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a  b  s  t  r  a  c  t

Aortic  input  impedance  relates  pressure  to flow  at the  aortic  entrance  distal  to the  aortic  valve.  We
designed  the  CircAdapt  three-element  model  of  this  impedance,  consisting  of resistive  wave  impedance,
arterial  compliance  and  peripheral  resistance.  Direct  association  of  the  elements  with  physical  properties
facilitated  incorporation  of nonlinear  elastic  properties  of  wall  material  and  adaptation  of  vessel  geometry
to mechanical  load. Use of the  CircAdapt  impedance  model  is  extended  to  all  arterial  and  venous  con-
nections  to  the heart.  After  incorporation  in  the  existing  CircAdapt  model  of  whole  circulation  dynamics,
ulse wave
tress
onlinear
emodeling

vascular  geometry  was  determined  by  adaptation  to hemodynamic  load  as  generated  by  the  CircAdapt
model  itself.  Model  generated  vascular  geometry  and  hemodynamics  appear  realistic.  Since the  same
adaptation  rules  are  used  for arteries  and  veins,  all vascular  impedances  are  determined  mainly  by  two
parameters  only.  Thus,  large  changes  in hemodynamic  load,  like  exercise  or hypertension,  were  simulated
realistically  without  the  need  to  change  parameter  values.  Simulation  of  adaptation  enables  to  predict

chang
consequences  of chronic  

. Introduction

Pump load of the left ventricle is determined by the relation
etween pressure and flow in the outlet tract. Using similarity of
emodynamics with electrical circuitry, the pressure–flow relation

s described quantitatively by the hemodynamic input impedance
f the ascending aorta. This impedance is represented classically
y the three-element Windkessel model (Westerhof et al., 1971,
009), consisting of the resistive wave impedance Rwave in series
ith the parallel combination of an arterial compliance Ca and a
eripherally located resistance R2 (Fig. 1). The model can simulate
ealistically the diastolic aortic pressure decay and the effects of
ulse wave propagation into the aorta.

In simulating patient hemodynamics, the model is assumed to
e linear. Since arterial compliance and wave impedance are non-

inear, the validity range of the model is limited; unveiling an
mportant shortcoming of the model that for each new hemody-
amic state a new set of parameter values has to be estimated.
onlinear behavior cannot be easily implemented because no accu-
ate description of the relation between element parameters and
hysical properties of blood vessels is available (Westerhof et al.,
009).
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niversity, PO Box 616, 6200MD Maastricht, The Netherlands. Tel.: +31 43 388 1659;
obile: +31 61 894 3830.
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e  in hemodynamics,  e.g.  due  to pathology  or  proposed  therapy.
© 2011 Elsevier Ltd. All rights reserved.

Geometry of arteries adapts to mechanical load imposed by
pressure and flow. In modeling an adaptation cycle, calculated
deviations of mechanical load of the tissue in the walls from the
standard values induce changes in arterial geometry. From the new
geometry, the hemodynamic impedance should be derived, so that
the new hemodynamic state can be simulated. By calculating the
resulting mechanical load of the vessel wall, the control loop for
regulation of vascular geometry is closed.

The primary goal of this study is to link parameter values of
a model of the aortic input impedance to physical properties of
the arterial system. The model should incorporate nonlinearity
of the stress–strain relationship of vessel wall material, so that
with change of hemodynamic state there is no need to re-estimate
parameter values.

Besides the systemic arterial tree, other vascular trees have
a similar structure, characterized by the possibility to propagate
pulse waves and being connected to a peripheral microvasculature.
Therefore, in the present study we have generalized the description
of the aortic input impedance to the impedances of the pulmonary
arterial system and the systemic and pulmonary veins. The result-
ing pressure–flow relations in the large arteries and veins have been
incorporated in the CircAdapt model that describes hemodynam-
ics of the whole circulation with a focus on the environment of the
heart (Arts et al., 2005; Lumens et al., 2009).
Considering adaptation of geometry of blood vessels to hemo-
dynamic load, wall thickness of arteries is known to increase with
intra-arterial pressure (Arner et al., 1984). Additionally, the diam-
eter of a blood vessel increases with increase of flow (Furchgott,

dx.doi.org/10.1016/j.mechrescom.2011.10.005
http://www.sciencedirect.com/science/journal/00936413
http://www.elsevier.com/locate/mechrescom
mailto:t.arts@maastrichtuniversity.nl
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Fig. 1. Left: Classic three-element Windkessel model of aortic input impedance (Westerhof et al., 1971) with tracings of pressure and flow (mid). Right: Modification to the
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ircAdapt impedance, where the elements are more closely linked to physical prope
esistance component and compliance of the classic representation. Symbols Rp an
ircAdapt impedance.

