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Unlike  common  engineering  materials,  living  matter  can  autonomously  respond  to environmental
changes.  Living  structures  can  grow stronger,  weaker,  larger,  or  smaller  within  months,  weeks,  or  days
as a  result  of  a  continuous  microstructural  turnover  and  renewal.  Hard  tissues  can  adapt  by  increasing
their  density  and  grow  strong.  Soft tissues  can  adapt  by  increasing  their  volume  and  grow  large.  For  more
than three  decades,  the  mechanics  community  has  actively  contributed  to understand  the  phenomena
of  growth  and  remodeling  from  a mechanistic  point  of  view.  However,  to date,  there  is  no single,  unified
characterization  of  growth,  which  is  equally  accepted  by  all scientists  in  the  field.  Here we  shed  light  on
rea growth
unctional adaptation
emodeling

the  continuum  modeling  of growth  and  remodeling  of living  matter,  and  give  a comprehensive  overview
of  historical  developments  and  trends.  We  provide  a  state-of-the-art  review  of  current  research  high-
lights,  and  discuss  challenges  and potential  future  directions.  Using  the  example  of volumetric  growth,
we  illustrate  how  we  can  establish  and  utilize  growth  theories  to characterize  the functional  adaptation
of soft  living  matter.  We  anticipate  this  review  to be  the  starting  point  for  critical  discussions  and  future

mod
research  in  growth  and  re

. A brief history of growth and remodeling

In the century of quantitative biology, the mechanics commu-
ity seems to keep ignoring the tremendous impact it could have
n fusing live science and medicine by providing a unified, holis-
ic, multiscale approach to characterize the fascinating features
f living matter. On the small scale, biophysicists, who  have long
elieved they could solve this challenging problem alone, are now
oming to realize that their building block approach is inherently
imited: nature is more than the sum of its parts. On the large scale,
linical researchers keep incrementally refining existing treatment
trategies, with only few truly innovative advances. Their classical
bservational approach is undoubtably successful when comparing
ifferent treatment outcomes; yet, it fails to provide a mechanistic
nd predictive understanding of the underlying key phenomena.
o what is the role that mechanics as a discipline could play in
uantitative biology?
∗ Corresponding author at: Departments of Mechanical Engineering, Bioengineer-
ng, and Cardiothoracic Surgery, Stanford University, 496 Lomita Mall, Stanford, CA
4305, USA. Tel.: +1 6504500855.

E-mail address: ekuhl@stanford.edu (E. Kuhl).

093-6413/$ – see front matter ©  2012 Elsevier Ltd. All rights reserved.
oi:10.1016/j.mechrescom.2012.02.007
eling,  with  a potential  impact  on life  science  and  medicine.
© 2012 Elsevier Ltd. All rights reserved.

1.1. Where it all began: density growth of hard tissues

The fathers of modern biomechanics have impressively demon-
strated that both biomechanics and mechanobiology play an
important role when trying to understand biological form and func-
tion (Thompson, 1917; Wolff, 1870). On the one hand, biology
can have a significant impact on mechanics: mechanical stiffness
changes with biological microstructure. For almost half a century,
we have known that these changes are not just linear, and that
nature is more than the sum of its parts. Bone stiffness, for example,
not only increases linearly with bone density, but exponentially,
with exponents typically varying from two to three depending on
the number and thickness of the individual trabaeculae (Carter and
Hayes, 1977). These types of non-linearities are indeed very famil-
iar to the mechanics community (Gibson and Ashby, 1997). We  deal
with geometric and constitutive non-linearities on a daily basis, and
we know that superposition only holds in very few limited cases.

On the other hand, mechanics can have a tremendous impact on
biology: biological microstructure changes with mechanical load-
ing. Unlike engineering materials, living biological materials are not
just constant throughout an individual’s life time; they can adapt
to environmental changes. Bone density, for example, changes in

response to environmental forces, a phenomenon that has become
known as the functional adaptation of bone (Cowin and Hegedus,
1977). For more than a century, researchers in different disciplines
have been fascinated by this functional adaptation. Figs. 4 and 5

dx.doi.org/10.1016/j.mechrescom.2012.02.007
http://www.sciencedirect.com/science/journal/00936413
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re only two out of many famous examples that illustrate how
issue microstructure is capable to align with the directions of max-
mum principal stress in the femur and in the tibia (Wolff, 1870).
on-constant densities are unconventional in classical mechanics,
nd we still struggle with characterizing them using our standard
ools. Changes in mass, absolutely common in biology, require

 characterization as a multi-phase material within the frame-
ork of mixture theories (Ateshian et al., 2012; Garikipati et al.,

004; Humphrey and Rajagopal, 2002) or as a single-phase material
ithin the framework of open system thermodynamics (Epstein

nd Maugin, 2000; Kuhl and Steinmann, 2003a,b).
Hard tissues such as bone are admittedly a great model sys-

em to begin with, mainly for three reasons: first, since they do
ot undergo large deformations in vivo, a linear kinematics char-
cterization is usually sufficiently accurate. Second, although they
re multiphase materials consisting of solid and fluid constituents,
or most technical applications, a single phase characterization in
erms of the solid constituent alone represents their behavior suffi-
iently well (Kuhl et al., 2003). Third, since they are relatively easy
o preserve, and their ex vivo response closely matches their in vivo
ehavior, they are relatively easy to test. This special issue pro-
ides a state-of-the-art overview on bone regeneration (Isaksson,
012) and illustrates how we, as engineers, can adopt the design
aradigms of nature when creating optimal, strong, and lightweight
tructures (Waffenschmidt and Menzel, 2012).

Overall, studying the functional adaptation of hard tissues has
remendously enhanced our understanding of bone density profiles
n health and disease. We  now know why astronauts lose bone in
pace (Kuhl and Steinmann, 2003c).  We  know why stiff implants
sed in hip replacement and repair induce a local loss of bone den-
ity through stress shielding (Ambrosi et al., 2011). We  know why
ental implants loosen over time in response to bone remodeling.
e know that osteoporosis is associated with a local bone loss,
hich can be correlated to gait profiles (Pang et al., 2012). And we

now why high-performance athletes in asymmetric sports, such
s tennis players or baseball pitchers, have a significantly stronger
ominant arm, in which they might develop chronic pain (Taylor
t al., 2009).

.2. Why  it became complicated: volume growth of soft tissues

But why did we stop here? Translating what we know from hard
issues to soft is non-trivial for multiple reasons: First, soft tissues
ypically undergo large deformations and their accurate charac-
erization requires a finite kinematic approach (Rodriguez et al.,
994). Second, their multi-phase character often plays a critical
ole, and their reduction to single-phase materials could sometimes
e overly simplified (Mow  et al., 1984). Third, they are difficult
o preserve, and their ex vivo response might vary significantly
rom their in vivo behavior (Krishnamurthy et al., 2008). This differ-
nce might be attributed to residual stress (Alastrue et al., 2009a,b;
enzel, 2007; Taber and Humphrey, 2001) or to a pronounced

ctive response (Famaey et al., in press; Itoh et al., 2009; Murtada
t al., 2010).

Despite these challenges, a second generation of researchers in
iomechanics has laid out a successful strategy how to characterize
he living nature of soft biological tissues through iterative loops of
stablishing a theory, formulating testable hypotheses, designing
xperiments, probing the theory, calibrating the model parame-
ers, and validating the model (Humphrey, 2002; Taber, 1995). Key
o these developments was the re-interpretation of growth in terms
f an incompatible configuration (Hsu, 1968; Skalak, 1981) and its

athematical characterization through the multiplicative decom-

osition of the deformation gradient into an elastic and a growth
art (Goriely and BenAmar, 2007; Menzel, 2007; Rodriguez et al.,
994). This kinematic approach was soon recognized to enable the
Communications 42 (2012) 1– 14

modeling of growth in various soft biological tissues (Garikipati,
2009; Lubarda, 2004). Fig. 6 illustrates one of the first attempts
to utilize this concept and model isotropic volumetric growth of
the arterial wall in response to balloon angioplasty and restenosis
(Himpel et al., 2005; Kuhl et al., 2007). Within the past decade, sev-
eral groups in mathematics and theoretical and applied mechanics
have focused on formalizing the concept of volumetric growth, both
within the frameworks of mixture theories (Ateshian et al., 2012;
Garikipati et al., 2004) and open system thermodynamics (Chen
and Hoger, 2000; Lubarda and Hoger, 2002; Menzel, 2005), and,
only recently, within a combined framework of second order mass
transport (Ciarletta et al., 2012). These attempts and recent trends
are summarized in several illustrative overview articles (Ambrosi
et al., 2011; Cowin, 2004; Verdier et al., 2009).

