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Complex  networks  of  finger-like  protrusions  characterize  the  dermal–epidermal  junction  of  human  skin.
Although  formed  during  the  foetal  development,  such  dermal  papillae  evolve  in  adulthood,  often  in
response  to  a pathological  condition.  The  aim of this  work  is  to  investigate  the  emergence  of  biaxial
papillary  networks  in  skin  from  a  mechanical  perspective.  For  this  purpose,  we  define  a biomechanical
model  taking  into  account  the  volumetric  growth  and  the  microstructural  properties  of  the dermis  and
the  epidermis.  A scalar  stream  function  is  introduced  to  generate  incompressible  transformations,  and
used to  define  a variational  formulation  of  the  boundary  value  elastic  problem.  We  demonstrate  that
incompatible  growth  of  the  layers  can  induce  a bifurcation  of  the  elastic  stability  driving  the  formation  of
dermal  papillae.  Such  an  interfacial  instability  is found  to  depend  both  on  the  geometrical  constraints  and
on the  mechanical  properties  of  the skin  components.  The  results  provide  a mechanical  interpretation  of
skin morphogenesis,  with  possible  applications  for micropattern  fabrication  in  soft  layered  materials.

© 2011 Elsevier Ltd. All rights reserved.

. Introduction

The dermal–epidermal junction in human skin is characterized by the presence of complex networks of dermal papillae, which are
nger-like structures of the dermis projecting upwards into the epidermis, as depicted in Fig. 1. Such protrusions increase the surface
ontact between the layers, favouring the exchange of oxygen and nutrient/waste products. The spatial distribution of the dermal papillae
s detectable by staining techniques on the basement membrane of the skin (the basal lamina), which is a band-link sheet about 0.5–1 �m
hick anchoring down the basal cells of the epidermis to the loose connective tissue of the dermis (Chan, 1997). The formation of dermal
idges starts approximately 10 weeks post-fertilization of the embryo, when small amplitude undulations of the basal laminae appear
s a consequence of localized cellular proliferations in the basal layer of the epidermis (Okajima, 1975). In the following 5–7 weeks,
rimary ridges mature and extend deeper into the dermis forming sweat glands, whilst providing nutrients to the stem cells of the
uprabasal epidermal layer, which form new skin tissue. After this period, no new dermal ridges are formed but a downfolding process
ccurs at the top of each primary ridge, creating a network of secondary ridges and defining the final shape of a dermal papilla, having
n inter-ridge distance of about 100–200 �m and a width in the range 70–150 �m (Babler, 1991). Although human dermal ridges form
rst during early foetal development, they keep evolving even into adulthood, often in response to a pathological condition. For example,
soryatic abnormal proliferation results in a self-organized remodelling process characterized by an ordered (quasi-hexagonal) papillary
rchitecture (Iizuka et al., 1999), whilst clusters of melanoma cells are often observed inside dermal papillae, creating disarrangement of
he dermal–epidermal architecture before invading the dermis (Pellacani et al., 2005). Classical mathematical models have been focused on
he embryonic formation of skin patterns, coupling reaction–diffusion of morphogens with chemically driven tissue interactions (Murray
nd Cruywagen, 1994). More recently, the role of mechanics was investigated for studying skin wrinkles (Efimenko et al., 2005) and pattern
ormation in fingerprints (Kucken and Newell, 2005), demonstrating that a buckling instability at the basal layer of the epidermis could
xplain the primary ridges. Moreover, Basan et al. (2011) have shown that dermal papillae can result from a fingering instability at the

nterface between a viscous fluid with a proliferation term and a viscoelastic material.

The aim of our work is to study the emergence of papillary networks from a biomechanical perspective, investigating if a differential
rowth between the layers can provoke a bifurcation of the elastic stability. Taking into account the microstructural properties of the
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ig. 1. Scheme of the stratified microstructure of the skin layers (left) and histological skin section showing the undulated structure of the dermal papillae (right, courtesy
f  Dr. P. Guitera).

ermis and the epidermis, we want to understand if the emergence of such finger-like structures can arise from a mechanical instability,
s experimentally observed for the growth of soft solids under geometrical constraints (Dervaux and Ben Amar, in press). This article is
rganized as follows. In Section 2, we will define the biomechanical model with volumetric growth, together with an implicit kinematic
escription for deriving a variational formulation of the elastic problem. In Section 3, we  will perform a linear stability analysis for con-
trained growth problems of one-layered and bi-layered models of skin tissue. The analytical solutions will be derived, and the results will
e discussed in Section 4.

. Definition of the biomechanical theory

In the following we define a biomechanical model of skin, which is considered as a hyperelastic soft tissue made of two  growing layers:
he dermis and the epidermis.