983; Reneman et al., 2006). The latter two adaptation mechanisms
ave been simulated and incorporated in the CircAdapt model. For
ll arteries and veins, the same universal adaptation rules have been
pplied. As a result, geometry of all large blood vessels is deter-
ined by a relatively small set of parameters, related to general

roperties of vascular tissue.

. Model description

.1. CircAdapt modification of three-element arterial input
mpedance

The classic three-element Windkessel model of arterial input
mpedance approximates the true impedance quite well, but the
onstituting elements have no direct relation with physical prop-
rties of the arterial system. Peripheral resistance Rp, defined as the
atio of mean aortic pressure over mean aortic flow is the sum of
ave impedance Rwave and resistance R2 in Fig. 1. Arterial compli-

nce Cart represents the compliance of the whole arterial volume
roximal to the peripheral resistance located in the arterioles. Com-
liance Ca in Fig. 1 is chosen so that time constant R2Ca equals RpCart.
hus it holds

2 = Rp − Rwave, Ca = RpCart

Rp − Rwave
(1)

It follows that compliance Ca is an overestimation of true arte-
ial compliance Cart (Segers et al., 1999). Conversely, mean pressure
ver the compliance Ca is lower than mean aortic pressure, imply-
ng that pressure over Ca is an underestimate of the true mean
rterial pressure.

To simplify relationships between physical properties and
odel parameters, we designed a new three-element arterial input

mpedance, shown in Fig. 1 as the CircAdapt representation. In this
epresentation, the three constituting elements Rwave, Rp, and Cart

re linked directly to physical properties of the arterial system. The
ajor modification is the implementation of the peripheral resis-

ance as a flow source, connected to the aortic entrance, and which
ow equals the pressure difference over the arterial compliance,
ivided by peripheral resistance Rp. When assuming linearity of
he constituting elements, the classic and CircAdapt representa-
ions behave identically, applying the conversion presented in Eq.
1).

In relating the properties of the elements to the mechanical
roperties of the vessel wall, first we describe the stress–strain

elation of vessel wall material. Incorporation of these properties in
he geometry of the vessel wall renders the pressure–area relation.
rom this relation, the characteristic wave impedance and arterial
ompliance are calculated.
f the arterial system. Symbols Rwave , R2 and Ca indicate wave impedance, peripheral
indicate true peripheral resistance and arterial compliance, directly inserted in the

2.2. Nonlinear pressure–area relation

Blood vessel wall material is assumed to be composed of force
bearing nonlinearly elastic fibers, like elastin and collagen, embed-
ded in incompressible soft material. Wall material of blood vessels
is nonlinearly elastic, behaving stiffer at larger extensions. We  used
an exponential relation between fiber stress �f and natural fiber
strain εf:

�f =�f,ref exp(kεf ) with natural strain definition, εf =ln

(
L

Lref

)
(2)

Parameter k characterizes fiber stiffness. Symbols L and Lref
represent length of a fiber segment and its reference value, respec-
tively. Parameter �f,ref is a material constant. Assuming the wall to
be thin, mean fiber stress �f and strain �εf, are related to inter-
nal pressure p and the ratio of cavity to wall volume Vc/Vw by a
first order approximation of the previously published higher order
approximation (Arts et al., 1991)

p

�f
= 1/3

Vc/Vw + (1/2)
(3)

�εf = �

∫
p

�f
d
(

Vc

Vw

)
= 1

3
� ln

(
Vc

Vw
+ 1

2

)
(4)