In addition to the mechanics community, the applied mathe-
matics community has contributed tremendously to our under-
standing of growing soft biological tissues. Insightful theoretical
contributions address the mathematical instabilities associated
with growth (Ben Amar and Goriely, 2005), and the analytical solu-
tions for growing plates (Dervaux et al., 2009), membranes (Goriely
and Tabor, 2003; McMahon et al., 2010), and shells (Goriely and
BenAmar, 2005). More applied contributions typically focus either
on plant growth (Dumais et al., 2006; Vandiver and Goriely, 2009)
or on clinically relevant growth (Ambrosi and Mollica, 2002). This
special issue contains one application of the former class, growing
pollen tube (Kroeger and Geitmann, 2012), and three of the latter
class, growing tumors (Ambrosi et al., 2012), growing skin (Ciarletta
and BenAmar, 2012), and growing cells in general (Ateshian et al.,
2012).

Now that all these growth theories are more or less established,
it is surprising that they attract so little attention. Why  is it that
the potential of growth theories is still underappreciated? Using
growth theories to predict biological phenomena requires intense
cross-talk between the different disciplines. We  need to specify
the individual growth laws for particular types of cells, plants, or
tissues, isotropic, transversely isotropic, orthotropic, or generally
anisotropic (Humphrey, 2001). We  need to identify the driving
forces for growth, stress, strain, or energy, and ideally tie them
to the underlying mechanotransduction cascades that mediate the
growth process (Jaalouk and Lammerding, 2009; Wong et al., 2011).
And, most importantly, we  need to identify relevant phenomena of
growth in health and disease that warrant thorough investigation.

Typical health-relevant examples of volumetric growth are
growing tumors (Ambrosi and Mollica, 2002; Ambrosi et al., 2010;
Preziosi and Tosin, 2009) and growing mucous membranes (Li et al.,
2011; Moulton and Goriely, 2011). Figs. 7 and 8 illustrates a health-
relevant example of transversely isotropic growth characteristic for
growing thin biological membranes such as skin (Buganza Tepole
et al., 2011; Zöllner et al., in press). In contrast to tumor growth,
here, growth is initiated on purpose to create extra tissue for defect
correction in plastic and reconstructive surgery (Buganza Tepole
et al., in press; Socci et al., 2007; Zöllner et al., 2012). This special
issue also addresses another health-relevant example of biological
growth in vision, with typical examples of glaucoma and myopia
(Grytz et al., 2012).

The cardiovascular system undoubtably remains the prototype
model system for soft tissue growth. Growth related phenomena
in arteries have attracted both theoretical (Alford and Taber, 2008;
Alford et al., 2008; Schmid et al., 2012) and computational (Alastrue
et al., 2009a; Himpel et al., 2005) researchers equally, with char-
acteristic problems as illustrated in Fig. 6. Two  contributions of
this special issue give insight into growing arterial tissue in general

(Valentin and Holzapfel, 2012) and abdominal aortic aneurysms in
particular (Zeinali-Davarani and Baek, 2012). A specific challenge
is associated with the anisotropic nature of growth in cardiovas-
cular tissue. Resent studies have characterized anisotropic growth
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n response to myocardial infarction in vivo (Tsamis et al., 2012).
ot only can the microstructural directions of anisotropy reorient

hemselves (Kuhl et al., 2005; Kuhl and Holzapfel, 2007; Menzel,
005, 2007; Menzel and Waffenschmidt, 2009), as discussed in one
ontribution of this special issue (Pluijmert et al., 2012), but the tis-
ue may  also grow anisotropically in response to different loading
cenarios (Göktepe et al., 2010a; Kerckhoffs et al., 2012). Cardiac
uscle, for example, can grow isotropically (Kroon et al., 2009),

ndergo eccentric growth in response to volume overload (Göktepe
t al., 2010b), or concentric growth in response to pressure overload
Rausch et al., 2011), as illustrated in Figs. 9 and 10.  This special issue
ontains a collection of manuscripts related to the heart, to provide

 state-of-the-art overview on cardiac growth in health and dis-
ase (Arts et al., 2012; Bellomo et al., 2012; Kerckhoffs et al., 2012;
lepach et al., 2012). Last, we discuss a possible reorientation of

he underlying microstructure through the evolution of structural
ensors (Himpel et al., 2008; Menzel, 2007) as illustrated in Fig. 11.

. Kinematics of growth

Let us consider a body B embedded in the three-dimensional
pace. We  distinguish between a chosen material or reference con-
guration B0 and the spatial or current configuration Bt of the body
. The spatial motion of referential position vectors of particles,

 ∈ B0, to their spatial position in Bt at time t is denoted by

 = ϕ(X, t) (1)

nd is assumed to be sufficiently smooth; see Fig. 1 for a graph-
cal illustration of the spatial motion problem. As this work
roceeds, we will make use of the related gradient operations
X{ ◦ } = dX{ ◦ }|t and { ◦̇} = dt{◦}|X , with the latter referring to the
aterial time derivative. When applying theses operations to Eq.

1), we obtain the well-established spatial motion deformation gra-
ient and the spatial velocity,

 = ∇Xϕ and v = ϕ̇ , (2)

long with the spatial velocity gradient,

 = ∇xv = ∇Xv · F−1 = Ḟ · F−1, (3)

here J = det ( F) > 0 so that F−1 exists. In complete analogy, we  can
onsider the material motion problem
 = ˚(x, t) (4)

nd introduce the corresponding gradient operations

x{ ◦ } = dx{ ◦ }|t and {♦◦} = dt{◦}|x; see Fig. 1 for a graphical

ig. 1. Graphical illustration of the direct motion problem ϕ( X , t) mapping refer-
ntial particles X at time t onto their spatial position x = ϕ( X , t) and of the inverse
otion problem ˚( x, t) mapping spatial particles x at time t onto their referential

osition X = ˚( x, t). The local material transformation Fg−1 maps infinitesimal line
lements d Xg at time t onto referential line elements d X = Fg−1 · d X .
Communications 42 (2012) 1– 14 3

illustration of the kinematics of the material motion problem.
When applying these operations to Eq. (4),  we obtain the material
motion deformation gradient and the material velocity,

f = ∇x˚ and V =
♦
˚ , (5)

along with the material velocity gradient,

L = ∇XV = ∇xV · f −1 =
♦
f · f −1 (6)

where j = det ( f ) > 0 so that f −1 exists. Since  ̊ is the inverse map  of
ϕ, we can relate both formulations through f = F−1 and V = − f · v.

2.1. Compatibility

We focus the subsequent brief discussion on compatibility-
related properties of configurations. Here, we focus on the spatial
motion problem, but identical relations hold for the material
motion problem as ˚( x, t) is the inverse map  of ϕ( X , t). Since the
deformation gradient represents the derivative of a vector poten-
tial, the related Piola identity is valid. In other words, the divergence
of the cofactor of the deformation gradient vanishes identically,

∇X · cof(F) = 0 , (7)

where cof( F) = dF J = J F−t and ∇X · { ◦ } denotes the divergence
operation. A general field representation of a second-order ten-
sor includes further contributions in addition to the gradient form
present in the definition of F in Eq. (2).  To derive this general form,
we consider the Helmholtz representation of a vector field,

h(X) = ∇Xa(X) + ∇t
X × b(X) + hc , (8)

where ∇t
X × {◦} denotes the curl operation and hc is a constant

vector (Dassiso and Lindel, 2001). A second-order tensor can be
represented as H( X) = hi( X) ⊗ ei, wherein ei is a Cartesian base
system, so that the application of Eq. (8) results in

H(X) = ∇X [ai(X) ei] + ∇t
X × [bi(X) ⊗ ei] + Hc

= ∇Xa(X) + ∇t
X × B(X) + Hc

(9)

with Hc = const. When comparing the general field representation
of a second-order tensor in Eq. (9) with the definition of F in Eq.
(2), we  conclude that the so-called incompatible part ∇t

X × B is not
activated and that, in consequence, Eq. (7) holds. We  can further
specify the vector field a( X) and the tensor field B( X) in Eq. (9)
by means of the representations in Eqs. (8) and (9).  This results in
the representation

H(X) = ∇2
X⊗Xa(X) + ∇X [∇t

X × b(X)] + ∇t
X × [∇t

X × C(X)] + Hc

(10)

including the scalar, vector, and tensor potentials a( X), b( X)
and C( X). In order to make these potentials independent of each
other, b( X) and C( X) must fulfill additional constraints. To give an
example, when choosing the representation C( X) = ci( X) ⊗ ei the
vector fields incorporated are constrained to be divergence-free,
i.e., ∇X · ci = 0; for further background information and representa-
tions in view of related null Lagrangians (see Olver, 1993; Šilhavý,
1997). Applying the curl operation twice, such as ∇t

X × [∇t
X × C(X)]

in Eq. (10), is commonly denoted as the incompatibility operator
frequently used in the context of continuum dislocation theories
(Kröner, 1981; Lodge, 1974; Menzel and Steinmann, 2000).

