs are kept together by a plate
on the floor. This effect stems from the specific boundary conditions
chosen.

3.4. Coathanger

The last example consists of a cross-shaped domain, see
Fig. 9(a) where L = 100 mm,  which is discretised into 40,000 lin-
ear displacement-based hexahedral elements resulting in 44,541
nodes. As boundary conditions, we  apply shear tractions of
� = − ı�e3 with � = 1.0 N/mm2 at small square regions at the front

and the back side of the specimen while we  clamp the displace-
ments at square regions of the lateral parts of the cross.

The vertical displacement u3 = u · e3 recorded at the middle node
(◦) within the white region over time is displayed in Fig. 9(b).

tative integration points and visualised by means of odf-type distributions based on
y as a reference state (grey-shaded sphere). A change in size of the odf is attributed
nisotropic material properties. The colour code respectively contour plot, indicates
ximum and minimum principal value of A, i.e. A1 − A3. (For interpretation of the
article.)
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Fig. 10 shows the evolution of A at four different points in
ime where regions with values of A < �∗

0 are blanked. Similar to
orrvall and Petersson (2001),  we observe that the resulting struc-
ure resembles the design of a coathanger. It is interesting to see
hat the evolving improved density distribution consists of a plane
urface in the upper middle part of the cross supporting tensile
tresses and a plate at the bottom reaching from the front to the
ack loading regions and thereby supporting compressive stresses.

.5. Evolution of anisotropy

Since the growth process modelled in this contribution is
nisotropic, we additionally investigate the evolution of anisotropy
y means of representative anisotropy measures. As a scalar-valued
uantity we use the difference in maximum and minimum prin-
ipal values of the second-order density moment A = Aini ⊗ ni, i.e.
1 − A3, cf. Eq. (12). This anisotropy measure is depicted as a contour
lot for all four examples in Fig. 11 at t = 40 s, where an isotropic
tate (blue) corresponds to A1 − A3 = 0. It is clearly seen that the
egree of anisotropy changes most significantly in those regions
hich are predominantly loaded and thus undergo high strain

nergy levels.
To investigate the evolution of anisotropy in more detail, we

ow focus on three exemplary integration points to visualise
ocal anisotropic material properties by means of the fourth-order

oment A or rather its corresponding orientation-distribution-
ype-function (odf) �A

0 = [r ⊗ r] : A : [r ⊗ r].
Fig. 11(a) shows the local state of anisotropy at three differ-

nt integration points for the cantilever. As intuitively expected,
e see that odf located at the top load-bearing “flange” of the

antilever shows the most significant change in size and shape,
hich reflects a pronounced growth behaviour accompanied by

 considerable change of anisotropic material properties. Odf ,
valuated near the loading region, also shows moderate anisotropic
ehaviour or rather texture evolution, since its shape deviates from

ts initial spherical distribution which, here and in the following, is
arked by the superimposed grey-shaded sphere. Odf , however,

hrinks almost isotropically, i.e. maintaining its spherical shape,
hich clearly indicates the degradation process of the material

ocated in this point.
By analogy to the considerations above, Fig. 11(b) illustrates the

ocal state of anisotropy at three different integration points for
he crank example. We  observe that especially odf shows a very
ronounced and elongated shape in combination with a drastic
hange in size. This distribution corresponds to an almost trans-
ersely isotropic state, similar to odf of the cantilever. Odf ,
ocated near the loading region, shows moderate anisotropic prop-
rties, whereas odf shrinks isotropically which clearly indicates
he degradation process of the material located in this point.

Similarly, Fig. 11(c) and (d) illustrates the local anisotropy for
he stool and the coathanger. In both cases, especially odfs show

 very pronounced anisotropic shape in combination with a consid-
rable change in size. Odfs and show only moderate anisotropic
ehaviour.

. Summary

This contribution investigates the application of a constitu-
ive model which was originally proposed for the simulation of
nisotropic growth and remodelling phenomena in bones to struc-
ural design. To this end, four three-dimensional benchmark-type

roblems, taken from topology-optimisation-related literature as
.g. Borrvall and Petersson (2001),  are discussed and compared
ualitatively with the results obtained by the aforementioned
uthors.
rch Communications 42 (2012) 77– 86 85

The constitutive model proposed in this work is based on the
micro-sphere framework which allows to straightforwardly extend
one-dimensional constitutive models to an anisotropic three-
dimensional formulation. The well-established one-dimensional
model includes energy-driven evolution of directional densities.
These directional densities are referred to the integration direction
of the micro-sphere and, as an advantage of the model at hand,
enable to compute higher-order tensorial density moments. By
analogy to so-called Young’s moduli plots common in the context of
modelling and simulation of texture phenomena, the visualisation
of such higher-order density moments provides detailed insights
into the simulated deformation-induced anisotropic local material
properties.

The simulation results capture the densification effects and
clearly identify the main load bearing regions. In this regard,
degrading regions are blanked for illustration and comparison
purposes which means that only isosurfaces corresponding to a
densification of the material are visible. However, the blanked
degenerated regions still exist and contribute to the overall load-
bearing capacity. In this regard, one may  also think of a complete
removal of the degrading regions followed by a subsequent simu-
lation with a new discretisation.

It turns out that even if we  take a conceptually different
approach compared to the procedures used in the more classical
topology-optimisation context by Borrvall and Petersson (2001),
we nevertheless find—at least qualitatively—very similar designs
by blanking regions of degradation. Apart from the totally dif-
ferent material model allowing for large deformations, present
discrepancies can partly be attributed to the coarser discretisa-
tion and slightly different application of boundary conditions.
Moreover, in contrast to common structural optimisation strate-
gies, which mostly aim to optimise merely the size, shape or
topology, the formulation proposed in this work also contains
the improvement or rather adaptation of the material properties
itself. This consequently results in an evolution of anisotropy and
texture, which—by means of the material model proposed—can
be conveniently visualised in terms of orientation-distribution-
function-type representations of higher-order density moments.
This additional information can, from a material design point of
view, be very valuable—in particular in combination with the struc-
tural design formulation established.
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