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This  paper  presents  a general  constitutive  model  for tissue  stress  driven  growth  and  necrotic  remodeling.
The  general  theoretical  framework  is given  by  a kinematics  formulation  in  large  strain.  The  model  allows
the  analysis  of  tissue  behaviour  considering  the coupling  of  biological  and  mechanical  fields,  through
the  implementation  of an  internal  variable  that represents  the  bioavailability,  together  with  the  growth
induced  by  mechanical  stimuli.  To  take  into  account  the  tissue  necrosis  phenomenon  a reinterpretation
of  the  classical  theory  of  mixtures  is  proposed.  The  proposed  formulation  is  based  on  the consideration  of
tress driven growth
ule of mixtures

two components,  normal  tissue  and  necrotic  tissue,  each  one  with  its  own  volumetric  participation,  which
is treated  in  an  evolutive  way,  allowing  simulating  the  phenomena  of ischemia.  This  article  also  presents
a brief  description  of  the  numerical  implementation  of the  model  as  well  as  the  obtained  results,  which
shows  the  process  of  necrosis  of  part  of  the  tissue,  its influence  on  the surrounding  healthy  tissue,  and
the  interaction  between  the  nutrients  availability  and  the  stress  driven  growth  and  necrotic  remodeling

process.

. Introduction

Tissues require a constant blood supply to obtain nutrients, oxy-
en and to eliminate the metabolic wastes. Ischemia is an absolute
r relative shortage of the blood supply to a tissue resulting in
amage because of the lack of oxygen, nutrients and the build-
p of metabolic wastes. The study of this process is important
ecause it is related with several frequent pathologies: atheroscle-
osis, hypoglycemia, tachycardia, hypotension, thromboembolism,
utside compression of a blood vessel, embolism, localized extreme
old, arteriovenous malformations, and peripheral artery occlusive
isease.

Acute ischemia causes tissue necrosis generating stiffer non-
ctive scar tissue. The mechanical properties of the scar are an
mportant factor in the determination of the heart function after
n acute ischemic episode (Fomovsky and Holmes, 2010).
The analysis of growth and remodeling using mixture has been
ddressed by several researchers, i.e. Humphrey and Rajagopal
2002), Ateshian (2009) and Ambrosi et al. (2010).  In this paper

∗ Corresponding author at: Facultad de Ingeniería, Universidad Nacional de Salta,
v. Bolivia 5150, 4400 Salta, Argentina. Tel.: +54 387 4258615; fax: +54 387 4255410.

E-mail addresses: facundobellomo@yahoo.com.ar,
acundobellomo@conicet.gov.ar (F.J. Bellomo), armero@ce.berkeley.edu (F. Armero),
nallim@unsa.edu.ar (L.G. Nallim), sergio.oller@upc.edu (S. Oller).

1 http://www.ing.unsa.edu.ar/.
2 http://www.ce.berkeley.edu/.
3 http://www.cimne.com/.

093-6413/$ – see front matter ©  2011 Elsevier Ltd. All rights reserved.
oi:10.1016/j.mechrescom.2011.11.007
© 2011 Elsevier Ltd. All rights reserved.

a constitutive model to simulate the necrotic remodeling phenom-
ena is proposed. The model includes three fundamental concepts:
the biological and mechanical fields, a two-phase continuum theory
and an approach of the evolution of the volumetric participation of
the scar tissue. The paper is divided into sections according to the
statement above mentioned. Finally, numerical results that show
the validity, efficiency and potentialities of the proposed formu-
lation are presented. Soft tissues exhibit a quasi-incompressible
behaviour, the incompressibility treatment is addressed following
Appendix A.

2. Constitutive stress driven growth/atrophy model
considering biological availability

A detailed analysis regarding the theoretical aspects of growth
can be found in Taber (2009), Epstein and Maugin (2000) and
Ambrosi and Guana (2007).