.1. Kinematics and hyperelastic constitutive model

Let us consider each skin layer as a soft material having a thickness H in the direction of the z axis and lateral widths Lx, Ly � H.  The
lastic and the geometrical properties of adult human skin varies amongst anatomical location, sex and age of individuals. The thickness
f the epidermis varies from 0.1 (eyelids) to 1.5 mm (palms and soles), whilst for the dermis it is in the range 0.3 (eyelids)–3 mm (back).
ndicating with �0 the fixed reference configuration of the unloaded state, the description of the deformation can be defined by a mapping
: �0 → R3 that transforms the material point X∈�0 to a position x=�(X) in the deformed configuration �.  Even if surface growth models
an be successfully applied to describe stretch-induced remodelling of thin skin (Buganza Tepole et al., 2011), volumetric growth should be
aken into account for investigating the emergence of three-dimensional patterns. Given the deformation tensor F=∂�(X)/∂X, volumetric
rowth processes can be represented by the classical multiplicative decomposition (Rodriguez et al., 1994):

F = FeFg (1)

here J = detFg > 0 determines the volume change (in the case of isotropic homogeneous growth Fg = gI and J = g3), and Fe represents the
lastic deformation tensor. Considering that skin tissues are basically composed of water, an incompressibility constraint must be generally
mposed, so that detFe = 1. The epidermis is only composed of cellular matter and behaves as an isotropic material, hereafter modelled as

 neo-Hookean material, so that:

 iso(Ce) = c1 · (Ce : I − 3) (2)

here c1 indicates the shear modulus and Ce is the elastic right Cauchy–Green strain tensor. The dermis layer is instead characterized by
 strong anisotropic behaviour, due to the presence of an oriented distribution of collagen and elastin fibres, which are immersed in the
round extracellular matrix. Therefore, a general form of the strain energy density � can be assumed as the sum of an isotropic and a
nisotropic term (Holzapfel and Ogden, 2010), as follows:

� = J · [ iso(Ce) +  aniso(Ce, Ax, Ay)] − p · (detCe − 1) (3)

here p is the classical Lagrange multiplier ensuring incompressibility of the tissue, and Ax, Ay are structural tensors along the principal
irections of fibre reinforcements. The meshwork of the collagen and elastin fibres inside the dermis shows a preferential extensibility
irection along the cleavage lines (Langer, 1978), so that a general orthotropic material behaviour can be assumed. Taking the unit vectors
x, ey along such orthogonal directions, the anisotropic strain energy contribution  aniso only holds for the dermis,  and can be expressed as
ollows (Ciarletta et al., 2011):

 aniso(Ce, Ax, Ay) =
∑
j=x,y

kj
4

· (Ce + C−1
e − 2I) : (ej ⊗ ej) (4)

here kx, ky are the anisotropic material parameters determining the fibre reinforcements along the directions ex and ey, respectively. The

train energy function defined in Eq. (4) accounts for an anisotropic stiffening both for fibre extension and compression. The positivity of
he material parameters ensures polyconvexity and coerciveness of the constitutive model, other than physical consistency at large strains.

A wide variability of experimental techniques aimed at determining the stiffness of the two  layers, giving a tangent elastic modulus of
bout 0.4–13 MPa  for the dermis and 0.49–1.51 MPa  for the epidermis (Agache et al., 1980; Crichton et al., 2011). In the following we  will
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ig. 2. Scheme of the multiplicative decomposition F = FeFg for volumetric growth. Considering an intermediate mixed coordinate state (x,y,Z), we can additionally set
e = FaFb, with Fa and Fb given by Eqs. (5) and (6).

ropose a variational formulation of the elastic problem, based on the definition of a non-linear stream function for generating isochoric
eformations.

.2. Canonical transformation using a non-linear stream function

In the case of planar deformations, the use of a nonlinear stream function for imposing incompressibility of the elastic deformation
ensor Fe allows a straightforward linear stability analysis for constrained growth problems (Ciarletta and Ben Amar, in press). With the
im to study the formation of complex three-dimensional instability patterns, we  extend our previously developed formalism in order
o transform a generic hyperelastic boundary value problem into a variational formulation. For this purpose, we  use the general solution
iven by Ciarletta (2011) for defining isochoric transformations in the Euclidean space. In particular, we define a scalar generating function
(x, y, Z) in an intermediate mixed coordinate state, so that the unknown material coordinates can be expressed in the following gradient
orm:

X = ∂
2
f (x, y, Z)
∂y∂Z

; Y = ∂
2
f (x, y, Z)
∂x∂Z

(5)

s shown in Fig. 2, a multiplicative decomposition Fe = FaFb applies to the elastic deformation tensor, which in components reads:

F−1
b =

[
g · f,xyZ g · f,yyZ g · f,yZZ
g · f,xxZ g · f,xyZ g · f,xZZ

0 0 g

]
; Fa =

[
1 0 0
0 1 0
z,x z,y z,Z

]
(6)

here z = z(x, y, Z), comma  denotes partial differentiation, and the growth rate g is referred to each specific layer (g = 1 in absence of growth).
mposing the incompressibility condition detFe = 1 in Eq. (6),  we derive an integral solution for z in the following form:

z = g3

∫ Z

(f 2
,xy�(x, y, �) − f,xx�(x, y, �) · f,yy�(x, y, �))d� + ˇ(x, y) (7)

here ˇ(x, y) is a scalar function of the two spatial coordinates, which is generally fixed by boundary conditions. Assuming that z,Z /= 0,
 ∞ for avoiding local singularities in the elastic solution, Eqs. (5) and (7) give an integro-differential representation of an isochoric

ransformation as a function of the nonlinear stream function f(x, y, Z). In the following, we will apply this kinematic formulation to derive
 variational formulation of our biomechanical problem.

.3. Variational formulation and Euler–Lagrange equations

Let us consider an isochoric transformation having the following form of the scalar generating function:

f(x, y, Z) = xyZ + � · �(x, y, Z) (8)

here � is a constant parameter. If |�| � 1, the scalar function �(x, y, Z) represents the linear perturbation of the basic elastic solution. In
act, substituting Eq. (8) in Eqs. (5) and (7),  the following relations hold:⎧⎨

⎩
X = x + � · �,yZ ; Y = y + � · �,xZ

z = g3[Z + 2� · �,xy + �2 ·
∫ Z

(�2
,xy� − �,xx� · �,yy�)d�]

(9)

n order to define a variational formulation of our biomechanical problem, let us write the total bulk potential energy 	 of the continuum
n the mixed coordinates, reading:
	(x, y, Z) =
∫
�j

	dxdydZ =
∫ Lx/2

x=−Lx/2

∫ Ly/2

y=−Ly/2

∫ H

Z=0

[�(Fe(�), ex, ey) · det(Fa)]dxdydZ (10)
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ith the aim to take into account the elasticity of the basal lamina, we  can also define a surface energy density A at the boundary Z = H,
hich reads:

A(x, y) =
∫
Sj

A dSj = 


∫ Lx/2

x=−Lx/2

∫ Ly/2

y=−Ly/2

√
1 + (z,x)

2 + (z,y)
2 dxdy (11)

here 
 represents the surface tension of the elastic membrane. Atomic force microscopy measurements of animal samples give data in
he range 
 = 0.12–1.32 N/�m (Candiello et al., 2007). Neglecting the presence of body forces and of surface traction on the body, the linear
tability problem can be defined in a variational formulation, as follows:

ı	(x, y, Z) + ıA(x, y) = 0 (12)

hich represents the minimization of the total elastic energy of the material. Substituting the strain energy function defined in Eqs. (2)–(4),
nd expanding the potential energy up to the second order in �, Eq. (10) reads:

	 = g(g2 − 1)2

4
((8 + 4g2)c1 + kx + ky) + �g3(g2 − 1)(6c1(g2 − 1)kx + ky))�,xyZ

+ �
2

4g
·
{

(4g2c1 + kx)�2
,yZZ + (4g2c1 + ky)�2

,xZZ + g2(4c1 + ky + g4kx)�2
,yyZ

+g2(4c1 + kx + g4ky)�2
,xxZ + 2g4(c1(−6 + 30g4) + (kx + ky)(3g2 − 1))�2

,xyZ

+4g8(4c1 + ky)�2
,xyy + 4g8(4c1 + kx)�2

,xxy − 4g6(4g2c1 + ux)�,xxy�,yZZ

−4g6(4g2c1 + uy)�,yyx�,xZZ + g2(c1(8 + 12g2(1 − g4)) + (kx + ky)(1 − g4 + 2g6))�,yyZ�,xxZ
}

(13)

isregarding the integral term, the surface energy density can be simplified as follows:

A = 
(1 + 2g6�2 · (�2
,xxy + �2

,xyy)) (14)

onsidering arbitrary variations of the nonlinear stream function �, the volumetric Euler–Lagrange equation reads:(
∂	
∂�,xyZ

)
,xyZ

+
(
∂	
∂�,xxZ

)
,xxZ

+
(
∂	
∂�,yyZ

)
,yyZ

+
(
∂	
∂�,xZZ

)
,xZZ

+
(
∂	
∂�,yZZ

)
,yZZ

+
(
∂	
∂�,xyy

)
,xyy

+
(
∂	
∂�,xxy

)
,xxy

= 0

(15)

s far as the boundary conditions are concerned, the geometrical compatibility of the perturbation at a fixed surface imposes the following
onditions:

�,xZ = �,yZ = �,xy = 0 (16)

t a free surface, the Euler–Lagrange equations are derived from surface terms in the energy integrals, and read:(
∂	
∂�,yZZ

)
,y

+
(
∂	
∂�,xZZ

)
,x

= 0 (17)

(
∂	
∂�,xyZ

)
,xy

+
(
∂	
∂�,xxZ

)
,xx

+
(
∂	
∂�,yyZ

)
,yy

+
(
∂	
∂�,xZZ

)
,xZ

+
(
∂	
∂�,yZZ

)
,yZ

−
(
∂A
∂�,xyy

)
,xyy

−
(
∂A
∂�,xxy

)
,xxy

= 0

(18)

hich are obtained setting arbitrary variations ı�,Z and ı�,  respectively. The conditions in Eqs. (17) and (18) correspond to a zero incre-
ental stress at the free surface. In the following we  use the proposed variational formalism to investigate if differential growth in skin

ayers can induce a bifurcation in the elastic stability localized at the dermal–epidermal junction.

. Results

In this section we investigate the emergence of papillary structures in the dermal–epidermal junction of the skin in few constrained
rowth problems.

.1. Surface instability during the constrained growth of the dermis layer

Let us first consider the case of a growing dermis layer attached at a fixed surface at Z = 0 and free of external traction at the upper

urface at Z = Hd. In order to study the occurrence of a biaxial surface wrinkling, mimicking the network of papillary ridges at the basal
amina, we assume the following expression for the nonlinear stream function:

�(x, y, Z) = h(Z) sin(�xx) sin(�yy) (19)
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epresenting a Z-dependent sinusoidal perturbation of the (x, y)-planes, having modes �x = 2�n/Lx, �y = 2�m/Ly, where n, m are integer
umbers for satisfying the no-sliding conditions at the side surfaces. Substituting Eqs. (13) and (19) in the volumetric Euler–Lagrange
quation, given by Eq. (15), the governing condition for the elastic equilibrium reads:

(4g2c1(�2
x + �2

y ) + ky�2
x + kx�2

y )h
′′′′

(Z) + g2
[
�2
y (4c1 + g4kx + ky)

+�2
x (4c1 + g4ky + kx) + �2

y�
2
x (8c1(1 + 2g6) + (g4 + 1)(kx + ky))

]
h′′(Z)

+4g8�2
x�

2
y (�2

x (4c1 + kx) + �2
y (4c1 + ky))h(Z) = 0

(20)

here prime denotes differentiation, and g represents the dermis growth rate. The perturbation must vanish at the fixed surface, and, from
q. (9),  the two boundary conditions read:

h(0) = h′(0) = 0 (21)

t the free surface Z = Hd, the two Euler–Lagrange equations can be simplified from Eqs. (17) and (18) as follows:

2g6�2
y�

2
x (8g6c1 + Ky + Kx)h(Hd) + (4g2c1(�2

y + �2
x ) + �2

yKx + �2
xKy)h

′′(Hd) = 0 (22)

4g6(�2
y + �2

x )�2
y�

2
x
h(Hd) = (4g2c1(�2

y + �2
x ) + �2

yKx + �2
xKy)h

′′′
(Hd)

−�2
x�

2
y (8c1(1 + 4g6) + (kx + ky)(1 + 3g4))h′(Hd)

(23)

or the sake of simplicity, let us provide an analytical solution to the elastic problem setting kx = ky = K in Eq. (4) and looking for biaxial
rinkling with �x = �y = �. Under these assumptions, the volumetric Euler–Lagrange equation reads:(

∂2

∂Z2
− 2�2g6

)[
(4c1g2 + K)

(
∂2

∂Z2
− 2�2g2 4c1 + K

4c1g2 + K

)]
h(Z) = 0 (24)

aking into account the boundary condition at the fixed surface, the general solution has the following form:

h(Z) = h0

[
Sinh(

√
2�EgZ) − Eg

g3
Sinh(

√
2�g3Z) + ˇ(Cosh(

√
2�EgZ) − Cosh(

√
2�g3Z))

]
(25)

here we have set Eg = (
√

4c1 + K/
√

4c1 + K/g2). Substituting into the Euler–Lagrange condition in Eq. (17), corresponding to a vanishing
ncremental shear stress, we obtain the following relation:

 ̌ = (4c1(1 + g6) + K(1 + g4))Sinh(
√

2�EgHd) − 2g3
√

4c1 + K
√

4c1 + K/g2Sinh(
√

2�g3Hd)