For strain a reference state is defined, where pressure p and
volume Vc equal their reference values pref and Vc,ref, respectively.
Strain �εf as calculated with Eq. (4) is substituted in Eq. (2),  ren-
dering an expression for fiber stress �f. By substitution of the result
in Eq. (3) and using that pressure p equals reference pressure pref
at reference volume Vc,ref, it follows:

p = pref

(
Vc/Vw + (1/2)

Vc,ref /Vw + (1/2)

)k/3−1

(5)

Whereas for better practical understanding, two parameters pref
and Vc,ref are used. Both parameters actually form together a sin-
gle constant, thus representing only one independent parameter.
Assuming that the volume ratio Vc/Vw equals the ratio of the cor-
responding ratio of cross-sectional areas Ac/Aw, it is found:

p = pref

(
Ac/Aw + (1/2)

Ac,ref /Aw + (1/2)

)k/3−1

(6)
2.3. Wave impedance and arterial compliance impedance

Arterial input impedance is characterized by elements periph-
eral resistance Rp, characteristic wave impedance Rwave and arterial
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ig. 2. CircAdapt model of arterio-venous hemodynamic impedance. Symbols p, q,
 and C indicate pressure, flow, resistance and compliance, respectively. Subscripts
rt,  ven, wave, and p indicate arterial, venous, wave and peripheral, respectively.

ompliance Cart. Resistance Rp equals the ratio of mean aortic pres-
ure over mean aortic flow. In the CircAdapt impedance model,
olume Vc of the arterial compliance is a state variable of the related
ifferential equation. Arterial pressure part is calculated from this
olume as pressure p in Eq. (5).  Impedance Rwave and compliance
art are written as a function of part.

For a cylindrical blood vessel, Rwave depends on inertia and com-
liance of the blood vessel by the general equation, presented as the
iddle term in Eq. (7) (Bramwell and Hill, 1922). Application of the

eneral equation to Eq. (6) renders wave impedance as a function
f part:

wave =
√

�

Ac

dpart

dAc
=

√
�(k/3 − 1)part

Ac(Ac + (1/2)Aw)
(7)

Symbol � indicates blood density. Previously, a characteristic
ength was defined so that volume of the arterial system was  equal
o the product of this length and the proximal arterial cross-section
Wesseling et al., 1993). Likewise, we defined the characteristic
ength Lc of the arterial system so that arterial compliance Cart

quals the product of this length and cross-sectional compliance
t the arterial entrance:

art = Lc
dAc

dpart
= Lc(Ac + (1/2)Aw)

(k/3 − 1)part
(8)

In many studies, arterial stiffness is quantified by pulse wave
elocity. In our model, parameter k is a main determinant of vessel
all stiffness. Wave velocity vwave depends on inertia and compli-

nce of the blood vessel by the general equation presented as the
iddle term of Eq. (9) (Bramwell and Hill, 1922). Application of this

quation to Eq. (6) renders vwave as a function of pressure part and
tiffness parameter k:

wave =
√

Ac

�

dpart

dAc
=

√ (
k/3  − 1

)
part

�(1 + (1/2)Aw/Ac)
(9)

.4. Coupling of arterial to venous impedance

As seen from the heart, pulse waves propagate into the aorta,
esulting in the CircAdapt description of aortic input impedance
Fig. 1). As seen from the right atrium, waves propagate backward
nto veins, resulting in a similarly structured impedance at the
enous side. Furthermore, the ratio of mean arterio-venous pres-
ure difference to mean flow equals systemic peripheral resistance
p. So, for the simulation of the systemic vasculature, the aortic
mpedance is extended to the symmetrically structured CircAdapt
rterio-venous (AV-) impedance, where the peripheral resistance
s simulated by a flow source, controlled by the pressure differ-
nce between the arterial and venous compliances (Fig. 2). Arterial
munications 42 (2012) 15– 21 17

and venous wave impedances and compliances are calculated with
Eqs. (7) and (8).  In the CircAdapt model of the whole circulation,
the proposed arterio-venous impedance has been applied for sys-
temic as well as pulmonary circulations. Although not carried out
yet, the same AV-impedance design may  be used to represent any
peripheral subsystem of the circulation, e.g. that of an organ.