We present in this section a brief summary of the constitutive
model of mechanical–biological growth in soft tissues proposed in
Oller et al. (2010),  along the lines of the formulations proposed in
Rodriguez et al. (1994),  Lubarda and Hoger (2002),  Himpel et al.
(2005), Kuhl et al. (2007),  Kroon et al. (2009) and Goktepe et al.
(2010),  among others.
We consider finite deformation kinematics, with the deforma-
tion of the solid B ⊂ R

3 defined by a one-to-one map ϕ : B → R
3

giving the current positions x = ϕ(X) ∈ R
3 of the material parti-

cles X ∈ B. In this context, growth is modeled by the multiplicative
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ecomposition of the deformation gradient F = ∂x/∂X (Lubarda and
oger, 2002)

 = Fe · Fg (1)

or an elastic part Fe and an incompatible part Fg that includes the
ffects of growth and atrophy.

The elastic part of the deformation gradient Fe defines the
echanical response of the tissue. In the case considered in this

aper of a purely elastic response for the bulk tissue, this defini-
ion is done through an elastic potential W(�0, Ĉ)  in terms of the
ight Cauchy–Green tensor Ĉ = FeT · Fe (following classical argu-
ents based on frame indifference of the resulting model) and the

eference density �0, which evolves to model (isotropic) growth as
iscussed below. In this setting, the second Piola–Kirchhoff stress
ensor S in the reference configuration is obtained as

 = Fg−1 · Ŝ ·  Fg−T
for Ŝ = 2�0

∂W(�0Ĉ)

∂Ĉ
(2)

ith Ŝ corresponding to the second Piola–Kirchhoff stress tensor
n the intermediate configuration defined by the local mapping Fg.
ote again that the reference density �0 evolves due to the growth,
ut the partial derivative appearing in Eq. (2) involves a fixed value
f this density. Simple algebraic manipulations lead also to the
elation

 = 2�0
∂W

∂C
for C = FT · F = FgT · Ĉ · Fg (3)

he total right Cauchy–Green tensor C. The Cauchy stresses � are
hen given by

= 1
J

F · S · FT = 1
J

Fe · Ŝ · FeT
(4)

efined in the current configuration of the solid ϕ(B).
To characterize the growth, we first note that the volume change

nder the deformation ϕ is given by the relations dv = J dV =
JeJg) dV between the reference volume element dV and the spa-
ial (deformed) volume element dv, with J = det F, Je = det Fe and
g = det Fg. Growth or atrophy is characterized by a change of mass at
onstant density. Denoting this initial (and hence constant) density
y �ini

0 , we then have the relation

0 = �J = �ini
0 Jg (5)

efining the current values of the varying values (varying with the
eformation) of the densities �0 and � in the reference and current
eformed configurations of the solid B. The constant nature of �ini

0
eads directly to the time evolution of the reference density �0 as

˙ ini
0 = 0 ⇒ �̇0 = �ini

0 J̇g = R0 (6)

or the mass source R0 in terms of the volume change J̇g associ-
ted to the growth part of the deformation gradient Fg. Following
tandard algebraic results, the mass source is then given by

0 = �0 tr L̂
g = Jg�ini

0 tr L̂
g = Jg�ini

0 tr(Ḟ
g · Fg−1

) (7)

or the growth velocity gradient L̂
g
.

In particular, isotropic growth is characterized by an isotropic
rowth stretch ϑ as (Lubarda and Hoger, 2002)

g = ϑ · I (8)

o the rate of growth can be expressed as

ˆg ˙ g g−1 ϑ̇
= F · F =
ϑ

I (9)

esulting in a mass source Eq. (7) of the form

0 = 3ϑ2�ini
0 ϑ̇ (10)
ommunications 42 (2012) 51– 59

in terms of the rate of the isotropic growth stretch ϑ̇. We  note that
given Eq. (8) relations (2) and (3) reduce in the isotropic growth
under consideration to

S = 1
ϑ2

Ŝ and C = ϑ2Ĉ (11)

respectively (so, by the way, S : C = Ŝ : C).
Typical models of growth consider only that this growth rate

is controlled by a stress stimulus. However, a simple mechani-
cal stimulus is not enough, since mass increases require that the
metabolism is able to allow the growth of the tissue. To accom-
modate these metabolic conditions, Oller et al. (2010) proposed
an internal variable to take into account the biological availability
for growth (named �) related as discussed below to the presence
or absence of nutrients controlling the growth. In this way, the
evolution rule