2g4(4c1g2 + K)Cosh(
√

2�g3Hd) − (4c1(1 + g6) + K(1 + g4))Cosh(
√

2�EgHd)
(26)

inally, the dispersion relation of the wrinkling instability is given by the other boundary condition at the free surface, given in Eq. (18),
nd reads:

A + B · Sinh(
√

2�EgHd)Sinh(
√

2�g3Hd) − C · Cosh(
√

2�EgHd)Cosh(
√

2�g3Hd)+



√
2�D

[
−
√

4c1 + KSinh(
√

2�EgHd)Cosh(
√

2�g3Hd)

+g2
√

4g2c1 + KCosh(
√

2�EgHd)Sinh(
√

2�g3Hd)
]

= 0

(27)

here:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

A = −4g5(4c1 + K)(4c1g2 + K)3/2(4c1(1 + g6) + K(1 + g4))

B = g3
√

4c1 + K(4c1g2 + K)(g8(4c1g2 + K)2 + (4c1(1 + 6g6) + K(1 + 6g4))(4c1 + K))

C = g(4c1 + K)
√

4c1g2 + K(4g8(4c1g2 + K)2 + (4c1(1 + g6) + K(1 + g4))2)

D = 2g2(g2 − 1)(4c1(1 + g2 + g4) + K(1 + g2))
√

4c1g2 + K
√

4c1 + K

(28)

f we neglect the presence of the surface tension, the dispersion equation reveals a threshold value g = gth for �→ ∞ when B = C, which
orresponds to a classical surface instability. In particular, this threshold value varies with the stiffness ratio K/c1 between two  asymptotic
imits, gth

iso
≤ gth ≤ gth

aniso
,that can be calculated analytically, as follows:⎧⎪⎨

⎪⎩
gth
aniso

= 1
3

(1 + (19 − 3
√

33)1/3 + (19 + 3
√

33)1/3) � 1.8392 for K/c1 → ∞

gth
iso

= (gth
aniso

)2/3 � 1.5011 for K/c1 = 0
(29)

s discussed in Ben Amar and Ciarletta (2010),  the presence of a capillary energy can fix the wavelength at threshold because it introduces
 typical length-scale dcap in the system, which is given by diso = 
/c1 or daniso = 
/K. From the dispersion relation in Eq. (27), we derive that
apillarity induces a small correction to the analytical threshold gth, such that the new threshold value is given by g* = gth + �d , where �
cap

an be found by series expansion of Eq. (27) around gth. In particular, the wavenumber at threshold can be found as follows:

√
2�th = 1

2EgHd
Log

[
B + C

C − B

]
(30)
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hich in series expansion over (g* − gth) gives the following asymptotic limits:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
2�th
aniso

= 1

2Hdgthaniso
Log

[
4.985

g∗ − gth
aniso

]
for K/c1 → ∞

√
2�th
iso

= 1
2Hd

Log

[
2.7126

g∗ − gth
iso

]
for K/c1 = 0

(31)

oreover, we find the typical logarithmic correction of the threshold and the wavelength th at first order in (g* − gth), which in the general
ase read:

th = (4
√

2�Hd)/Log

[
�Hd
dcap

]
; g∗ = gth + �

dcap
Hd

Log

[
�Hd
dcap

]
(32)

here �, � are constants depending on the stiffness ratio K/c1. Summarizing, we obtain that a critical volume increase in the dermal layer
etermines the occurrence of a surface instability, depending on the ratio between isotropic and anisotropic elastic moduli. Moreover, the
urface energy of the basal lamina fixes the wavelength of such an instability, providing a logarithmic correction to the growth threshold
alue.

.2. Papillary ridges formed by an epidermal layer growing on a nonlinear elastic dermis

Let us now consider the case where a growing epidermal layer is attached at its bottom to the dermis, whose thickness and elastic
odulus are indicated with He, Hd and c1e, c1d in the following. In this example, we consider that only the epidermis undergoes a volumetric

rowth process, and we set the reference plane Z = 0 at the fixed dermal surface. The solution of the governing equilibrium equation for
he dermis, given by Eq. (24) in absence of growth, reads as follows:

hd(Z) = fd[(Z − dd)Sinh(
√

2�Z)  −
√

2dd�Z · Exp[−
√

2�Z]] (33)

here fd, dd are constant parameters, and it is assumed that its bottom surface is fixed to a rigid substrate, i.e. hd(0) = h′
d
(0) = 0. In practice,

e aim at representing the situation where Hd < He, so that the growth instability is localized in a boundary layer at the dermal–epidermal
unction. Under these assumptions, the solution of the perturbed solution for the epidermal layer can be simplified as follows:

he(Z) = ˛d[Exp[−
√

2�Z]  + ˇd · Exp[−
√

2g3�Z]]  (34)

hich automatically vanishes for Z � Hd, with g representing the growth rate of the epidermis. Therefore, in order to solve this bi-layered
rowth model of skin, we need to impose four boundary conditions at Z = Hd. The first two  are given by imposing the continuity of the
isplacement fields at the interface, and read:

g3he(Hd) − hd(Hd) = 0; h′
e(Hd) = h′

d(Hd) (35)

he vanishing conditions of the surface terms in Eqs. (17) and (18) correspond to the continuity of the shear and normal stresses across
he interface, and give the remaining two Euler–Lagrange boundary equations:

(4c1d + Kd)(2�
2hd(Hd) + h

′′
d(Hd)) = (4g2c1e)(2�2g6he(Hd) + h

′′
e(Hd)) (36)

6�2(4c1d + Kd)h′
d
(Hd) − (4c1d + Kd)h

′′′
d

(Hd)) + 8�2
hd(Hd)

= 2�2g2(4c1e(1 + 2g6))h′
e(Hd) − (4g2c1e)h

′′′
e (Hd)

(37)

here Kd is the anisotropic elastic modulus of the dermis. Neglecting the presence of the capillary energy and of the material anisotropy in
he dermis, the dispersion relation Dd = 0 can be obtained substituting the perturbations in Eqs. (33) and (34) into the boundary conditions
n Eqs. (35)–(37), as follows:

Dd = Ad + BdCosh(2
√

2�Hd) − CdSin(2
√

2�Hd) = 0 (38)

ith: ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Ad = 8g2(g6 − 1)H2
d
�2 c1d
c1e

− (1 + 4H2
d�

2)

(
4
(
c1d
c1e

)2
+ g4(g9 − 3g6 − g3 − 1)

)
Bd = −4

(
c1d
c1e

)2
+ g4(g9 − 3g6 − g3 − 1)

Cd = 4
(
c1d
c1e

)
g2(g3 + 1)

(39)

onsidering the limit c1d/c1e � 1, and imposing simultaneously Dd = 0 and ∂Dd/∂ (�Hd) = 0 in Eq. (38), we derive that a basal laminae
ndulation first occurs at the growth rate threshold g* such that Bd = Cd. In particular, this threshold correction at first order in c1d/c1e is
iven by:
g∗ = gthiso + 0.8719 · c1d
c1e

(40)

s shown in Fig. 3 (left), such an asymptotic value depends on the ratio between elastic moduli c1d/c1e, recovering the analytical threshold
th
iso

in Eq. (29) if c1d=0. In the same way, when considering the limit (c1d/c1e) � 1, we  can derive a threshold scaling gth � (2c1d/c1e)2/13,



74 P. Ciarletta, M. Ben Amar / Mechanics Research Communications 42 (2012) 68– 76

r
t
T
t
g

w

F
c
t
n

3

Z

w
t

T

S
t

Fig. 3. Asymptotic value of the epidermal growth threshold gth depicted with respect to the elastic ratio c1d/c1e (left, Kd=0) and to Kd/c1e (right).

ecovering the fact that an infinite growth is required if the epidermis tends to be rigid. If in the one-layered model of skin the growth
hreshold indicated a surface instability with �→ ∞,  in this bilayer model we  find that the instability wavenumber is fixed to a finite value.
his results is rather intuitive because the dermis elasticity introduces a typical lengthscale corresponding to dd = Hdc1d/c1e. Considering
he limit c1d/c1e � 1, and substituting the threshold condition Bd = Cd in the dispersion relation in Eq. (38), the instability wavelength is
iven by solving:

Cosh(2
√

2�Hd) − Sinh(2
√

2�Hd) = −
(

(gthiso)
3 − 1

)
2�2H2

d + (1 + 4�2H2
d ) (41)

hich gives the following threshold wavelength:

th = 2�
�∗ � 2�Hd

√
2

1.58
= 5.62Hd (42)

inally, the presence of the surface energy of the basal lamina has the same effect discussed in the previous paragraph, introducing a
apillary length in the problem which provides a logarithmic correction to the growth rate threshold value. The instability pattern at
hreshold will result from a competition between these two lengthscales dd and dcap. However, further derivation in this sense will be
eglected for matter of notation compactness.