2.5. Adaptation of vessel geometry to pressure and flow

In the CircAdapt model, wall thickness of a blood vessel adapts to
internal pressure so that maximal wall stress is kept at a fixed level
�f,max. Since blood vessels must withstand extremes, wall thickness
is simulated to adapt to the highest level of wall stress occurring,
i.e. that during maximum exercise. So, for growth of wall thickness
we used:

�Aw

Aw

dAw

dt
= �f

�f,max
− 1 (10)

Parameter �Aw represents the time constant of adaptation,
which is assumed to be in the order of days or weeks. Note that
for arteries, highest levels of fiber stress �f occur in systole when
pressure is maximal. For veins, the pressure pulse as induced by the
heart is small. However, especially during exercise, the body is sub-
ject to accelerations due to motion, causing flow shock waves in all
blood vessels. Pressure amplitude pimpact of a shock wave depends
on body impact velocity vimpact by Arts et al. (2005)

pimpact = AcvimpactRwave = �vimpactvwave (11)

The third term of Eq. (11) maybe more convenient to use and is
derived with Eq. (7,9). Adding of hemodynamic and impact pres-
sure components renders total pressure load of the blood vessel to
which wall thickness is simulated to adapt.

Vessel diameter is strongly indicated to be controlled by the time
average of shear stress along the inner wall (Brownlee and Langille,
1991; Dammers et al., 2002; Kelly and Snow, 2007) in resting con-
dition. Assuming a parabolic mean flow profile, mean shear stress
�s depends on vessel diameter D, flow q and blood viscosity � by:

�s = 32�q

�D3
(12)

Small vessels appear to regulate mean shear stress to a fixed
level �s,ref. However, in larger blood vessels the level of shear stress
appears to be lower (Dammers et al., 2002; Tangelder et al., 1988).
The latter observation has been implemented by the following
modification of the original CircAdapt model for diameter adap-
tation:

�D

D

dD

dt
= 1 − �D3	s,ref

32q(1 + D/h)
with 	s,ref = �s,ref

�
(13)

Parameter �D represents the time constant of diameter adapta-
tion. For convenience, a single parameter 	s,ref is used instead of the
pair of parameters �s,ref and �. Parameter h indicates the diameter,
above which vessel dilation is more sensitive to shear stress.

2.6. Implementation

The proposed CircAdapt arterio-venous impedance, together
with the adaptation rules, is implemented in the modular CircAdapt
model to simulate beat-to-beat hemodynamics of circulation as a
whole, including the heart (Fig. 3) (Arts et al., 2005; Lumens et al.,
2009). Atria and ventricles are simulated by contractile chambers.
Both ventricles are mechanically coupled. Simulations render time

courses of pressures and flows in heart and blood vessels. The
CircAdapt model offers the possibility to adapt geometry of its com-
ponents to their mechanical and hemodynamic load, as computed
by the model itself. Characteristic parameter values related to the
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Fig. 3. The CircAdapt model of whole circulation dynamics. Left (LA) and right (RA)
atria are cavities with a muscular wall. Left (LV) and right (RV) ventricle are cavi-
ties,  formed by three mechanically coupled walls. Systemic (system) and pulmonary
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pulm) circulations consist of trees of elastic tubes, connected by their microvascu-
ature. The model generates pressures and volumes of all cavities and flows through
ll valves and blood vessels as a function of time during the cardiac cycle.

arge blood vessels are listed in Table 1. Note that no distinction
s made between arteries and veins. Stiffness constant k and both
haracteristic lengths Lc have been chosen so that the time courses
f aortic and pulmonary pressure are typical. Parameter 	s,ref has
een determined experimentally in arterioles (Tangelder et al.,
988). Parameters �f,max and h have been chosen so that adapted
ortic geometry is physiological. Body impact velocity vimpact is
ased on a jump of the body from a height of 0.5 meter. Time con-
tants of adaptation �Aw and �D are not mentioned, since they do
ot influence the final state of adaptation.

.7. Simulations

With the CircAdapt model of the whole circulation, simulations
ere carried out at rest and with exercise. In the resting state mean

ortic blood flow was 85 ml/s (≈5.6 l/min), mean arterial pressure
as 12.2 kPa (92 mmHg) and heart rate was 72 beats/min. In the

tate of exercise, aortic flow was multiplied by 3.0, and heart rate

as doubled. Vessel geometry was adapted so that maximum wall

tress with exercise and shear rate at rest reached the level of
daptation (Table 1). Next, hypertension was simulated by mul-
iplication of mean aortic blood pressure with a factor of 1.5. The

able 1
arameters relevant for blood vessel hemodynamics and adaptation.