ϑ̇ = g(tr �, �∗
eq)f (�, ϑ) (12)

is proposed, where the function g(tr �, �∗
eq) models the mechanical

stimulus for growth/atrophy in terms of the stress � (in terms of its
trace tr � and a stress parameter �∗

eq to be defined below), and the
function f(�, ϑ) regulates the metabolic part of the growth according
with the aforementioned biological availability to generate new
tissue. The bioavailability internal variable � represents the volume
of new tissue dvg that can be generated by the metabolism with
the available nutrients referred to the initial tissue volume. The
expression of this internal variable is given by:

� = dvg

dV
(13)

The function g(tr �, �∗
eq) controlling the mechanical part of the rate

of growth needs to take into account the observed behaviour that
for a certain range of stresses there is a homeostatic equilibrium
without mass change. In this state new cells are produced only to
replace those that die, so mass and volume remain constant. This
equilibrium range of stresses is characterized by an upper limit �∗+

eq

and a lower one �∗−
eq , with growth/atrophy occurring only when tr �

falls outside the interval (�∗−
eq , �∗+

eq ).
Furthermore, it is observed that the rate of growth is limited

by the rate at which cell division and collagen recruitment occur
in a particular tissue. This observation is taken into account in the
model by considering a maximum rate of mass production Mmax,
from Eq. (10).

Mmax = (R0)max

�ini
0

= 3ϑ2ϑ̇max (14)

resulting in the maximum growth stretch rate

ϑ̇max = Mmax

3ϑ2
(15)

Therefore, in this equation it is possible to see that the stretching
rate is going down while the growth stretch increases. Similarly,
a maximum rate of tissue resorption can be observed in the case
of atrophy, defining a maximum rate of mass decrease. We  denote
these limit values ϑ̇+

max and ϑ̇−
max for growth and atrophy, respec-

tively.
With these considerations in mind, the growth-stimulus func-

tion g(tr �, �∗
eq) assumed in this work is depicted in Fig. 1. Its general
form, with three different zones (homeostatic equilibrium zone,
atrophy zone and growth zone) is similar to the one proposed
by Rodríguez et al. (2007).  An explicit expression of the function
g(tr �, �∗

eq) can be easily devised.
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Fig. 1. General form of the mechanical growth-stimulus function.

Finally, the function

 (�, ϑ) =

⎧⎪⎪⎨
⎪⎪⎩

1 if g(tr �, �∗
eq) ≤ �̇

3ϑ2

�̇/3ϑ2

g(tr �, �∗
eq)

if  g(tr �, �∗
eq) >

�̇

3ϑ2

(16)

s assumed in Eq. (7) to represent the effect of the biological avail-
bility.

. Acute ischemic tissue remodeling

.1. General description of the proposed model

The biological availability of nutrients for the metabolism is
btained from the balance between the nutrients intake and those
emanded for growth and to keep the homeostatic equilibrium.
he amount of nutrients (a term we use to refer generically to oxy-
en, proteins, enzymes, growth factors, etc.) and metabolic waste
emoval required to keep the homeostatic equilibrium depend on
he tissue type and its function. This fact is considered in this work
y means of the introduction of a non-dimensional homeostatic

ntake parameter named Hk. This proposed parameter accounts for
he tissue daily demand of nutrients, a term that we shall use hence-
orth to refer to both actual nutrients as described above and any
eeded metabolic waste removal.

The local flux of nutrients into the metabolism is considered
n this work by the function N(t). See Remark 1 for the particular
utrient intake considered in the numerical examples presented

n this paper. The balance between the nutrients income and the
omeostatic intake at a given time, determinate the neat flux of
utrients �̇ as follows

˙
 = Ṅ − Ḣk (17)

 positive neat flux generates an excess of nutrients that become
vailable to the metabolism. This reserve of “free” nutrients deter-
inates the bioavailability for metabolic process, i.e. tissue growth.
If this balance is negative a critical shortage of nutrients occurs

nd part of the tissue undergoes a necrotic process that will be
ependent on the severity of the ischemia and its duration. To

ddress this necrotic process an evolutive a two-phase continuum
heory using a multiplicative decomposition of the deformation
radient for each phase and an evolving natural configuration for
he whole body is proposed. The tissue is considered as a mix  of
ommunications 42 (2012) 51– 59 53

normal and necrotic tissue working in parallel each one with its
own mechanical properties. The potential W for the tissue model is
given by:

�0W = kh�0hWh + kn�0nWn (18)

where Wh and Wn are the potentials of the normal (or healthy) and
necrotic tissue, respectively, with the reference densities, �0h and
�0n, and the (reference) volume fractions, kh and kn, of the normal
and necrotic tissues, respectively. There is not enough experimen-
tal information regarding the mechanical interaction between the
constituents of a tissue undergoing a necrotic process to quantify
its effects. Consequently their interaction is not considered in this
first attempts to study the phenomena.