2.2. Volume growth
The local evolution of material inhomogeneities, e.g., growth
related to changes in volume and mechanical properties, can be
interpreted as local material transformations or local deformation
measures. Since the deformation gradient is a second-order tensor,



4 A. Menzel, E. Kuhl / Mechanics Research Communications 42 (2012) 1– 14

Fig. 2. Graphical illustration of the multiplicative decomposition of the deforma-
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Fig. 3. Surface growth of a narwhal tusk with an upward pointing material velocity,
V =  V� + V g, according to Eq. (16). Photograph of a narwhal tusk, left, demonstrates
the characteristic helical growth pattern. Computational simulation of surface
ion gradient F = ∇ Xϕ = Fe · Fg into a reversible elastic part Fe and an irreversible
rowth part Fg. The local mass density �t = j�0 and �g = j�0 are transformations of
he referential density �0 in terms of the Jacobians j = det( F−1) and jg = det( Fg−1).

e can replace F with F · Fg−1, where Fg represents the local refer-
ntial transformation; see Fig. 1. This modeling framework was  first
roposed in the context of general material inhomogeneities and
nite elasto-plasticity (Lee, 1969; Noll, 1967) and, later on, applied

n the context of growth (Rodriguez et al., 1994). The approach
s commonly denoted as the multiplicative decomposition of the
eformation gradient

 = Fe · Fg (11)

nto an energy-storing, reversible elastic part Fe and an irreversible
rowth part Fg, with the related Jacobians

e = det(Fe) > 0 and Jg = det(Fg) > 0 , (12)

ee Fig. 2. Unlike F in Eq. (2),  neither Fe nor Fg can be derived
rom a vector field. Accordingly, unlike F , neither Fe nor Fg do
ulfill the Piola identity in Eq. (7).  When applying the Helmholtz
epresentation in Eq. (9) to Fe and Fg, in general, the incompatible
arts ∇t

X × B(X) do not vanish. In other words, Fe and Fg can not
e defined as gradients of a vector potential. This implies that the

nterpretation of Fe and Fg as representing an additional global
onfiguration is misleading. In view of the spatial motion problem,
e can additively decompose the spatial velocity gradient

 = le + lg , (13)

nto an elastic and growth related part according to equation (11)
ith

e = Ḟ
e · Fe−1 and lg = Fe · Ḟ

g · Fg−1 · Fe−1. (14)

t proves convenient to also introduce their material counterparts
e = Fe−1 · le · Fe and Lg = Fe−1 · lg · Fe as

e = Fe−1 · Ḟe and Lg = Ḟ
g · Fg−1, (15)

here the growth velocity tensor Lg will play a key role in the
ormulation of constitutive equations in Section 4. We  could also
erform a similar transformation of l in terms of F instead of Fe,
ut this would be less relevant in the sequel.

.3. Surface growth

It is not always straightforward to distinguish between bulk
nd surface growth (Skalar et al., 1997). Let us consider a bar with
quidistant markers and choose a cross-section � at one of its ends.

ow, let the bar grow in longitudinal direction such that its end-

o-end distance increases while its referential mass density and its
ross-sectional area remain constant. If the distances between the
arkers remain constant and all markers move away from � , we
growth, right, with an outward pointing velocity V� of the growth surface � , here
characterized through the bottom ring, and a helically upward pointing velocity V g

of material grown at the surface � .

classify the process as surface growth and conclude that the new
material is supplied at the surface � . If the distances between the
markers increase equally, we classify the process as bulk growth
and conclude that the new material is supplied continuously within
the bulk of the bar itself. Although the underlying mechanisms
are fundamentally different, the final grown geometries could be
entirely identical in both cases.

From a continuum mechanics point of view, � represents an
internal surface with respect to which material moves in the case
of surface growth. As such growth processes change the chosen
reference configuration of the body, the velocities of material par-
ticles relative to the surface � can be best characterized in terms
of the material motion problem (4).  This motivates the additive
decomposition of the material velocity V of a particle of the surface

V = V� + Vg (16)

into the velocity V� of the surface itself, and the velocity Vg

of material grown at the surface � . Typical examples of surface
growth include growing tusks, as shown in Fig. 3, horns, seashells,
teeth (Skalar et al., 1997), and plant tips (Dumais et al., 2006;
Kroeger et al., 2009) as discussed in Kroeger and Geitmann (2012)
of this special issue.

Remark 1 ((Multiplicative decomposition)). Kinematic approaches
to finite inelasticity are frequently based on the multiplicative
decomposition of the deformation gradient into an elastic and an
inelastic part as suggested in Eq. (11). This approach was pro-
posed in the context of finite crystal plasticity (Lee, 1969), where
the multiplicative decomposition has a clear geometric interpreta-
tion and the so-called intermediate configuration is assumed to be
stress-free. However, the decomposition (11) is not unique, since
the rotational part can be chosen arbitrarily (Boyce et al., 1989;
Naghdi, 1990). In view of finite growth, we apply the following
polar decompositions

Fe = ve · Re and Fg = Rg · Ug

of the elastic part Fe into an elastic left stretch tensor ve and an
elastic rotation Re, and of the growth part Fg into a growth rotation
Rg and a growth right stretch tensor Ug. We  can then combine the
special orthogonal tensors Re and Rg to a single rotation tensor
Reg, such that

F = Fe · Fg = ve · Re · Rg · Ug = ve · Reg · Ug .
Based on the right polar decomposition of Fg, the growth velocity
tensor Lg takes the representation

Lg = ˝g + Rg · U̇
g · Ug−1 · Rgt
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plify the notation. The additional variable A constitutes a so-called
structural tensor to account for a possible anisotropic elastic behav-
ior. A typical assumption for this tensor is a symmetric rank one
form, AP = aP ⊗ aP, where the vector aP characterizes a specific
direction of anisotropy. Here, we  focus on only one structural tensor
A. Menzel, E. Kuhl / Mechanics Res

ith ˝g = Ṙ
g · Rgt = − ˝gt. If we restrict the growth tensor Fg to

e symmetric and a priori assume Fg = Ug, the spin ˝g vanishes
dentically. If we additionally constrain the principal directions of

g to remain constant in time, e.g., referring to a prescribed orien-
ation of the underlying microstructure, the growth velocity tensor
g turns out to be symmetric as well, i.e., Lg = Lgt.

. Balance equations of growth

The balance equations of a growing body must account for pos-
ible changes in mass. This implies that the local referential mass
ensity �0 can change in response to a possible mass source R0
nd a possible mass flux R. This implies that the balance equations
f growing open systems may  deviate from their standard repre-
entations for bodies with a constant mass. As this work proceeds,
e briefly revisit some essential balance equations in the context

f open system thermodynamics. Thereby, we restrict ourselves to
he balance equations of the spatial motion problem for one sin-
le constituent, similar to Waffenschmidt and Menzel (2012) of
his special issue, and neglect the additional interaction terms that
ould be present in general mixture theories. These are discussed

n detail, e.g., in Ateshian et al. (2012) and Zeinali-Davarani and
aek (2012) of this special issue.

.1. Balance of mass

The local form of the balance of mass for open systems balances
he rate of change of the referential density �̇0 with a possible in-
r outflux of matter R and a possible mass source R0,

˙ 0 = ∇X · R + R0 . (17)

rom a microscopic point of view, the mass flux can be associated
ith cell migration and the mass source can be related to cell prolif-

ration, hyperplasia, hypertrophy, mitosis, necrosis, and apoptosis.

.2. Balance of linear momentum

In the context of open system thermodynamics, we can dis-
inguish between the volume- and mass-specific formats of all
igher-order balance equation (Kuhl and Steinmann, 2003a). The
olume specific form of the local spatial motion balance of linear
omentum

˙ 0 v + �0 v̇ = ∇X · P + �0 b (18)

elates the rate of momentum �̇0 v + �0 v̇, the momentum flux
, and the momentum source �0 b. Subtraction of the velocity-
eighted version of Eq. (17) results in the reduced mass specific

ocal formulation of the linear momentum balance,

0 v̇ = ∇X · [P − v ⊗ R] + �0 b + R0 v + Ḟ · R , (19)

hich we will utilize in the sequel. By neglecting the mass flux,
 = 0, assuming a quasi-static setting, v̇ = 0, and considering a sep-
ration of time scales as the speed of growth is significantly smaller
han v, such that v = 0, we end up with the reduced representation

 = ∇X · P + �0 b (20)

here P represents the standard Piola stresses.

.3. Balance of entropy
To ensure that the overall dissipation remains non-negative,
e discuss the local balance of entropy in form of the Clausius
uhem inequality. We  assume that the temperature � remains con-

tant, which is a reasonable assumption for living biological tissues.
Communications 42 (2012) 1– 14 5

The local form of the deformation-related part of the dissipation
inequality for open systems reads

�0 D  = P : Ḟ − �0  ̇ + � [∇X · S − S0] ≥ 0 (21)

where  0 = �0  is the volume specific free energy density, and S
and S0 denote an extra external entropy flux and source to account
for the living nature of biological systems (Kuhl and Steinmann,
2003a; Menzel, 2005).