Parameter Value Unit Meaning

� 1050 kg/m3 Density of blood (Eq. (7))
vimpact 3.0 m/s  Impact velocity (Eq. (11))
Lc 0.70 m Characteristic length systemic blood vessel (Eq. (8))

0.20 m Characteristic length pulmonary blood vessel
k  12 – Stiffness constant (Eq. (3))
�f ,max 500 kPa Maximum wall stress (Eq. (10))
	 s,ref 1700 1/s Reference of small vessel shear rate (Eq. (13))
h 0.9 mm Vessel diameter transition for adaptation (Eq. (13))
munications 42 (2012) 15– 21

protocol of adaptation to hypertension was carried out to show
changes in vascular geometry.

3. Results

In Fig. 4 time courses of pressures and flows are shown for the
large blood vessels and cardiac cavities under resting conditions
after adaptation. Left and right ventricular cavities are separated
from the arteries by valves, causing diastolic cavity pressure and
arterial pressure to separate. Pulsations in flow and pressure are
about in phase, indicating that arterial flow waves propagate down-
stream. The ratio of pulse pressure to mean pressure is significantly
higher in the pulmonary arteries than in the aorta. At the connec-
tion sites of the veins to the atria, pressure and flow changes are
clearly in anti-phase, indicating that venous flow waves propagate
upstream. Since there are no valves, venous and atrial pressures
are close. Existing pressure differences are due to hemodynamic
acceleration effects.

Geometry of blood vessels forms automatically by adaptation.
Variations in initial dimensions before adaptation by ±50% resulted
in the same final solution, indicating that the found solution for
geometry is unique in the physiological range. Data on obtained
geometry is shown in Table 2. As expected, blood vessels carrying
high pressure load have a thicker wall. For arteries, maximum pres-
sure load during exercise, having the effect of body impact velocity
included, is about a factor 2 of that pressure load during systole at
rest. For veins this factor is much larger, up to a factor of 16. At a
closer look, this difference is attributed to a relatively fixed pressure
contribution of impact velocity, while in veins regular hemody-
namic pressure load becomes practically negligible for adaptation
of wall thickness.

As expected, with hypertension, aortic wall thickness increases
most (Table 2). Wall thickness of the pulmonary veins increases
also because of increasing left ventricular diastolic pressure (Fig. 4,
right). Increase of pulmonary venous pressure elevates pulmonary
arterial pressure, also to be noted by a diastolic wave in the pres-
sure tracing. Since pressure increases also in the right-sided vessels,
their walls also thicken to some extent. Note that diameters of large
vessels (Table 2) are based on the assumption that all parallel ves-
sel connections to the heart are combined to a single representative
conduit. The real situation is quite different. For instance, the pul-
monary trunk is short, readily splitting in two branches. Systemic
venous return occurs by inferior and superior veins, entering the
short chamber like caval vein, which directly connects to the right
atrium. Four pulmonary veins enter the left atrium independently.

4. Discussion

In this study a novel hemodynamic input impedance of the
arterial system is presented as an alternative of the classic three-
element Windkessel model (Westerhof et al., 1971). The new
CircAdapt impedance model consists of a wave impedance, arte-
rial compliance and peripheral resistance. The advantage of this
representation over the classic one is that each element is closely
linked to specific physical properties of the arterial system. Wave
impedance depends on diameter and elastic properties of the prox-
imal aorta. Arterial compliance is determined by volume and elastic
properties of the arterial system. Volume of the arterial system is an
anatomical variable, closely linked to the product of proximal aor-
tic cross-sectional compliance and a representative length of the
arterial system, which depends mainly on anatomical size of the

subject to be estimated by direct observation.