The volume fractions of the healthy and necrotic parts of the
tissue, in the reference configuration, are expressed as

kh = dVh

dV0
and kn = dVn

dV0
(19)

where V0 is the total volume and Vh, Vn are the healthy and
necrotic tissue volumes in the reference configuration. We  have
dV0 = dVh + dVn, so kh + kn = 1.

The hypothesis of the classic rule of mixtures regarding the com-
ponents strain, establishes that each component is subjected to the
same deformation field, leading to the following closure equation:

F = (F)h = Fn (20)

for the deformation gradient F of the whole tissue, and the defor-
mation gradients (F)h and (F)n for the healthy and necrotic parts.
The multiplicative decomposition (1) of the common deformation
gradient F applies separately for each parts of the tissue. For the
isotropic growth of interest, as defined by Eq. (8),  we can write

C = ϑ2
h Ĉh = ϑ2

nĈn (21)

for the growth stretches ϑh and ϑn of the healthy and necrotic parts
of the tissue, respectively, defining in the process the elastic tensors
Ĉh and Ĉn determining the mechanical response in each part.

The constitutive equation of the tissue can be obtained from Eqs.
(3) and (18) as

S = 2�0
∂W

∂C
= kh

ϑ2
h

2�0h
∂Wh

∂Ĉh

+ kh

ϑ2
h

2�0n
∂Wn

∂Ĉn

= khSh + knSn (22)

with the individual stress tensors

Ŝh = 2�0h
∂Wh

∂Ĉh

= ϑ2
hSh and Ŝn = 2�0n

∂Wn

∂Ĉn

= ϑ2
nSn (23)

for the healthy and the necrotic parts of the tissue, respectively.
It is important to note, as observed in Section 2 when discussing
Eq. (2) that the partial derivatives in Eqs. (22) and (23) involve
the mechanical deformation only, that is, they consider constant
reference densities. The Cauchy stress, and in particular its trace
defining the mechanical growth stimulus, is obtained from the sec-
ond Piola–Kirchhoff stress S in Eq. (22) by relation (4).

Tissue necrosis affects not only the mechanical properties of
the tissue but also the capability of the tissue to undergo adapta-
tive processes. The necrotic part of the tissue is no longer an active
material, that is,

ϑn = 1 identically(i.e. ϑ̇n = 0) (24)

and therefore, only the healthy part can undergo stress driven
growth. This effect generates a coupling between the necrotic
remodeling and the stress driven growth previously discussed.

Consequently the evolution of the internal growth stretch variable
for partially necrotic tissue is computed as follows

ϑ̇h = ϑ̇ 3
√

kh (25)
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Fig. 2. Nutrients entering the system.

or the total rate ϑ̇ given by the considerations in Section 2 (i.e. Eq.
12) in particular).

The remodeling from healthy tissue to scar tissue takes some
ime, during which the mechanical properties change gradually
ntil the tissue reaches its final configuration (Fomovsky and
olmes, 2010). The values of the mechanical properties (Eq. (18))
orresponding to that final configuration of the scar tissue are used
n Wn, while for Wh the mechanical properties of the healthy tissue
re used. The temporal evolution of the necrotic tissue is controlled
y means of the volume ratio kn, which is calibrated so that the
roperties of the tissue mixture match the ones corresponding to
xperimental data. Consequently, to address this temporal evolu-
ion, a function fn(tn) is introduced being tn the duration of the acute
schemic episode. The other factor that controls the necrotic pro-
ess is the ischemia severity. Considering these ideas the following
volution rule for the necrotic volume ratio is proposed

n = �̇

Ḣ
fn(tn) (26)

here the ratio between the neat flux and the demand �̇/Ḣ deter-
inates the severity of the lack of nutrients. The healthy tissue

olume ratio is simply obtained as kh = 1 − kn

emark 1. The amount of nutrients entering the system is taken
nto account by the function N(t) in Eq. (17). The numerical exam-
les presented in Section 4 consider an initial reserve of nutrients
i and a discrete contribution of nutrients At at regular time inter-
als. The values of N(t) are dimensionless and represent the mass
ncrement of nutrients referred to the initial mass of the system.
or instance, a value of N = 0.02 represents the entry to the system
f nutrients enough to generate an increase of tissue mass of 2%
espect to its original mass. Fig. 2 shows the function of nutrients
ontribution.