Remark 2 ((Residual stresses)). Biological tissues often possess so-
called residual stresses, which we will denote as Pres. By following
the outline and argumentation in (Holzapfel and Ogden, 2003, pp.
65–108), we  make use of the relation

∇X · [X ⊗ Pres] = X ⊗ [∇X · Pres] + ∇XX · Prest . (22)

Application of the divergence theorem to the integral form of Eq.
(22) results in∫
B0

Prest dV =
∫
∂B0

X ⊗ Pres · N dA +
∫
B0

X ⊗ ∇X · Pres dV , (23)

with N denoting the outward referential unit vector. The resid-
ual stresses Pres must fulfill the local form of the balance of linear
momentum (20). By assuming the momentum source �0 b to van-
ish, we conclude that the local equilibrium equation ∇X · Pres = 0
holds. Moreover, the surface integral in Eq. (23) must be identical
to zero as external surface forces are excluded for the unloaded
body considered. Accordingly, all integrals in (23) are zero and∫
B0

Pres dV = 0 implies either that Pres = 0 or that Pres is dis-

tributed inhomogeneously within B0. Note that the growth related
part Fg allows to conveniently include residual stresses at van-
ishing local strains, i.e., F = I; see Section 4.3 below. For further
background information on the incorporation of residual stresses
as additional arguments in the constitutive equations, we  refer the
reader to Hoger (1996) and references cited therein. Typical exper-
iments to demonstrate residual stresses in growing tissue are the
classical opening angle experiment, e.g., in arteries (Famaey et al.,
in press), and peeling of living bilayers, which grow at different
rates, e.g., in rhubarb (Vandiver and Goriely, 2009).

4. Constitutive equations of growth

To close the systems of equations, we  must introduce constitu-
tive relations for the source terms R0, S0, b as well as for the flux
terms R, S, P, and, if present, for the evolution of internal vari-
ables. Here, we  will neither provide a specific representation for b,
such as volume forces resulting from gravity, nor for the external
entropy flux S and entropy source S0, which we  simply assume to
take values such that inequality (21) is satisfied. In order to evaluate
the dissipation inequality (21), we first specify the free energy

 (F, Fg, AP, �0, �) =  ̃(Fe, AP, �0, �) , (24)

where we  have admitted the explicit dependency on X to sim-
P

and refer to Menzel (2007) for a growth model including anisotropic
elasticity with multiple structural tensors. Using Eqs. (17) and (24),
and assuming �̇ = 0, we  can re-write the dissipation inequality in
the following form.
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0D  =
[

P − �0
∂ 
∂F

]
: Ḟ − �0

∂ 
∂Fg : Ḟg − �0

∂ 

∂AP
: ȦP

− �0
∂ 
∂�0

[∇X · R + R0] + �[∇X · S − S0] ≥ 0. (25)

n the following subsections, we will use this dissipation inequal-
ty to specify functional dependencies of the mass source,
he mass flux, the momentum flux, and the evolution of
rowth.

.1. Mass source

In general, the mass source R0 is a scalar-valued tensor function
f the state variables, their material time derivatives, and additional
rguments to be specified. When neglecting the introduction of
dditional arguments, such as additional structural tensors, rates,
nd gradients of the state variables, the mass source function may
ake the following representation

0(F, Fg, AP, �0, �). (26)

.2. Mass flux

In analogy to the mass source, the mass flux R is a vector-valued
ensor function of the state variables, their rates, their gradients,
nd additional arguments to be specified. We  assume R to be
ndependent of the rates of the state variables, but formally intro-
uce another tensorial variable AR and include only one additional
radient contribution, namely the gradient of the referential mass
ensity. As a result, the mass flux function may  take the following
epresentation

(F, Fg, AP, AR, �0, ∇X�0, �) . (27)

.3. Momentum flux

To introduce the momentum flux in a thermodynamically moti-
ated way, we explore the first term of the dissipation inequality
25). We  adopt a hyperelastic format to define the momentum flux,
nd introduce the Piola stress P as energetically conjugate to the
ate of the deformation gradient Ḟ , i.e.,

 = �0
∂ 
∂F

= Pe · Fg−t with Pe = �0
∂ ̃
∂Fe . (28)

his implies that the first term of the dissipation inequality (25)
anishes identically for all Ḟ .

.4. Evolution of growth

To characterize the evolution of growth, we explore the second
erm of the dissipation inequality (25). In analogy to considerations
ommon in finite strain plasticity,

−�0
∂ 
∂Fg : Ḟg = −

[
�0
∂ 
∂Fg · Fgt

]
:
[
Ḟg · Fg−1

]
= −

[
Pe :

∂Fe

∂Fg · Fgt

]
: Lg

=
[
Fet · Pe

]
: Lg = Me : Lg,

(29)
e introduce the Mandel stresses Me = Fet · Pe as thermo-
ynamically conjugate to the growth velocity tensor Lg. These
hermodynamic considerations motivate to introduce the evolu-
ion of the growth tensor Ḟ

g
in form of Lg to be a function of the
Communications 42 (2012) 1– 14

Mandel stresses Me and additional variables such as a structural-
tensor-type quantity Ag, i.e.,

Lg(Me, Ag, �0, �) . (30)

Since Lg is assumed to depend on Me, the particular type of evo-
lution Eq. (30) is, by analogy, similar to models in finite plasticity,
here denoted as stress-driven growth. Alternatively, we  could con-
sider an ad hoc introduction of Lg, i.e., not motivated by direct
thermodynamical considerations, for example in a strain-driven
format,

Lg(F, Fg, Ag, �0, �) . (31)

4.5. Evolution of structural tensor

In analogy to the evolution of Fg, the evolution of the structural
tensor AP can be introduced in a stress-driven form,

ȦP(−�0 ∂Ap , AP, �0, �) (32)

where −�0 ∂Ap  takes the interpretation as stress-type tensor con-
jugate to AP, or in a strain-driven form,

ȦP(F, Fg, AP, �0, �) . (33)

Alternatively, since AP = aP ⊗ aP, we  could introduce evolution
equations for the microstructural vector ȧP itself, instead of its
structural tensor ȦP . This would then allow us to separately address
the evolution of its length || aP|| and the evolution of its orientation
of aP. In particular, when tying these evolution equations to observ-
able variables, evolution equations for the microstructural vector
ȧP might be more illustrative. The tensor functions in Eqs. (32) and
(33) are assumed not to include further structural tensors such as
AR and Ag which, in general, could also be included. Moreover, AR

and Ag may  also evolve with time, and follow evolution equations
of similar forms as introduced in (32) and (33). Evolving struc-
tural tensors are typically used to characterize remodeling effects
when the living structure undergoes changes is anisotropic mate-
rial properties such as microstructural reorientations, see Himpel
et al. (2008), Kuhl et al. (2005), Menzel (2007),  or Pluijmert et al.
(2012) of this special issue.

Remark 3 ((Thermodynamically conjugate pairs)).  Using the dissi-
pation inequality (25), we  have identified the Piola stress P and
the rate of the deformation gradient Ḟ as thermodynamically con-
jugate pairs in Section 4.3. In addition, we have identified the elastic
Mandel stress Me and the growth velocity tensor Lg as thermo-
dynamically conjugate pairs in Section 4.4. Alternatively, we could
have introduced the growth part of the Piola stress, Pg = − �0∂ /∂
Fg, and the rate of the growth tensor Ḟ

g
as conjugate pairs. In anal-

ogy to Eq. (30), this format would then motivate the introduction
of the following evolution of growth,

Ḟ
g
(Pg, Ag, �0, �) ,

as a function of the growth related Piola-type stresses, Pg, and all
other variables, i.e., Ag, �0, and �.

5. Examples

In the previous section, we have introduced generalized func-
tional forms of the constitutive equations, which characterize
growth. Now, we  will specify and discuss some particular examples.
As such, this section is by far not intended to be complete; it is rather

meant to provide guidelines and common practise when model-
ing particular types of growth. For simplicity, we  restrict ourselves
to transversely isotropic materials with one pronounced structural
direction a, such that the structural tensors of the baseline elastic
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Fig. 4. Density growth of the proximal femur for an energy-driven mass source, �̇0 =
R0 with R0 = k�[[�0/�∗

0]−m 0 −  ∗
0], according to Eqs. (17) and (39). Photograph

of  a thin section, left, demonstrates microstructural arrangement of trabeculae in
the femur head aligned with the axis of maximum principal stress (Wolff, 1870).

R = D · n� with D(F, Fg, A, �0, �) (41)

such that the symmetric conductivity tensor D maps the normal
n� onto the mass flux R (Skalar et al., 1997). Typical examples

Fig. 5. Density growth of the proximal tibia for an energy-driven mass source,
�̇0 = R0 with R0 = k�[[�0/�∗

0]−m 0 −  ∗
0], according to Eqs. (17) and (39). Photo-
A. Menzel, E. Kuhl / Mechanics Res

esponse AP, of the density distribution AR, and of volume growth
g coincide.