In the classic Windkessel representation, element parameters
have to be derived from abovementioned impedance elements by
conversion equations (Eq. (1)). Peripheral resistance, being the ratio
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ig. 4. CircAdapt simulation of pressures and flows at the connection sites of the lar
t  rest (left) and with systemic hypertension (right). Pressures in the cavities are a
aves. In veins pressures and flows are in anti-phase, indicating backward waves. N

f mean aortic pressure and flow, varies with the level of exercise.
hen peripheral resistance approaches wave impedance, conver-

ion to the classic Windkessel model is even not possible because of
ero division in Eq. (1).  With the CircAdapt impedance no difficulty
s encountered. This finding is consistent with the problematic esti-

ation of Windkessel parameters for the pulmonary circulation at
ow peripheral resistance (Segers et al., 1999). In the latter study
t was also found that the arterial compliance as estimated with
he classic model was significantly higher than this compliance as
etermined with the pulse contour method. The latter observa-
ion confirms our theoretical result that in the classic model the
ompliance is always larger than the true arterial compliance (Eq.

1)), and that this overestimation increases if peripheral resistance
pproaches wave impedance.

When assuming linear behavior of the elements, the clas-
ic and CircAdapt representation behave identically after proper

able 2
essel geometry after simulated adaptation.

Vessel type Lumen
area (cm2)

Wall
area (cm2)

Meana

pressure (kPa)

Rest
Aorta 4.99 1.17 12.2 

Pulmonary artery 4.97 0.46 1.96 

Pulmonary vein 5.20 0.40 0.61 

Systemic vein 5.14 0.28 0.18 

Hypertension
Aorta  4.98 2.01 18.3 

Pulmonary artery 4.97 0.60 2.26 

Pulmonary vein 4.98 0.65 0.94 

Systemic vein 4.99 0.24 0.21 

a Mean and systolic pressure at rest.
b Maximum pressure during exercise with the effect of impact included.
ries and veins to the corresponding cardiac cavities LV, RV, LA and RA, respectively,
picted. Note that in arteries pressures and flows are in phase, indicating forward
ifferences in pressure scaling (1 kPa = 7.5 mmHg).

conversion of values for compliance and resistances (Eq. (1)).
If some physical phenomena behave nonlinearly, in the Cir-
cAdapt impedance model, these nonlinearities remain linked to the
constituting elements by known relations. In the classic descrip-
tion, effects of these nonlinearities spread out further over different
elements, thus complicating description and interpretation of non-
linear behavior. The nonlinear vessel stress–strain relationship of
the vessel wall affects both wave impedance and arterial com-
pliance (Eqs. (7) and (8)). Using this knowledge, nonlinear elastic
behavior was incorporated in the CircAdapt impedance model, thus
increasing the validity range for hemodynamic changes without the
need to re-estimate parameters.
The latter increase in validity range is indicated by the following
finding. Using the conventional linear three element model of aortic
impedance, we estimated peripheral resistance, wave impedance
and arterial compliance from the pressure and flow tracings in the

Systolica

pressure (mm)
Maxb

pressure (mm)
Internal
diameter

Wall
thickness

16.8 31.8 25.2 2.79
3.69 10.9 25.2 1.13
1.25 8.3 25.7 0.96
0.32 4.9 25.6 0.68

24.1 48.4 25.2 4.65
4.03 14.9 25.2 1.47
1.78 11.9 25.2 1.59
0.38 6.3 25.2 0.84



2 ch Com

n
h
w
a
i
w

h
c
w
s
r
t
c
i
p
i
c
t
k

b
t
i
p
s
i
t
h
d
(
i
3
T
r
w
e
t
2
(
t
t
s

p
w
c
c
r
e
L
c
s
p
e
s
p
m

s
1
b
t
t
T
a

0 T. Arts et al. / Mechanics Resear

ormal state and with hypertension, as presented in Fig. 4. The
ypertension to normal ratio of estimated peripheral resistance,
ave impedance and arterial compliance appeared to be 1.49, 1.56,

nd 0.71, respectively. These multiplication factors are so large that
n analyzing hypertension, these parameters must be re-estimated,

hereas with our new approach no parameters had to be changed.
The need to consider nonlinearity of the aortic input impedance

as been questioned by Fogliardi et al. (1996).  In that study arterial
ompliance was taken to be an exponential function of pressure,
hile wave impedance was a constant, not depending on ves-

el wall elasticity. In our model, arterial compliance is differently
elated to pressure, i.e. by a reciprocal relationship (Eq. (8)). Fur-
hermore, wave impedance is related to compliance by using their
ommon dependency on vessel wall elasticity. So, our nonlinear-
ty is physically more consistent, and the number of independent
arameters is reduced. Consequently, all parameters could be

dentified unambiguously. In the study by Fogliardi et al. it was
oncluded that identification of their nonlinearity parameters is
roublesome. Apparently, modeling by physical understanding is a
ey to realistic implementation of nonlinearity.