.2. Application to rat myocardial infarction

Sustained acute ischemia in cardiac tissue leads to the tissue
ecrosis. Because of the importance of this process several exper-

mental studies using animal models were developed (Sunagawa
t al., 1983; Lerman et al., 1983; Pfeffer et al., 1991; McCormick
t al., 1994; Holmes and Covell, 1996). However, the first study that
onsiders simultaneously the temporal evolution of scar structure,
car mechanics, and left ventricular (LV) function in large anterior

yocardial infarcts in rats was published in 2010 by Fomovsky and
olmes. In their work the evolution of the mechanical properties of

he scar tissue was obtained from biaxial mechanical testing at 1,
, 3, and 6 weeks. They also reported that infarcts in the rats were
t (Weeks)

Fig. 3. Temporal evolution function fn for myocardial infarcted rat tissue.

structurally and mechanically isotropic at all time points. The mate-
rial was  represented using a quadratic form of the energy function
W(Ic) as follows,

W = c1(Ic − 3)2 (27)

where c1 is a material parameter Ic = tr(Ĉ) is the first invariant
of the right Cauchy. The material parameters obtained from the
mechanical testing for each time point are also provided.

The experimental data from Fomovsky and Holmes (2010) have
been used to calibrate the model proposed in this work. For the
fully necrotic tissue the material parameter value corresponding to
the mechanical properties of the 6th week scar (c1)n = 995.2 kPa has
been adopted, and for healthy tissue a value of (c1)h = 225.3 kPa has
been adopted. The behaviour of healthy tissue at time 0 is recovered
adopting kh = 1, kn = 0 and fn = 0, while the behaviour of the 6th week
scar tissue is obtained adopting kh = 0, kn = 1, fn = 1. To calibrate the
temporal evolution of the mechanical properties of the scar tissue
during the 6 weeks period, a fully ischemic condition is assumed
�̇/Ḣ = 1. In this case the volume fractions kn and kh are exclusively
functions of fn.  The temporal function fn can then be calibrated
straightforwardly fitting the mechanical properties of the proposed
model, employing the experimental results at 1, 2, 3 and 6 week.

The resulting function fn obtained fitting Fomovsky and Holmes
(2010) data is shown in Fig. 3.

The values of the material parameters used to calibrate fn are the
mean values of several myocardial infarcted rat samples, therefore
this function can be considered representative for this particular
tissue.

4. Representative numerical examples

4.1. Single element under uniaxial stress

The application examples were performed using a 3D
displacement–pressure mixed FEM in a Fortran Code. Some details
of the finite element implementation considered in this work,
including details on the treatment of the quasi-incompressibility
of the model under consideration, can be found in Appendix A.

To assess the capability of the proposed model to represent the
temporal evolution of the mechanical properties of tissue subjected
to acute ischemia, a uniaxial stretching test on a single hexahedral
finite element is carried out at 0, 1, 2, 3 and 6 weeks. A null income of

nutrients is considered, consistently with the conditions imposed in
Fomovsky and Holmes (2010) for the infarcted tissue. Fig. 4 shows
the element, its boundary conditions and the prescribed uniaxial
stretching.
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Fig. 4. Boundary conditions and prescribed displacements.
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shown in Figs. 9 and 10.
ig. 5. Evolution of the mechanical properties in the tissue under acute ischemia.

The potential for the material corresponds to the quadratic form
rom Eq. (27) and the same values of material parameters already
sed in the previous section (c1)n = 995.2 kPa, (c1)h = 225.3 kPa, for
he necrotic and healthy tissue, respectively, are adopted. The
emporal function corresponding to myocardial infarct tissue fn
epicted in Fig. 3 is used.