P ≡ AR ≡ Ag=̇A =̇a ⊗ a . (34)

ere, we will neither focus on the introduction of several or higher-
rder structural tensors, nor on the introduction of dispersion
arameters or so-called orientation distribution functions; for fur-
her background information see Menzel (2007), Menzel et al.
2008), Menzel and Waffenschmidt (2009) and Harrysson et al.
2010) and references cited therein.

.1. Mass source

The mass source R0 in Eq. (26) may  take different specific forms.
ne possibility is to make use of the transformation of the local
ass densities in terms of the determinants of individual contribu-

ions of the deformation gradient. For the special case that the mass
ensity remains constant upon growth, �g = const, we can express
he referential mass density �0 as a function of the growth tensor
g. This implies that

0 = Jg �g and �g = jg �0 , (35)

here �g is the mass density related to the local transformation
g, Jg = det( Fg), and j g = 1/Jg, see Fig. 2. Recall that Jg > 1 implies

 growth-related volume increase and jg > 1 implies a volume
eduction, i.e., positive and negative growth. Assuming a constant
ransformed mass density, �g = const, and thus

˙ g = j̇ g �0 + j g �̇0 = 0 (36)

e can extract the following evolution equation for the referential
ass density �0,

�̇0 = −�0 Jg j̇g = −�0 Jg
∂jg

∂Fg−1
: Ḟg−1

= −�0 Fgt : Ḟg−1 = �0 tr(Lg)
(37)

ith Ḟg · Fg−1 = −Fg · Ḟg−1 and the trace operation tr{ ◦ } = { ◦ } : I
here I denotes the second-order identity tensor. For most bio-

ogical tissues, it is a reasonable assumption that the mass flux R is
onstant in space, i.e., ∇X · R = 0. In this special case, Eq. (17) implies
hat the rate of the referential mass density �̇0 is identical to the

ass source R0, with

0 = �0 tr (Lg) , (38)

hich allows us to explicitly calculate changes in mass in terms of
he growth tensor Fg. This approach is relatively common to char-
cterize the mass increase in growing soft tissues such as arteries
Himpel et al., 2005) or skin (Buganza Tepole et al., 2011). Hard
issues, however, are typically characterized through an energy-
riven evolution of the mass density, and the mass source R0 is
pecified in terms of the referential mass density �0 and the free
nergy  ,

0 = k�

[[
�0

�∗
0

]−m
 0 −  ∗

0

]
. (39)

erein, �∗
0 and  ∗

0 denote the reference value of the density and
f the free energy, m is an additional parameter to ensure algo-
ithmic stability, and k� has the unit of time divided by length
quared to govern the speed of the adaption process, see Harrigan
nd Hamilton (1992) and Waffenschmidt and Menzel (2012) of this
pecial issue. Typical examples of this type of density growth have
een used extensively in the literature to characterize density pro-

les in the proxima femur (Kuhl et al., 2003; Kuhl and Steinmann,
003c; Wolff, 1870), see Fig. 4. Additional applications include den-
ity profiles in the humerus of high performance athletes (Taylor
t al., 2009), and density profiles in the proxima tibia in the context
Computational simulation of density growth, right, predicts higher bone densities
in  regions of large mechanical stress and lower bone densities in unloaded regions
(Kuhl et al., 2003; Kuhl and Steinmann, 2003c).

of osteoarthritis (Pang et al., 2012; Waffenschmidt et al., submitted
for publication; Wolff, 1870), see Fig. 5.

5.2. Mass flux

We  can essentially distinguish two  types of mass flux in open
system thermodynamics; a gradient-based flow of matter which
is typically associated with volume growth, and a surface-based
flow of matter which is typically associated with surface growth.
Gradient-based formulations are motivated in analogy to Fick’s law
of diffusion, or Fourier’s law of heat conduction,

R = D · ∇X�0 with D(F, Fg, A, �0, �) (40)

such that the symmetric conductivity tensor D maps the gradient
of the referential mass density ∇X�0 onto the mass flux R (Kuhl
et al., 2003). A typical example might be cell migration towards low
density regions, e.g., in wound healing, with the goal to equilibrate
density concentrations (Kuhl and Steinmann, 2004). Surface-based
formulations can be motivated by the creation of new material at
growing surfaces, which we have introduced as � in Section 2.3. If
we denote their unit normal vector by n� , we can interpret surface
growth as a flux of matter away from the surface � ,
graph of a thin section, left, displays microstructural arrangement of trabeculae in
the tibia head aligned with the axis of maximum principal stress (Wolff, 1870).
Computational simulation of density growth, right, predicts a higher bone density
in  regions of large mechanical stress and lower bone density in unloaded regions
(Pang et al., 2012; Waffenschmidt et al., submitted for publication).
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f surfaces from which mass grows are nail beds, roots of hairs,
r growth plates of long bones. In both cases, for the special case
f transverse isotropy, the conductivity tensor takes the following
xplicit representation,

 = ıiso I + [ıani − 1] n ⊗ n with n = a/‖a‖ , (42)

ith the isotropic and anisotropic mass conduction coefficients ıiso

nd ıani.

.3. Momentum flux

The momentum flux is specified by a hyper-elastic form so that
he Piola stresses are obtained from the derivative of the free energy
unction with respect to the deformation gradient. We  assume the
ree energy to be an isotropic function, invariant under superposed
igid body motions. This implies that

(F, Fg, A, �0, �) =  ̂(Ce, Â, �0, �) , (43)

ith Ce = Fet · Fe and Â = Fg · A · Fgt = â ⊗ â, such that  ̆ =  ̂ is
estricted to be a function of an irreducible set of invariants. Here,

and â can be interpreted as the push forward of the structural
ensor A and of the vector a, characterizing the microstructural
rientation in the incompatible growth configuration. A possible
et of strain invariants is the following

IC
e

i
= tr ([Ce]i) for i = 1, 2, 3

IC
e

4 = tr (Ce · Â) IC
e

5 = tr ([Ce]2 · Â)
IC

e

6 = tr (Ce · [Â]2) IC
e

7 = tr ([Ce]2 · [Â]2)

ÎA
j

= tr ([Â]j) for j = 1, 2, 3.

(44)

lternatively, we can represent the identical set of irreducible
nvariants in terms of spatial or material arguments, see (Menzel
nd Steinmann, 2003a,b) for a detailed discussion. Based on these
onsiderations together with Eq. (28), the representation of the
iola stresses results in

P = Pe · Fg−t with

Pe = 2�0Fe ·
7∑
k=1

∂ ̆(IC
e

k
, ÎA1,2,3, �0, �)

∂ICe

k

∂IC
e

k

∂Ce .
(45)

.3.1. Isotropic elasticity
For the special case of an isotropic elastic response, the free

nergy function can be reduced to the following functional format
n terms of the first three isotropic invariants only

˘ (IC
e

1,2,3, �0, �) . (46)

ince the choice of the elastic baseline characterization strongly
epends on the particular type of tissue, we do not further spec-

fy the free energy function at this stage, but refer the reader to
gden (1997) and Schröder and Neff (2010) for further background

nformation on non-linear isotropic elasticity.

.3.2. Transversely isotropic elasticity
For the special case of a transversely isotropic elastic response

or which both the growth tensor and the structural tensor are con-
tant in time, i.e., Fg = I and Â = A, the free energy function can be
educed to account for five invariants only

˘ (IC
e

1,...,5, �0, �). (47)
or the general case of a transversely isotropic elastic response, the
ree energy could account for all ten invariants

˘ (IC
e

1,...,7, ÎA1,2,3, �0, �) . (48)
Communications 42 (2012) 1– 14

A typical example for an anisotropy-related strain-type deforma-

tion measure is the difference IC
e

4 − ÎA1 . This strain measure vanishes
identically for Ce = I, whereas IC

e

4 − I′1 with I′1 = const does gener-
ally not vanish in case of evolving structural tensors. The reader is
referred to Boehler (1987),  Holzapfel and Ogden (2003),  Humphrey
(2002) and Schröder and Neff (2010) for different aspects on the
constitutive modeling of finite deformation anisotropic elasticity
and particular examples of transversely isotropic free energy func-
tions.

5.4. Evolution of growth

Three conceptually different approaches have been suggested
to constitutively characterize the evolution of growth according to
Eq. (30) or (31): the general tensor function concept, the home-
static equilibrium concept, and the microstructural concept. While
the former two approaches can, in principle, define a simultane-
ous growth and reorientation of the microstructural directions,
the third approach allows us to address growth and reorientation
individually. Since we believe this is the most versatile way of char-
acterizing growing tissues with a pre-defined microstructure, we
will introduce the first two concepts briefly and address the third
one in more detail. For all three cases, the growth tensor Fg is
commonly assumed to be equal to the identity tensor initially, i.e.
Fg|t=0 = I, such that Fe|t=0 = F .

