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ABSTRACT

A one-dimensional, large-strain, mixed porohyperelastic transport and swelling (MPHETS)
finite element model was developed in MATLAB and incorporated with a well-known growth
model for soft tissues to allow the model to grow (increase in length) or shrink (decrease in
length) at constant material density. By using the finite element model to determine the
deformation and stress state, it is possible to implement different growth laws in the
program in the future to simulate how soft tissues grow and behave when exposed to various
stimuli (e.g. mechanical, chemical, or electrical). The essential assumptions needed to use the
MPHETS model with growth are clearly identified and explained in this paper. The primary
assumption in this work, however, is that the stress upon which growth acts is the stress in
the solid skeleton, i.e. the effective stress, S¥. It is shown that significantly different amounts
of growth are experienced for the same loading conditions when using a porohyperelastic
model as compared to a purely solid model. In one particular example, approximately 51%
less total growth occurred in the MPHETS model than in the solid model even though both
problems were subjected to the same external loading. This work represents a first step in
developing more sophisticated models capable of capturing the complex mechanical and
biochemical environment in growing and remodeling tissues.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

incorporates the ability of living biological tissues to grow and
adapt to environmental changes or to medical device implan-

The mechanics of hydrated soft tissues, including the deforma-
tion, stress, fluid pressure, fluid flux, and mobile species flux,
are important to understand their function and behavior.
While numerical models have been developed to simulate
the immediate response of soft tissues to various conditions,
the growth of the soft tissue over the long term is often
neglected. A need exists to develop a soft tissue model which

tations. The work presented in this paper attempts to provide
another step towards creating a more realistic model for
describing the mechanical behavior and growth of complex
soft tissues. In so doing, the knowledge base for understanding
the biomechanics and pathophysiological phenomena of the
body may be advanced leading to a more efficient means of
disease diagnosis and treatment.
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1.1. Modeling of multiphasic soft tissues

Many biological tissues consist of a porous solid skeleton
saturated by an interstitial fluid in which a mobile species is
dissolved. Soft hydrated biological tissues can experience
large deformations, transport of the mobile fluid, as well as
mechanical-chemical effects associated with the mobile
species. A first approximation of the mechanical behavior of
such materials may be seen in the early work of Biot (1941,
1972) and Bowen (1971a,b) in soils and geomechanics. Their
work in describing porous rocks and soils provided the
theoretical background for the application of these methods
to biomechanics. As a result, general theoretical, numerical,
and experimental multiphasic mixture/porous media models
for hydrated soft tissues have been described in numerous
papers (Vande Geest et al., 2011; Almeida and Spilker, 1997,
1998; Gu et al, 1998; Lai et al., 1991; Simon et al., 1998a,b;
Spilker et al., 1992). In order to provide numerical solutions to
the highly nonlinear, coupled, initial boundary value pro-
blems which occur in soft tissue mechanics, various finite
element models (FEMs) based on a continuum mixture view
(or an equivalent continuum porous media view) of these
materials have been developed. Several (Simon et al., 1998a;
Levenston et al., 1998; latridis et al., 2003) have simulated the
complex response of hydrated soft tissues by considering
poroelastic solids saturated with mobile fluid and multiple
charged mobile species using continuum models and their
corresponding FEMs. There exists a need to connect these
FEMs with growth and remodeling theory.

1.2.  Growth and remodeling

Unlike traditional engineering materials, biological soft tissues
possess the ability to change their shape and behavior in
response to environmental changes such as electrical, chemi-
cal, or mechanical stimuli. Exactly how to model this growth,
however, remains an open question in the field of biomecha-
nics as “different approaches exist to model relationships
between changes in mass, kinematics, the origin of residual
stress, the evolution of natural configurations of a growing
body or its constituent parts, and other associated aspects of
growth” (Ambrosi et al., 2011). One common approach has
been to decompose the deformation gradient tensor into
elastic and growth components; the coupled solution of
balances of mass and linear momentum then governs changes
in form can successfully model residual stress in growing
tissues (Ambrosi et al,, 2011). Another general approach has
been to incorporate biologically driven mass density produc-
tions and survival functions within constitutive relations for
stress response based on simple rule of mixture formulations
(Humphrey and Rajagopal, 2002; Ambrosi et al., 2011).

While some controversy exists about the appropriateness
of each method, many agree that it would be beneficial to
incorporate growth with “mixture theory so as to include
contributions of diverse constituents (solid and fluid as well
as electrolytes, growth factors and cytokines, and nutrients
and waste products within the interstitial fluid) involved in
the underlying biochemical and biophysical processes”
(Ambrosi et al., 2011). For example, Ateshian (2007) provides
one view point of modeling growth with mixture theory by

requiring the mechanisms of growth to explicitly satisfy the
conservation of mass of the fluid and solid constituents.
Regardless of the approach for modeling growth and remo-
deling, it is clear that incorporation of such theoretical
formulations into computational models that can account
for solid, fluid, and biochemical phenomena is warranted.