The obtained results are shown in Fig. 5.
Along the tissue remodeling process the volume fraction of

he necrotic tissue increases and, consequently, the whole tissue
esponse becomes stiffer. As can be seen in Fig. 5 the change in the
echanical properties is very noticeable.

.2. Acute ischemia in tissue patch

The change in the mechanical properties of the acutely ischemic
issue induces an alteration at the stress and strain fields of the
urrounding tissue. To study this effect, local acute ischemia is sim-
lated in part of a tissue patch, prescribing a variable profile of the
utrients income function parameter At as shown in Fig. 6a. For the
ake of simplicity the stress driven growth phenomena is not con-
idered in this example, leaving it for the example studied in the
ext section.

The patch dimensions are 25 mm long, 15 mm wide and 1.5 mm
hick. The general patch response and, particularly, the behaviours
f four reference points (Fig. 6b) are considered. The values of the
aterial parameters are (c1)n = 995.2 kPa and (c1)h = 225.3 kPa for

ecrotic and healthy tissue, respectively. The temporal evolution
unction fn from Fig. 3 is also adopted. The tissue homeostatic daily
ntake value is Hk = 0.01, matching the nutrients income function

n the patch, except in the necrotic zones with restricted nutrient
ncome as shown in Fig. 6a. An initial nutrients reserve Ri = 0.015 is
onsidered.
Fig. 6. (a) Nutrient income distribution along the patch and reference points loca-
tion (A, B, C, D). (b) Boundary conditions and prescribed displacements.

A uniform displacement of 1.0 mm is applied in the upper side
of the patch.

The evolution of the necrotic tissue volume fraction and the
Cauchy stress trace are shown in Fig. 7 and the values for the refer-
ence points are plotted in Fig. 8.

The scar tissue is stiffer than the healthy one, in rat myocardial
infarct this is a consequence mainly of the increase of the collagen
content. This progressive evolution of the mechanical properties of
the scar tissue along of the 6 weeks period generates an important
alteration of the stress field as can be seen in Fig. 7b, where zones
of stresses concentration and relaxation are clearly visible.

The acute ischemia condition starts after 1.5 days when the zone
of tissue with limited nutrients income has already consumed its
initial reserve Ri and the nutrients income is smaller than the home-
ostatic intake. In the tissue subjected to acute ischemia the necrotic
tissue fraction increases over time, being this effect more noticeable
in the point A where the lack of nutrients is more severe. Point B,
near to the scar boundary, shows a smaller variation while point D,
located outside the scar, shows no remodeling as expected (Fig. 8b).
The evolution of the trace of the Cauchy stress tensor in Fig. 8a
shows superimposed curves for the four reference points in the first
day period coincidently with the application of the patch stretch.
As the remodeling process progress the stress field is no longer uni-
form and the curves diverge, the plot shows an important variation
of the stresses in the reference points.

4.3. Necrosis and stress driven growth interaction

This final example considers the both mentioned processes,
stress driven growth and necrotic tissue remodeling. As seen in
the previous example the necrosis alters the stress field of the scar
tissue and the healthy surrounding tissue. This concentration of
supra-homeostatic stress in zones of the surrounding tissue that
have a sustained flux of nutrients, can lead to a stress driven growth
process. To address this interaction the same mesh, boundary con-
ditions and material properties from example in Section 4.1 are
considered and tissue growth is also enabled. To allow growth the
values of At are increased a 10% outside the zone of limited nutrients
income. The maximum mass production adopted is Rmax = 0.13%
day and the growth upper limit is �∗+

eq = 1.05 kPa. The results are
The concentration of stresses in the healthy tissue evolves along
the time while the scar tissue assumes its final structure. This
mechanical stimulus induces a simultaneous growth process of the



56 F.J. Bellomo et al. / Mechanics Research Communications 42 (2012) 51– 59

Fig. 7. (a) kn evolution. (b) Cauchy stress trace evolution.

Fig. 8. (a) Cauchy stress trace for reference points A, B, C, D. (b) Necrotic volume fraction kn evolution for reference points A, B, C.