General tensorial evolution of growth. The general tensor function
concept has traditionally been advocated by the continuum physics
community (Imatani and Maugin, 2002). Using the concept of rep-
resentation theorems (Boehler, 1987), a generic tensorial evolution
equation for the growth tensor Fg is introduced. In accordance with
the discussion in Remark 2, the growth tensor is restricted to by
symmetric, i.e., Fg = Ug, and, moreover, assume isotropic hyper-
elasticity so that Me = Met. Accordingly, the evolution of growth
can formally be introduced either in a stress-based form,

[Lg]sym = ϑiso
I I + ϑiso

M Me + ϑani
A Â + ϑani

MA[Me · Â]sym , (49)

or in a strain-based form,

[Lg]sym = ϑiso
I I + ϑiso

C Ce + ϑani
A Â + ϑani

CA [Ce · Â]sym . (50)

Here, for example, we have selected the elastic Mandel stresses
Me and the elastic right Cauchy Green tensor Ce as representa-
tive stress and strain measures to drive the growth process. The
material parameters ϑiso

I and ϑani
A characterize load-independent

growth for both the stress- and strain-based case. While ϑiso
I , ϑiso

C ,
and ϑiso

M characterize isotropic growth, ϑani
A , ϑani

MA, ϑani
CA character-

ize anisotropic growth as these parameters weight contributions
including the structural tensor Â.

Homeostatic equilibrium evolution of growth.  The homeostatic
equilibrium concept is typically advocated by the biomechanics
community, since concepts of homeostatic stresses or strains take
an intuitive interpretation in biochemistry. A generic evolution law
based on a homeostatic stress state could take the following format,

Lg = Me : [Me − Me
∗] (51)

where Me denotes a fourth-order mobility tensor and Me
∗ is a ten-

sorial so-called target stress. Alternatively, we  could formulate the
evolution law based on a homeostatic strain state,

Lg = Ce : [Ce − Ce
∗] (52)

where Ce denotes a fourth-order mobility tensor and Ce
∗ is a tenso-
rial target deformation. For the special case of volumetric target
states, we  can choose scalar-valued quantities such as pressure
or dilation as homeostatic target stress Me∗ or target strain Ce∗ . If
we assume an isotropic mobility, such that the mobility tensors
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re proportional to the fourth-order identity tensor with pro-
ortionality factors Me and Ce, Eqs. (51) and (52) are of purely
olumetric nature, i.e., Lg = Me[Me : I − Me∗ ] I or Lg = Ce [Ce : I −
e∗ ] I, see (Schmid et al., 2012) for details. For the example of tumor
rowth, a fully tensorial stress-driven format, Lg = − [˙e − ˙e

∗],
ased on the elastic Eshelby tensor ˙e =  0 I − Me is discussed in
mbrosi et al. (2012) of this special issue. For the example of glau-
oma, i.e., growth and remodeling in the eye, a scalar stretch-driven
ormat of collagen fibril growth towards a homeostatic equilibrium
tate is illustrated in Grytz et al. (2012) of this special issue.

Microstructural evolution of growth. The microstructural concept,
hich we will follow here, has been advocated by the mate-

ial science community and by the theoretical and computational
echanics community, since it closely follows concepts introduced

or crystal plasticity (Boyce et al., 1989; Lee, 1969; Naghdi, 1990).
s outlined in Remark 1, this concept motivates the definition of

he growth tensor by microstructural considerations. In analogy
o Eq. (42), we formally incorporate the underlying microstructure
hrough the structural tensor A = a ⊗ a in terms of the microstruc-
ural direction a,

g = ϑiso I + [ϑani − 1] n ⊗ n with n = a/‖a‖, (53)

here ϑiso and ϑani characterize the amount of isotropic and
nisotropic growth, such that ϑiso|t=0 = 1 and ϑani|t=0 = 1 in the ini-
ial ungrown state. Accordingly, we have Jg = [ϑiso]2[ϑiso + ϑani − 1],
nd Fg|ϑiso=1,ϑani=1 = I. The definition (53) implies that the growth
ensor is a priori symmetric, Fg = Ug. As the rotational part of Fg is
eglected, Fg transforms the direction vector a co-linearly to itself
nd scales a with the total amount of growth in this direction,

 = Fg · a = [ϑiso + ϑani − 1] a . (54)

ith n constant in time, the material time derivative of growth
an be expressed as follows

˙ g = ϑ̇iso I + ϑ̇ani n ⊗ n . (55)

sing the Sherman–Morrison–Woodbury formula, we obtain the
ollowing explicit representation of the inverse of the growth ten-
or,

g−1 = 1
ϑiso

I − ϑani − 1
ϑiso[ϑiso + ϑani − 1]

n ⊗ n (56)

or ϑiso /= 0 and ϑiso + ϑani /= 1. Accordingly, we  can derive the
ollowing explicit formulation for the growth velocity tensor

g = ϑ̇iso

ϑiso
I − ϑ̇iso[ϑani − 1] − ϑiso ϑ̇ani

ϑiso [ϑiso + ϑani − 1]
n ⊗ n . (57)

he explicit evaluation of the growth part of the dissipation
nequality (29)

e : Lg = ϑ̇iso

[
1
ϑiso

I
Me

1 − ϑani − 1
ϑiso[ϑiso + ϑani − 1]

I
Me

4

]

+ ϑ̇ani
[

1
iso ani

I
Me

4

]
(58)
ϑ + ϑ − 1

uggests to introduce the first term in brackets as the driving force
or isotropic growth, ϑiso, and the second term in brackets as the
riving force for anisotropic growth, ϑani. Here, in analogy with
he definitions in Eq. (44), we have introduced the first and fourth

nvariants of the Mandel stress, I
Me

1 = tr(Me) and I
Me

4 = tr(Me · [n ⊗
]), which take the interpretation of the pressure and fiber stress.
e  could adopt a conceptually similar format
Communications 42 (2012) 1– 14 9

Ce : Lg = ϑ̇iso

[
1
ϑiso

I
Ce

1 − ϑani − 1
ϑiso[ϑiso + ϑani − 1]

I
Ce

4

]

+ ϑ̇ani
[

1
ϑiso + ϑani − 1

I
Ce

4

]
(59)

to motivate the evolution of the growth multipliers for the case of
microstructurally motivated strain-driven growth. Again, in anal-
ogy with Eq. (44), we  have introduced the first and fourth invariants

of the elastic right Cauchy Green deformation tensor, I
Ce

1 = tr(Ce)

and I
Ce

4 = tr(Ce · [n ⊗ n]), which are associated with the volume
change and fiber stretch. In the context of a vanishing mass flux
contribution according to Eq. (38), the mass source reduces to the
following expression

R0 = �0
3 ϑ̇isoϑiso + 2ϑ̇iso[ϑani − 1] + ϑisoϑ̇ani

ϑiso[ϑiso + ϑani − 1]
. (60)

We will now elaborate three special cases of this general formula-
tion for volume growth: isotropic growth, area growth, and fiber
growth. We  will specify the underlying kinematics, discuss possi-
ble driving forces for growth, and illustrate specific types of tissue
for which the individual formulations can be used.

5.4.1. Volume growth
For the special case of isotropic growth, we  characterize the

growing tissue through a single isotropic growth multiplier ϑg,
while the amount of anisotropic growth vanishes identically,

ϑiso = ϑg and ϑani = 1. (61)

This implies that Eq. (53) reduces to the following format,

Fg = ϑg I (62)

so that Jg = [ϑg]3 and Fg|ϑg=1 = I. Along with the following explicit
expressions for the inverse growth tensor according to Eq. (56),

Fg−1 = 1
ϑg I (63)

the definition of the growth velocity tensor reduces to the following
expression according to Eq. (15),

Lg = ϑ̇g

ϑg I . (64)

The term of the dissipation inequality according to equation (58),
and its strain based counterpart (59),

Me : Lg = ϑ̇g

ϑg I
Me

1 or Ce : Lg = ϑ̇g

ϑg I
Ce

1 (65)

motivates the following stress- and strain-based evolution equa-
tions for growth

ϑ̇g = kϑ
ϑg I

Me

1 or ϑ̇g = kϑ
ϑg I

Ce

1 , (66)

where kϑ denotes a saturation-type target stress or strain func-
tion. The mass source, in the context of a vanishing mass flux and
�g =̇ const according to e quation (38), takes the following simpli-
fied representation

R0 = 3 �0
ϑ̇g

ϑg . (67)

Isotropic growth models are typically used to characterize growing
tissue on a phenomenological level (Himpel et al., 2005; Schmid
et al., 2012), as also demonstrated in Bellomo et al. (2012) of this

special issue. Some typical examples addressed in the literature
include growth of tumors (Ambrosi and Mollica, 2002), growing
arteries (Kuhl et al., 2007), see Fig. 6, growing hearts of athletes
(Göktepe et al., 2010b), growing hearts in general (Kroon et al.,
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Fig. 6. Volume growth of an artery for stress-driven isotropic growth, Fg = ϑg I with