.3. Papillary ridges formed by a growing dermis under a soft epidermis layer

In this last example, let us consider a growing portion of the papillary dermis attached at Z = 0 to a fixed substrate and in contact at
 = Hd to a thicker epidermis layer, so that He � Hd. In such a case, the perturbed solutions of the volumetric Euler–Lagrange equation read:

hd(Z) = fe

{
de[Cosh(

√
2�EgZ) − Cosh(

√
2g3�Z)] + Sinh(

√
2�EgZ) − Eg

Sinh(
√

2g3�Z)
g3

}
(43)

he(Z) = ˛e[Exp[−
√

2�Z]  + ˇeZ · Exp[−
√

2�Z]] (44)

here g is the isotropic growth rate of the dermis layer and Eg = (
√

4c1d + Kd/
√

4c1d + Kd/g2). The two  boundary conditions corresponding
o the continuity of the perturbation fields across the interface are given by:

he(Hd) − g3hd(Hd) = 0; h′
e(Hd) = h′

d(Hd) (45)

he remaining two Euler–Lagrange equations in Eqs. (17) and (18) can be rewritten at Z = Hd as follows:

4c1e(2�2he(Hd) + h
′′
e(Hd)) = (4g2c1d + Kd)(2�

2g6hd(Hd) + h
′′
d(Hd)) (46)

c1e(24�2h′
e(Hd) − 4h

′′′
e (Hd)) − 8�4g7
hd(Hd)

= 2�2g2(4c1d(1 + 2g6) + Kd(1 + 2g4)))h′
d
(Hd) − (4g2c1d + Kd)h

′′′
d

(Hd)
(47)

ubstituting Eqs. (43) and (44) into the four boundary conditions given in Eqs. (45)–(47), we find the following simplified expression of
he dispersion relation for the interfacial instability:
Ad + Cosh(g3
√

2�Hd)(Bd1Cosh(
√

2�Hd) + Bd2Sinh(
√

2�Hd))

+Sinh(g3
√

2�Hd)(Cd1Cosh(
√

2�Hd) + Cd2Sinh(
√

2�Hd)) = 0
(48)
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ig. 4. Asymptotic value of the dermis growth threshold g* depicted with respect to the elastic ratio c1d/c1e (left, Kd=0; inset: rescaled zone with c1d/c1e>1) and to Kd/c1e
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here:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ad = 8
√

2g3 − 4
√

2
(
c1d
c1e

)2
g8(1 + g6) − 3

√
2
c1d
c1e

(g2 − 1)(1 + 3g6) + 4g5�dcap

Bd1 = −4g3(2
√

2 + g2�dcap) + 3
√

2
c1d
c1e

(g2 − 1)(1 + 3g6) +
√

2
(
c1d
c1e

)
(g2 + 2g8 + 5g14)

Bd2 = c1d
c1e

(g6 − 1)(2
√

2(g5 − 1) + g7�dcap)

Cd1 = − c1d
c1e
g2(g6 − 1)(2

√
2(1 − g) + g2�dcap)

Cd2 = 2(g6 + 1)(2
√

2 + g2�dcap) − 3
√

2
c1d
c1e
g3(g2 − 1)(3 + g6) −

√
2
(
c1d
c1e

)2
(g5 + 6g11 + g17)

(49)

ith dcap = 
/c1e. Such coefficients are written in the case Kd = 0 for matters of notation compactness; nevertheless, the influence of Kd on
he elastic stability is depicted in Fig. 4 (right). When dcap/Hd → 0, the isotropic dispersion relation in Eq. (48) highlights the occurrence of a
urface instability with �→ ∞ when (Bd1 + Bd2 + Cd1 + Cd2) = 0. In particular, for c1d � c1e the system corresponds to the monolayer case, and
e derive the same growth instability threshold gth

iso
. The variability of such an instability threshold g* with the elastic material parameters

s shown in Fig. 4. If dcap/Hd � 1 we can make a series expansion of Eq. (48) to quantify the effect of capillarity on the threshold values.
aking the realistic values dcap/Hd = 0.0001 and c1d/c1e = 0.3, the corrections are given by:

gth = g∗ + 0.1445
dcap
Hd

· Log

[
1.5268Hd
dcap

]
; th = (4

√
2�Hd)/Log

[
1.5268Hd
dcap

]
� 1.84Hd (50)

he structure of the dispersion relation is the same as the one studied for the monolayer model of dermis growth, and we  find again
hat the basal lamina elasticity imposes a logarithmic correction of the growth rate threshold value, whilst fixing the wavelength of the
erturbation.

. Discussion and conclusion

In this work, we have studied the formation of biaxial networks of papillary structures emerging at the dermal–epidermal junction of
he skin. For this purpose, we have defined a biomechanical model of volumetric growth processes of the two  upper skin layers, taking into
ccount the different structural properties of the epidermis and the dermis in Eqs. (2) and (3).  In particular, the presence of collagen and
lastin fibres embedded in the extracellular matrix of the dermis required the definition of a suitable anisotropic strain energy function,
iven in Eq. (4).  Differential growth between the two  layers, together with generic geometrical constraints, can induce residual strains
nside these two skin layers, which may  ultimately provoke a bifurcation of the elastic stability at their interface. Instead of the classical