Fig. 9. (a) Growth stretch evolution. (b) Cauchy stress trace evolution during growth.
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Fig. 10. (a) Cauchy stress trace for reference points A, B, C,

ealthy tissue zones with supra-homeostatic values of the Cauchy
tress trace as can be seen in Fig. 9a. Also it can be seen that tis-
ue undergoing the necrotic process has an increased stress field
Figs. 9b and 10b), but since it lacks any free nutrients the metabolic
eld does not enable the growth process and no growth stretch is
eveloped in the necrotic tissue area (Figs. 9a and 10a).

Tissue growth induces a stress relaxation as can be noted by
omparing Cauchy stress trace slope in Figs. 8 and 10,  for reference
oint D.

. Conclusions

A model for the numerical simulation of the necrosis process and
tress driven growth is proposed in this work. The necrotic remod-
ling phenomena is treated by means of a new mixing formulation
onsidering a reinterpretation of the classic one and an approach of
he evolution of the volumetric participation of the scar tissue. The

odel capabilities have been shown by means of several applica-
ion examples regarding to myocardial rat infarct tissue, although
he model can be applied to other tissues.

The model is able to successfully capture the interaction
etween growth and acute ischemic remodeling resulting from the
iological and mechanical fields.

Finally, the implementation of the proponed model in a FEM
ormulation with a suitable heart mesh can be useful to analyze
he change in the functional capabilities in acute ischemic cases.
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ppendix A.

.1. Soft tissue incompressibility

The treatment of the incompressibility in the material model fol-
ows closely the approach developed in Crisfield (1997).  To this end

he volumetric (Fvol) and deviatoric (F̄), terms of the deformation
radient are split as follows

 = FvolF̄, Fvol = J1/3I, F̄  = J1/3F (A1)
 Growth stretch ϑ evolution for reference points A, B, C, D.

where

J  = det[F] = det[Fvol], det[F̄] = 1 (A2)

The multiplicative split of the deformation gradient leads to an
additive strain energy decomposition

W = U(J) + W̄(C̄) (A3)

where C̄ is the deviatoric part of the right Cauchy–Green tensor,

C̄ = F̄
T
F̄ .

This uncoupled energy function leads to an uncoupled
stress–strain relationship. The volumetric strain is associated, in the
reference configuration with a hydrostatic pressure term p, given
by:

p = ∂U(J)
∂(J)

= U ′(J) → �v = U ′(J)I (A4)

where I is the second order identity tensor
In terms of the second Piola–Kirchhoff tensor, the stress associ-

ated to the volumetric term is:

Sv = JF−1�vF−T (A5)

To consider the compressible term of the strain energy the follow-
ing expression is adopted:

U(J) = 1
2

k(J − 1)2 (A6)

where k is the bulk modulus of the material and the incompress-
ible form can be recovered by letting k tend to infinity. This choice
for the volumetric function U(J) allows a simple treatment in the
penalty formulation considered here, taking into account that the
Jacobian J stays close to 1 in the quasi-incompressible problem of
interest. After this consideration the volumetric part of the stress
tensor results:

Sv = Jk(J − 1)C−1 (A7)

The volumetric term of the Cauchy stress tensor p = �v in the ref-
erence configuration results:

p = −k(J − 1)I  (A8)

and the deviatoric part of the stress is given by:

S̄ = 2
∂W̄(C̄)

∂C
(A9)

The expression of the stress is obtained by adding the deviatoric
and volumetric terms as follows:
S = 2
∂W̄(C̄)

∂C
− Jk(J  − 1)C−1 (A10)

This form of the strain energy is convenient for its implementation
in a mixed pressure displacement FEM code, where nodal values of
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 are used as Lagrange multipliers to enforce the incompressibility
onstraint.

.2. Mixed displacement–pressure formulation

In this work a two field formulation is used, pressure and
isplacement are considered as variables at the structural level fol-

owing Crisfield (1997).  To this end different shape functions for
he displacement and pressure variables, with the latter taking a
ower order variation, are employed,

 =
∑

hpipi u =
∑

hiui v =
∑

hivi w =
∑

hiwi (A11)

here pi are the nodal pressure variables and u, v, w are the nodal
isplacement variables.