1.3.  Objective

The objectives of this paper are two-fold. The first objective is
to develop in MATLAB a one-dimensional, large-strain, mixed
porohyperelastic transport and swelling (MPHETS) finite
element model which may be used to accurately model
hydrated soft tissues. The second objective is to incorporate
this model with a well-known growth model for soft tissues.
While our choice of the specific model for growth is based on
its long standing use by many in the literature, our approach
can easily be modified implement different growth laws as
deemed appropriate in future work. Since the key assumption
for implementing the representative growth law chosen here
is that the stimulus for growth is stress, we will compare and
contrast how the results from such a chosen model vary
when the growth law is stimulated by the effective stress, s,
in our MPHETS model. The influence of osmotic swelling
effects will also be explored. By accomplishing the above, a
first step will be made towards creating future models in
which growth occurs in response to more complex biome-
chanical and biochemical stimuli (e.g., interstitial flows,
concentrations of dissolved species).

2. Methods
2.1. Assumptions and conventions

The MPHETS theory presented here employs an incompressible
hyperelastic porous solid skeleton that is fully saturated by an
incompressible mobile fluid that is free to displace relative to
the solid skeleton. The pores are considered to be sufficiently
small such that the solid may be viewed as a continuum with a
known porosity and permeability. Any displacement of the
solid must be accompanied by a corresponding movement of
the fluid into or out of the solid. Since this work is only
concerned with a one-dimensional model, the cross-sectional
area is assumed to remain constant at all times. Additionally,
temperature is also assumed to remain constant.

2.2. Conventions

In this paper, the following conventions will be used:

(1) A tilde (") is used to denote a Lagrangian quantity.

(2) A bar “” above a non-superscript or non-subscript quan-
tity denotes a nodal solution variable.

(3) The superscripts “s”, “f”, and “c” above a quantity denote a
solid, fluid, and species quantity, respectively.

(4) A subscript “o0” denotes an initial quantity.

(5) A superscript “g” denotes a quantity that is to be evalu-
ated at the Gauss point of the finite element.
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(6) As this paper is posed in one dimension, the one-one
position of a tensorial variable will be denoted as the

variable without indices. For example, the one-
dimensional form of F; will be F.
2.3.  Governing equations for porohyperelastic mass

transport-swelling

2.3.1. Kinematics

For a thorough description of the MPHETS theory the reader is
referred to Kaufmann (1996) and Vande Geest et al. (2011). An
abbreviated version is provided here. An initial volume of
material dVy is located at some reference position X; at initial
time to. At time t, following deformation, the volume becomes
dV located at position x;. The volumetric deformation is
captured by

av

]=TVO-

@

Assuming that the porous media is fully saturated by the
incompressible mobile fluid, the porosity of the material, n,
may be defined as the ratio of the fluid volume to the total
volume and is given by

avf
"=V 2)
where
dv =dv® + dv’. 3)

Note that the total volume of the dissolved mobile species is
neglected. The initial porosity at time t; is defined as

avl
Np = av, 4)
where
dVo = dv§ + dV/, )
Since the solid is incompressible it follows that
dv® =dvs,. (6

The porosity can be expressed as a function of the deforma-
tion by
v dv+dv  dvy  av

= T\/O = dVo = dVo +r% =(1—Vlo) +}n (7)

J

which can be rearranged as
n=1-J7%(1-no). ®

Note that Egs. (6)—(8) are only valid if growth has not yet
occurred, i.e. if mass has not been added to the solid skeleton.
Although both the solid skeleton and the fluid are assumed to
be incompressible, the total material is compressible due to a
net gain or loss of fluid volume. The displacement of the solid
is given by

Ui = X—X; ©)]
with the associated material time derivatives

. du

uj = Ul-s = E (10)

o du
h=g (11)
The deformation gradient is given by
6xi
Fj= X, (12)

The engineering strain, Green's strain, and Finger's strain are,
respectively, given by

. 1 ( oy au}'
eu = E <()XJ + TXI (13)
Ejj = 5(FuFy—5y) (14)
H; = F;W}F;,,}. (15)

Note that the volume strain of the material can also be
expressed as

J =det(Fy). (16)
The velocity strain is
1 [ovy; av;
Dj=5 (a_xJ + o (17)
which, when combined with the dilatational velocity strain
o J
Dy = " (18)

and the increment/rate of Jn

2 gmy=j (19)
at”

allows j to be expressed as

J =)D (20)

The rate of deformation (velocity strain), Green's strain, and
the volume strain are related by

Ejj = FriDgmFom (21)

j =)Drk :)Erers~ (22)
The rate of change of Finger's strain is

Hyj = —2HyHjEn. (23)
The displacement of the fluid at a point, ul, is defined in an
average sense such that the volume of fluid that is displaced
through a unit area perpendicular to an axis is given as nul.
Using this definition, the apparent relative fluid velocity is

defined as the average fluid velocity relative to the deforming
solid as

o = n(l-vp) (24)