Instead of applying conventional constitutive relationships, e.g.
y using Young’s modulus, well suited to simulate rubber like elas-
ic properties, we postulated that deformation energy is stored
n a nonlinearly elastic matrix of fibers embedded in soft, incom-
ressible material (Arts et al., 1991). By assuming an exponential
tress–strain relation (Eq. (2))  of these fibers, a power law relation
s found for the pressure-area relation (Eq. (6))  with parame-
er k being a main determinant of vessel wall stiffness. In the
uman common carotid artery, pressure has been reported to
epend exponentially on cross-sectional area (p/pref = exp(�A/Aref)
Meinders and Hoeks, 2004)). In that study the exponent � for age
ntervals 20–30–40–50–60–70–80 years, was found to be 1.9, 2.3,
.3, 3.6, 4.5 and 4.2, respectively. Using Eq. (6),  it holds k/3 − 1 ≈ �.
hus, corresponding k-values are 8.7, 9.9, 12.9, 13.8, 16.5 and 15.6,
espectively. According to Eq. (9),  wave velocity is proportional
ith the square root of pressure. In canine coronary arteries (Arts

t al., 1979), this velocity appeared proportional with pressure to
he power 0.69. The corresponding k-value was calculated to be
3. In the common carotid artery of 25- and 75-year-old humans
Hermeling et al., 2010), wave velocity was 4.3 and 7.4 m/s, respec-
ively, corresponding to k-values of 7.5 and 16.3. These data confirm
hat stiffness of arteries increases with age and decreases with ves-
el diameter.

An interesting effect of nonlinearity concerns decay of aortic
ressure after closure of the aortic valve. Classically, the decay
ould be exponential. Taking into account the increase of arterial

ompliance with decreasing pressure, pressure decay is theoreti-
ally derived to be proportional with 1/(1 + t/�RC) with t and �RC
epresenting time and a fixed time constant. Our solution and the
xponential solution are similar shortly after aortic valve closure.
ate after aortic valve closure, however, occurring for instance after
ardiac arrest, the CircAdapt solution for pressure decay is con-
iderably slower than exponentially. This finding is confirmed in
atients with temporary cardiac arrest (Kottenberg-Assenmacher
t al., 2009). Although in the latter study, the slow decay is pre-
umed to be exponential, converging assymptotically to a positive
ressure level, the experimentally measured pressure curve agrees
uch better with the above-mentioned 1/(1 + t/�RC) solution.
Previously, for the left ventricle the ratio of pressure to fiber

tress (Eq. (3)) has been derived to be 1/3 ln(1 + Vw/Vc) (Arts et al.,
991). Here we have used the simpler, first order approach, mainly
ecause vessel walls are relatively thin as compared to the wall of

he left ventricle. For the thickest wall, i.e. that of the aorta, the rela-
ive error of the current approximation of pressure is less than 1.5%.
o satisfy the condition that generated mechanical work by stress
nd strain in the wall equals the hemodynamic work of pressure
munications 42 (2012) 15– 21

and volume change, the corresponding equation for strain became
much simpler, as presented in Eq. (4).  Furthermore, Eqs. (5)–(9)
became much simpler too.