ethod of incremental elastic deformations (Ogden, 1997), we perform the linear stability analysis using a novel variational formulation
f the boundary elastic problem. Defining a nonlinear stream function in a mixed coordinate state, we  are able to generate an implicit
escription of isochoric transformations in Eqs. (5) and (7).  The boundary value problem can be solved by minimization of the total elastic
nergy of the tissue, given by Eq. (12). The governing elastic equations correspond to the Euler–Lagrange equations, which are expressed
n Eqs. (15), (17) and (18), and are solved in the linear stability analysis of different constrained growth problems. Considering first the
sotropic growth of a surface-attached dermis, with a surface energy representing the elastic contribution of the basement membrane and
f the epidermis, we find that a surface wrinkling occurs at a threshold volume change. Such a threshold value increases with increasing
nisotropic stiffening, and we recover in Eq. (29) the analytical limit gth

iso
� 1.5011 for an isotropic material, which corresponds to the

ompressive strain εc = 1 − 1/gth
iso

� 0.33 found in the experiments of Trujillo et al. (2008) on hydrogels. Critical strain threshold for crease
ormation was numerically calculated by Hong et al. (2009) at εcr = � 0.35, predicting the emergence of a local singularity in the vicinity of
ur linear stability threshold. Such a biaxial wrinkling results from a surface instability mechanism, first considered by Biot (1963),  which

s regularized at threshold by the surface energy (Ben Amar and Ciarletta, 2010). The wrinkling wavelength  scales with the thickness Hd
f the layer and is fixed by the presence of a typical lengthscale dcap (i.e. the ratio between the surface energy and the dominant elastic
odulus), with a general relation given in Eq. (32). A bilayered model of skin fixed at the bottom surface of the dermis is later investigated,

onsidering separately the volumetric growth of one layer attached to the other through an elastic basement membrane. Having the aim to



7

s
v
a
t
s
2
w
c
o
o
r
l
s
w
p
m
i
a
o
u
t

A

b

R

A
B
B
B
B
B

C
C
C

C

C
C

D
D
E
H
H
I

K
L
M
O
O
P

R
R
S
T
W

6 P. Ciarletta, M. Ben Amar / Mechanics Research Communications 42 (2012) 68– 76

tudy the undulation patterns localized in a boundary layer across the dermal–epidermal junction, we only focused on the elastic solutions
anishing at the free skin surface, deriving the dispersion relations in Eqs. (38) and (48). In the case of epidermal growth on a surface-
ttached dermis, in the limit c1d/c1e → 0 a biaxial papillary pattern occurs at the threshold growth rate in Eq. (40), with a wavelength
hat scales with the dermis thickness, as expressed in Eq. (42). Therefore, the interface wrinkling of a thick film is very different from the
urface folding of a thin film on a soft substrate, characterized by a wavelength scaling of the order He(c1e/c1d)1/3 (Sultan and Boudaoud,
008). In our case, the variation of the growth threshold with the elastic moduli is depicted in Fig. 3, showing a scaling gth ∝ (c1d/c1e)2/13

here c1d/c1e � 1, in agreement with the results of Dervaux and Ben Amar (2011) for a thick ring of gel growing on a stiff core. When
onsidering the dermis growth under a thick epidermis layer, we find again a surface instability occurring at a growth threshold depending
n the elastic parameters (diverging for c1d/c1e, Kd/c1e → 0, see Fig. 4), whilst the short wavelength instability is fixed by the elasticity
f the basement membrane. If for c1d/c1e � 1 we recover the asymptotic limit calculated for the monolayer case, the role of anisotropic
einforcements becomes here crucial. In the previous cases anisotropy had always a stabilizing effect, here an increasing fibre reinforcement
owers (increases) the growth threshold when c1d/c1e < 1 (c1d/c1e ≥ 1). This effect is rather important when dealing with aging phenomena,
uggesting that changes of mechanical parameters over time alone can provoke mechanical instabilities in a layered tissue. In conclusion,
e have demonstrated that incompatible growth processes inside the skin can drive the emergence of complex biaxial networks of dermal
apillae. The characteristics of such an interfacial instability strongly depend on the geometrical constraints of the problem and on the
echanical parameters of the two main layers. In particular, the presence of anisotropic fibre reinforcement in the dermis has a paramount

mportance for determining the growth instability threshold, whilst the elasticity of the basal membrane determines the pattern periodicity
t threshold. Although the simplificative assumptions in our model allowed to derive an analytical solution, further work will be needed in
rder to investigate the effects of inhomogeneous growth processes in the stratified microstructure of the skin layers. Our results can help
nderstanding growth morphologies of biological tissues in health and pathological conditions (Richman et al., 1975), as well as guiding
he fabrication of specific micropatterns in thin layered materials (Wang et al., 2011).
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