Eq. (A11) can be written as:

 = hT
p p̂ (A12)

here hp = [hp1, hp2, ..., hpn] and p̂ = [p1,p2,..., pn,]
Virtual work can be used to find the out-of balance force vector,

 where

 = qi − qe =
∫

BT
nlSdV0 − qe (A13)

ith S as the second Piola–Kirchhoff stresses, Bnl relates displace-
ents and strains, qi, qe are the internal and external forces vectors,

espectively.
Assuming exact equilibrium form a previous increment differ-

ntiation of (A13) leads to:

qe = ıqi =
∫

BT
nlıSdV0 +

∫
ıBT

nlSdV0 (A14)

onsidering the stresses differentiation:

Sij = CijklıEkl + Gijıu (A15)

here Cijkl is a fourth order constitutive tensor and Gij is defined
y:

ij = −I−1/2
3 C−1

ij
(A16)

q. (A15) can be written in matrix form as:

S = C
SıE + gkıu (A17)

here C
S is a matrix and gk a column vector. Substituting Eq.

A17) in Eq. (A14) and considering that ıE = Bnl(p̂)ıu, the following
xpression is obtained:

qe = ∂qi

∂u
ıu = K tıu + a (A18)

here

t = ∂qi

∂u
=

∫
BT

nlC
SBnldV0 +

∫
GT ŜdV0 (A19)

ˆ
 contains the second Piola–Kirchhoff tensor stresses, and is given
y:

ˆ =
[

S̄ 0 0
0 S̄ 0
0 0 S̄

]
, con S̄ =

[
S11 S12 S13
S21 S22 S23
S31 S32 S33

]
(A20)

he pressure coupling vector a in Eq. (A18) is given by:

 =
∫

BT
nlg

kdV0ıp = Pıp̂ (A21)
ressure change ıp in terms of its nodal variables is given by:

p = hT
pıp̂ (A22)
ommunications 42 (2012) 51– 59

Substituting Eq. (A22) into Eq. (A21)

a = Pıp̂ =
∫

BT
nlg

khT
pdV0ıp̂ (A23)

from which:

Pup = ∂qi

∂p̂
=

∫
BT

nlg
khT

pdV0 (A24)

To apply the pressure–displacement relationship from Eq. (A8)
Galerkin method is applied to obtain a “weak form” of this equa-
tion and multiplying by ıp and integrating over the element the
following expression is obtained:

−
∫ (

(J − 1) + 1
k

p
)

ıpdV0 = −ıp̂
T

∫
hp

(
(J − 1) + 1

k
p
)

dV0

= ıp̂
T
f = 0 (A25)

This relationship must hold for any arbitrary pressure variation so
that with f representing the lack of pressure compatibility:

f = −
∫

hp

(
(J − 1) + 1

k
p
)

dV0 = 0 (A26)

Assuming continued satisfaction of Eq. (A26) from an “equilibrium
state”:

ıf = ∂f

∂u
ıu + ∂f

∂p̂
ıp̂ = PT

upıu + Hıp̂ = 0 (A27)

where Pup has already been defined in Eq. (A24) and H is given by:

H = ∂f

∂p̂
= ∂f

∂p

∂p

∂p̂
= −

∫
1
k

hphT
pdV0 (A28)

with ıf = 0, the combination of Eqs. (A18), (A21) and (A27) gives the
tangential governing equations as:(

ıqe

0

)
=

[
K t Pup

PT
up H

] [
ıu
ıp̂

]
(A29)

which can be solved in a combined manner for ıu and ıp̂. Alter-
natively the second set of equations can be solved first and then
substituted into the first set to give:

ıqe = [K t − PupH−1PT
up]ıu = K̄ tıu (A30)

where K̄ t is the effective tangent stiffness matrix.
To form the basis of a Newton–Raphson iteration we expand

Eqs. (A13) and (A29) using truncated Taylor series. Hence from Eq.
(A13) we  have:

gn = 0 = g0 + ∂g

∂u
ıu + ∂g

∂p̂
ıp̂ (A31)

while from Eq. (A26) we have:

f n = 0 = f 0 + ∂f

∂u
ıu + ∂f

∂p̂
ıp̂ (A32)

Dropping the subscript 0, Eqs. (A31) and (A32) can be combined to
give:(

g
) [

K t Pup
] [

�u
]

−
f

=
PT

up H �p̂
(A33)

Using a mixed formulation Eq. (A33) can be solved directly as a part
of a Newton–Raphson loop.
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