The application of the CircAdapt impedance model has been
extended to arterial and venous blood vessel trees in general.
Arterial and venous impedances are coupled back to back by a
peripheral resistance in between. Thus, 10 parameters are needed
to describe hemodynamic behavior of the systemic and pulmonary
circulation as seen from the heart. By attributing adaptation prop-
erties to blood vessel wall material in general, the number of
parameters is reduced to 7 (Table 1). Since the diameter of all large
vessels is much larger than parameter h, parameters h and 	s,ref
can be combined to a single parameter h	s,ref (Eq. (13)). Charac-
teristic length Lc of systemic and pulmonary system is determined
by body size, and may  be set on forehand. When assuming a thin
wall (Aw � Ac), using Eqs. (7)–(9),  wall thickness appears of little
influence on vessel compliance. The latter paradoxical finding is
explained by the exponential behavior of the stress–strain rela-
tion (Eq. (2)). Since stiffness is the derivative of stress versus strain,
stiffness is proportional with stress. With a thicker wall, stress
decreases, causing stiffness to decrease, just so that total wall stiff-
ness is maintained due to the thicker wall. Because wall thickness
is less relevant, the importance of parameters �f,max and vimpact is
reduced. Summarizing, the hemodynamic properties of all large
blood vessels together are determined mainly by only two  param-
eters, i.e. stiffness constant k and a shear rate level, determined by
the product h	s,ref.

Shear stress cannot be the only factor determining vessel diam-
eter regulation. Shear rate is inversely proportional with the third
power of vessel radius (Eq. (12)). When regulating diameter so that
shear rate is constant, mean flow is expected to be proportional
to the third power of diameter. Then, for a symmetric bifurcation
the ratio of summed area of two  distal branches to the area of the
proximal branch would be 1.26. For porcine coronary arteries it
is found that this ratio decreases with increasing artery diameter,
from 1.3 for small (10 �m)  diameters to about 1.0 for large (3 mm)
diameters (VanBavel and Spaan, 1992). These findings imply that
for small vessels mean flow is proportional with the third power
of the diameter, and for large vessels proportional with the square
of the diameter. In a study on canine coronary arteries (Arts et al.,
1979) in the diameter range 0.5–3.0 mm,  mean flow is found to
be proportional with diameter to the power 2.55, which is inter-
mediate between 2 and 3. This finding is much in agreement with
the aforementioned study. Remarkably, in mammals, mean aor-
tic flow velocity appears to be independent of size of animal and
aorta (Dawson, 2001), indicating that flow in the aorta is propor-
tional to the square of the diameter. These findings suggest that the
level of mean shear rate and shear stress diminishes with increas-
ing artery diameter. Apparently, in the largest arteries shear rate
diminishes reciprocally with the diameter, and in the small ones
shear rate is about constant. Therefore, we  assumed a critical diam-
eter h (Table 1, Eq. (12)), below which sensitivity to shear stress is
constant, and above which this sensitivity increases linearly with
diameter. In rabbit arterioles, shear rate is found to be 1700 s−1 with
a large range (470–4700 s−1) around. In canine coronary arteries
with diameters in the range of 0.5–3.0 mm (Arts et al., 1979), flow
appeared proportional with diameter to the power 2.55, indicating
that the diameter range is around the transition diameter h. In our
simulation we obtained a best fit for humans by using a h-value of
0.9 mm (Table 1).
5. Conclusions

The classic three-element Windkessel model of aortic input
impedance is a wave impedance in series with the parallel
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ombination of a compliance and a second resistance. We modified
he impedance to the CircAdapt version in order to (1) facilitate
ssociation of element parameters to physical properties of arter-
es, (2) extend application to pulmonary arteries and large veins, (3)
imulate the effect nonlinear elastic properties of the vessel wall,
nd (4) simulate adaptation of vessel wall geometry to hemody-
amic load.

By application of the same adaptation characteristics to all
rteries and veins, impedances of these blood vessels are mainly
etermined by only two parameters, one for vessel wall stiffness
nd one for shear rate. Vessel wall thickness appeared of little
mportance for elastic behavior, but is important for withstand-
ng pressure load. Regulation of wall thickness requires a third
arameter.

The validity range of the CircAdapt impedance is extended to
onlinear elastic behavior of vessel wall mechanics and to situ-
tions where wave impedance approaches peripheral resistance,
uch as in the pulmonary arterial system and with exercise.

Implementation of the novel three-element impedance in the
xisting CircAdapt model of circulation hemodynamics enables (1)
imulation of large changes in hemodynamics, e.g. exercise, with-
ut change of parameter values, and (2) simulation of adaptation
o a chronic change of hemodynamics, e.g. related to pathology or
roposed therapies.
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