ϑ̇g = kϑI
Me

1 /ϑg, according to Eqs. (62) and (66.1).  Photograph of restenosis follow-
ing  balloon angioplasty, left, demonstrating residual atherosclerotic plaque and a
new proliferative lesion caused by intimal thickening (Kumar et al., 2005). Compu-
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Fig. 7. Area growth of skin for stretch-driven transversely isotropic growth, Fg =√
ϑgI + [1 −

√
ϑg]n ⊗ n with ϑ̇g = kϑ[I

Ce

1 − I
Ce

4 ]/[2 ϑg], according to Eqs. (69) and
(73.2).  Photograph of a tissue expander to induce controlled in situ skin growth for
defect correction in reconstructive surgery, left, reprinted with permission, Mentor

Eq. (15),

Lg = ϑ̇g

ϑg n ⊗ n . (78)

Fig. 8. Area growth of skin for stretch-driven transversely isotropic growth, Fg =√
ϑgI + [1 −

√
ϑg]n ⊗ n with ϑ̇g = kϑ[I

Ce

1 − I
Ce

4 ]/[2ϑg], according to Eqs. (69) and
(73.2).  Photograph of tissue expansion in pediatric forehead reconstruction, left,
ational simulation of isotropic volume growth, right, predicts wall thickening and
e-narrowing of the lumen in response to stent-induced changes in the mechanical
nvironment (Himpel et al., 2005; Kuhl et al., 2007).

009), or the specific analysis of surface wrinkling in skin, as dis-
ussed in Ciarletta and BenAmar (2012) of this special issue.

.4.2. Area growth
For the special case of transversely isotropic in-plane growth,

or example present in growing biological membranes, the growth
odel becomes transversely isotropic. We  can again characterize

uch growth phenomena through a single growth multiplier ϑg,
hich we can interpret as the in plane area growth, such that

iso =
√
ϑg and ϑani = 2 −

√
ϑg . (68)

he generic growth tensor introduced in Eq. (53) then reduces to
he following expression,

g =
√
ϑg I +

[
1 −

√
ϑg

]
n ⊗ n (69)

o that Jg = ϑg and Fg|ϑg=1 = I, which we can invert in closed form
sing Eq. (56)

g−1 = 1√
ϑg

I +
[

1 − 1√
ϑg

]
n ⊗ n . (70)

his allows us to define the growth velocity tensor according to Eq.
15),

g =
˙√
ϑ

g

√
ϑ

g [I − n ⊗ n] = ϑ̇g

2 ϑg [I − n ⊗ n ] , (71)

nd to evaluate Eqs. (58) or (59)

e : Lg = ϑ̇g

2 ϑg [I
Me

1 − I
Me

4 ] or Ce : Lg = ϑ̇g

2 ϑg [I
Ce

1 − I
Ce

4 ] (72)

o characterize possible stress- and strain-based evolution equa-
ions for growth

˙ g = kϑ
2 ϑg [I

Me

1 − I
Me

4 ] or ϑ̇g = kϑ
2 ϑg [I

Ce

1 − I
Ce

4 ] (73)

n terms of a saturation-type target stress or strain function kϑ . For
he special case of a vanishing mass flux and �g =̇ const according
o Eq. (38), the mass source can be expressed as follows

0 = �0
ϑ̇g

ϑg . (74)
rea growth of this form is characteristic for growing biological
embranes. Issues of interest intensely discussed in the literature

re instabilities in growing plates (Dervaux et al., 2009), mem-
ranes (Goriely and Tabor, 2003; McMahon et al., 2010), and shells
Worldwide LLC (Buganza Tepole et al., 2011). Computational simulation of trans-
versely isotropic area growth, right, predicts area growth in response to controlled
mechanical overstretch during tissue expansion (Buganza Tepole et al., in press).

(Goriely and BenAmar, 2005). Particular biomechanical applica-
tions include growing mucous membranes (Li et al., 2011) and
growing skin (Buganza Tepole et al., 2011; Socci et al., 2007; Zöllner
et al., 2012), see Figs. 7 and 8.

5.4.3. Fiber growth
For the special case of directional fiber growth, the growth

model becomes transversely isotropic. We  can again characterize
growth in terms of a single growth multiplier ϑg, which we can
interpret as the growth-induced fiber stretch,

ϑiso = 1 and ϑani = ϑg . (75)

Accordingly, the generic growth tensor of Eq. (53) reduces to the
following expression

Fg = I + [ϑg − 1]n  ⊗ n, (76)

such that Jg = ϑg and Fg|ϑg=1 = I. The explicit representation of its
inverse according to Eq. (56) results in

Fg−1 = I − ϑg − 1
ϑg n ⊗ n (77)

and allows us to introduce the growth velocity tensor according to
shows forehead, anterior and posterior scalp expansion to trigger skin growth in situ
(Buganza Tepole et al., 2011; Gosain and Cortes, 2007). Computational simulation
of transversely isotropic area growth, right, predicts area growth in response to
controlled mechanical overstretch during tissue expansion (Zöllner et al., in press;
Zöllner et al., 2012).



earch Communications 42 (2012) 1– 14 11

T

M

m
f
e

ϑ

I
E

R

F
a
(
s
g
e
e
a
c

5

t
c
d
w
u
o

n

T

n

w
f
t
i
w
s
s

F

I
o
c
t
fi
t

Fig. 10. Cross-fiber growth of the heart for stress-driven wall thickening, Fg =

I  + [ϑg − 1] n ⊗ n with ϑ̇g = kϑI
Me

1 /ϑg, according to Eqs. (76) and (66.1).  Photograph
of  a heart in hypertrophic cardiomyopathy, left, illustrates an increase in wall thick-
ness at a constant cardiac size, typically associated with pressure-overload induced
concentric growth (Kumar et al., 2005). Computational simulation of transversely
A. Menzel, E. Kuhl / Mechanics Res

he driving force for growth according to Eq. (58) or (59),

e : Lg = ϑ̇g

ϑg I
Me

4 or Ce : Lg = ϑ̇g

ϑg I
Ce

4 (79)

ay  be combined with a saturation-type target stress or strain
unction kϑ , which motivates the following stress- and strain-based
volution equations for growth,

˙ g = kϑ
ϑg I

Me

4 or ϑ̇g = kϑ
ϑg I

Ce

4 . (80)

n the context of a vanishing mass flux and �g =̇ const according to
q. (38), the mass source takes the representation

0 = �0
ϑ̇g

ϑg . (81)

iber growth is characteristic for biological tissues, which grow
long specific microstructural directions, as illustrated for one
Rodriguez et al., 1994) and three (Vandiver and Goriely, 2009)
pecific directions of anisotropy. Some typical examples include
rowing skeletal and cardiac muscle (Göktepe et al., 2010a; Rausch
t al., 2011), as discussed in Kerckhoffs et al. (2012) and Klepach
t al. (2012) of this special issue. Figs. 9 and 10 illustrate the
ssociated cases of strain-driven cardiac dilation and stress-driven
ardiac wall thickening (Göktepe et al., 2010a,b).

.5. Evolution of structural tensor

While we have previously placed emphasis on the evolution of
he growth tensor Fg in the form of Eq. (53) with n remaining
onstant in time, we now address the evolution of the anisotropy
irection itself. This reorientation model can easily be combined
ith the evolution of ϑani. To specify the evolution of n in time, let
s denote its initial orientation by n0 = n |t=0 and define its current
rientation in terms of an orthogonal tensor Rn,

 = Rn · n0 . (82)

his allows us to express the rate of n as

˙ = Ṙn · n0 = Ṙn · Rn t · n = ˝n · n = ωn × n , (83)

here ˝n is the related spin tensor and ωn is its axial vector. By
urther specifying the axial vector ωn, we can introduce an evolu-
ion equation for the microstructural orientation n. We  may, for

nstance, construct ωn in terms of a vector product, so that n aligns

ith a specific direction. Typical examples are either principal
tress or principal strain directions. With the spectral decompo-
itions

ig. 9. Fiber growth of the heart for strain-driven transversely isotropic growth, Fg =

 + [ϑg − 1] n ⊗ n with ϑ̇g = kϑI
Ce

4 /ϑ
g, according to Eqs. (76) and (80.2).  Photograph

f  a heart in dilated cardiomyopathy, left, illustrates an increase in cavity size at a
onstant wall thickness, typically associated with volume-overload induced eccen-
ric  growth (Kumar et al., 2005). Computational simulation of transversely isotropic
ber growth, right, predicts an enlargement of the left ventricular cavity in response
o mechanical overstretch (Göktepe et al., 2010a,b).
isotropic cross-fiber growth, right, predicts a significant wall thickening of the left
ventricular wall in response to hypertension (Göktepe et al., 2010a; Rausch et al.,
2011).

Me = Me
i ml

i ⊗ mr
i or Ce = Ce

i ci ⊗ ci (84)

we can express the reorientation of n either in a stress- or strain-
driven form,

ωn = 1
t∗

n × m or ωn = 1
t∗

n × c, (85)

where t∗ represents a scaling parameter similar to the relaxation
time in models for viscous bahavior. The vectors m and c repre-
sent particular directions associated with either Me or Ce, e.g., a
direction associated with the maximum principal value max{Me

i
} or

max{Ce
i
}. Since the form of reorientation model in Eq. (85) defines

ωn perpendicular to the anisotropy direction n itself, so-called
drilling rotations are a priori excluded (Betsch et al., 1998). By
combining Eqs. (83) and (85) and using the ε ı-rule we obtain
the following representations of the evolution equations for the
microstructural direction,

ṅ = 1
t∗

[I − n ⊗ n] · m or ṅ = 1
t∗

[I − n ⊗ n] · c . (86)

From Eq. (86), we  conclude that the constraint ṅ · n = 0 is satisfied
so that n remains a unit vector. Alternatively, we may also replace
m or c in Eq. (86) with a stress- or strain-based mapping of the
preferred direction n itself, which results in

ṅ = 1
t∗

[I − n ⊗ n] · Me · n or ṅ = 1
t∗

[I − n ⊗ n] · Ce · n. (87)

It is interesting to note that saturation-type evolution of the reori-
entation of n is directly implied in Eqs. (86) and (87): the rate of n
goes to zero for n aligning with m or c, or, respectively with Me ·
n or Ce · n. This indicates that both types of evolution equations,
either (86) or (87), may  result in one and the same stress- or strain-
based reorientation direction as an alignment of n with Me · n or
Ce · n implies that n evolves towards a principal stress or strain
direction. The evolution of the direction vector n also contributes
to the dissipation inequality. For conceptual simplicity, consider
the case where ϑiso and ϑani do not evolve in time. The rate of the
growth tensor then reduces to

Ḟg = [ϑani − 1] [ṅ ⊗ n + n ⊗ ṅ] (88)

so that the growth velocity tensor takes the representation,

ϑani − 1 [ϑani − 1]2
Lg =
ϑiso

[ṅ ⊗ n + n ⊗ ṅ] −
ϑiso[ϑiso + ϑani − 1]

ṅ ⊗ n. (89)

Note that Lg becomes unsymmetric due to the reorientation of
n even though Fg remains symmetric and the rotational part of



12 A. Menzel, E. Kuhl / Mechanics Research 

Fig. 11. Evolution of structural tensor in layered artery for stress- and strain-driven
evolution of microstructural direction, ṅ  = [I − n ⊗ n] · Me · n/t∗ and ṅ = [I − n ⊗
n]  · Ce · n/t∗ according to Eqs. (87.1) and (87.2).  Polarized light micrograph of tan-
gentially sectioned brain artery, left, showing variation of collagen fiber orientation
from circumferential inner to helical outer layer (Finlay et al., 1995). Computational
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imulation of stress- and strain-driven fiber distribution, left and right, predicts a
mooth variation of collagen fiber orientation from circumferential inner to helical
uter layer (Kuhl et al., 2007).

g is not activated, i.e., Rg = I, see Remark 1. Accordingly, the
nsymmetric part of Me, as generally present in case of anisotropic
lasticity, contributes to the growth-related dissipation part Me :
g. Evolving structural tensors have been applied successfully to
xplain characteristic tissue microstructures, for example in native
rteries (Kuhl et al., 2007), see Fig. 11,  and in the healthy heart, as
iscussed in Pluijmert et al. (2012) of this special issue. A reori-
ntation of these native microstructures can be a severe problem
n specific forms of disease, as illustrated for the case of glaucoma
n the excellent overview (Grytz et al., 2012) of this special issue.
eproducing the correct native microstructural orientation is one
f the biggest challenges in tissue engineering. Artificial tissue con-
tructs grown in a dish are typically pre-conditioned to align their
icrostructural directions with either stress or strain to reproduce

he native microstructure. Typical examples are tissue engineer-
ng of functional vascular grafts (Abilez et al., 2006), tendons or
igaments (Garikipati et al., 2004), with the particular example of

 strain-driven reorientation along the maximum principal direc-
ion c according to equation (86.2) illustrated in Kuhl et al. (2005).
or the algorithmic treatment of fiber reorientation the interested
eader is referred to Himpel et al. (2008) and Menzel (2007).

emark 4 ((Thermodynamically conjugate pairs)).  Here, we  have
valuated the dissipation inequality (29) in terms of the elastic
andel stress Me and the growth velocity tensor Lg as thermody-

amically conjugate pairs, introducing Eq. (58). Alternatively, we
ould introduce the Piola stress Pg = − �0 ∂Fg  and the rate of the
rowth tensor Ḟ

g
as thermodynamically conjugate pairs as intro-

uced in Eq. (29), see also Remark 3. In view of the specific form of
g introduced in Eq. (53) and by assuming n to remain constant in
ime, we obtain

g : Ḟ
g = ϑ̇iso I

Pg

1 + ϑ̇ani I
Pg

4 ,

here we have introduced the first and fourth invariant of the Piola
tress, I

Pg

1 = tr(Pg) and I
Pg

4 = tr(Pg · [n ⊗ n]). In contrast to Eq. (58),
he above equation clearly reflects the isotropic–anisotropic decou-

ling, with I
Pg

1 acting as driving force for isotropic growth ϑiso and
Pg

4 acting as driving force for anisotropic growth ϑani. This is not
he case for the evaluation in terms of Me and Lg, see Eq. (58),

here the driving forces for ϑiso depends on ϑiso, ϑani, I
Me

1 , I
Me

4 and

he force driving ϑani is a function of ϑiso, ϑani, I
Me

4 .
emark 5 ((Incompressibility and growth)). Although it may  appear
ather trivial, there is a controversy of growth in combination with
ncompressibility (Schmid et al., 2012). The first possibility is to
Communications 42 (2012) 1– 14

first perform the volumetric-isochoric decomposition of the total
deformation gradient, F = J1/3F , where F = j1/3F , and then perform
the multiplicative decomposition of the purely isochoric part, F =
Fe · Fg, i.e.,

F = J1/3Fe · Fg.

Although computationally attractive, this approach is limited to the
special case where growth remains purely isochoric, i.e., Jg = 1, a
case we  have not discussed in the examples of this section. The sec-
ond possibility is to first perform the multiplicative decomposition
of the total deformation gradient, F = Fe · Fg, and then perform
the volumetric-isochoric decomposition on the elastic part only,
Fe = Je 1/3 Fe, i.e.,

F = Je 1/3 Fe · Fg .

Although most intuitive when growth is associated with volumet-
ric changes, i.e., Jg /= 1, this approach may  severely impact the
algorithmic realization. It may  require to reconsider existing com-
putational algorithms, since elastic incompressibility can no longer
be ensured on the element level by using existing element formula-
tions that constrain the overall deformation to be incompressible,
J = 1, or quasi-incompressible, J ≈ 1.

6. Discussion

Research in the 1970s and 1980s, mainly lead by mechanical
and bioengineering, has been driven by the quest for experimen-
tal evidence of growth and adaptation in hard tissues. Research
in the 1990s, mainly lead by continuum mechanics and computa-
tional modeling, has allowed us to predict heterogeneous density
profiles in agreement with these experimental findings. Research
in the past decade has focused mainly on soft tissue growth. The
community has grown exponentially from biologists, biophysicists,
computer scientists, mathematicians, and engineers, to radiologists
and clinicians in various disciplines. Right now, we  are at the verge
of appreciating that, in order to fully understand growth of biolog-
ical tissues, we  require a holistic and not just a reductionist view,
we need mechanistic and not just phenomenological models, and
we need to perform predictive and not just reproductive science.

Predictive modeling of biological growth is a challenging prob-
lem, but as mechanics community, we are optimally trained to face
it: Modern continuum mechanics is multiscale, we  are inherently
passing information across the scales, most of our current mod-
els are not just phenomenological but microscopically motivated.
Modern continuum mechanics is multifield, we are inherently
passing information across the fields, most of our current field
theories are based on coupled mechanical, thermal, electrical, and
magnetic fields. The additional incorporation of biology and chem-
istry should, in principle, not introduce unresolvable difficulties.
If we  manage to understand mechanotransduction pathways in
growth and remodeling, if we manage to integrate biomechan-
ics and mechanobiology seamlessly into our models, and if we
manage to manipulate these pathways systematically through a
profound mechanistic understanding, our impact on life science
and medicine could be tremendous. Continuum mechanics and
computational mechanics have suffered from a severe identity
crises within the past two decades. Growth and remodeling present
an incredible opportunity to reposition our community at the fore-
front of science.
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