Note that the apparent relative fluid velocity is also the
apparent relative fluid flux. Similarly, the apparent relative
mobile species velocity is

v{" =n(uf-v;) (25)

with the apparent relative mobile species flux being

ji = v = cn(uf—v$). (26)

Note that the species is considered to be dissolved in the fluid
so that the species concentration is defined in terms of the
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fluid volume and the number of moles of the species, dm°, as
o dm®
av

where c has units of moles per cubic meter of interstitial fluid.
The relative volumetric fluid strain rate is

27)

vl
r_ "k
=0 (28)
which in Lagrangian form can be expressed as
Df =Dl (29)
2.3.2. Conservation equations

The three conservation equations used in the porohyperleas-
tic mass transport theory are described below.

(1) Conservation of linear momentum: The Lagrangian conserva-
tion of momentum is:

T ~

D b+ R =0 30
OX)' +Jpb;i + i (30)
where Ty is the total Lagrangian stress (force per unit
area), p is the density of the material, b; are the body
forces applied to the material, and R; is the solid source
term. In the absence of body forces or source terms, the
Lagrangian conservation of momentum may be reduced
to the form that is used in this work

JT;

9X;

- . . aT
=0 orinits one — dimensional form X 0 (31

Note that if body forces were included, then a follower

loading capability could be implemented and demonstrated.
(2) Conservation of mass (for the incompressible fluid and solid):

The general conservation of mass equation is

dp  dpv;

E"ra—xi-‘rRiSZO (32)

which without source terms and at steady state becomes
dpvu;
dxl-

=0. (33)

Since both the fluid and solid have constant density and
are incompressible, this simplifies to

av;
i 0. (39

For a section of material, v may be split into fluid and solid
proportions via the porosity as
v =nv] + (1-nvs. (35

Solving Eq. (24) for v{ and substituting the result into Eq.
(35) yields
v = 4+ vt (36)

i

Eg. (34) can then be rewritten as

o +v5) o Lo

= —L=0. 37
0X; 0X; 0X; 37

which after use of Eq. (18) becomes

T

i _
o Du=0. (38)

Using Egs. (20), (22), (29), and (38), the Lagrangian con-
servation of mass for the incompressible solid and mobile
incompressible fluid without source terms may finally be
expressed as

~fr ~fr +fr
o0 i 9% i B
a—Xi‘i‘J— 0_Xi+}HUEU_ a_Xi""]HuEu—o (39
Which in one-dimension becomes

fr

9 s _
5 TJHE=0 (40)

—
w
~

Conservation of mass (for the neutral mobile species): The
general conservation of mass equation for the neutral
mobile species is

opc  opu”

ot ox,

+R =0 (41)

which without source terms becomes

apc 0pC U(i:l’
— =0. 42
Jat X “42)

Since p¢ =nc, this may be written as

onc = oncuf

=0 43
Jat 0X; “3)
or

a o ac  off
— =—4+=L =0. 44
ot ox T ot oxg “h

In the Lagrangian form, this becomes

~Cr

% +¢=0 (45)
where

¢ =Jnc. (46)
Note that

c=c(x,t)=c(X,t) (47)
with the subtle difference that

¢ =Jnc=&X, tyzc(X, t). (48)
Using these definitions, Eq. (45) becomes
ZL)Z-F%C-FJHC:O. (49)

With Egs. (19) and (22) this can be rewritten

T
i

ox; +]HijEijc +Jn¢=0 (50)

which has a one-dimensional form of

~Cr

J] . .
a_X+ ¢JHE +Jn¢ =0. (51)
2.3.3. MPHETS constitutive equations

The three constitutive equations required in the MPHETS
theory are the effective stress principle and the two Onsager
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equations (see Vande Geest et al., 2011). The prior requires
the definition of an effective strain energy density.

(1) Effective stress principle: The porous medium consists of a

—

solid and a fluid component. The stress at any point
within the medium is decomposed into an effective stress
and a pore fluid pressure as

T_ps;

where g;; is the Cauchy stress, & i is the effective Cauchy
stress, and p’ is the mechanical pore fluid pressure. Since
the 2nd Piola-Kirchhoff S; stress can be related to the
Cauchy stress by

(52)

ou—a

Sij =JFimomeFj (53)
we can write
') = S }Hljpf (54)

where Sj; is the total 2nd Piola-Kirchhoff stress and Sﬁﬁ is
the effective 2nd Piola-Kirchhoff stress. The total nominal
stress can then be calculated as

Tjj = FieSij = Fie(S{Y ~JHyp') (55)
which in one-dimension becomes

T =Fs=F$HjHpf) (56)
where

Ss=sF_jHyp . (57)
Onsager equations: The rate of flow of the fluid and the flux
of the species relative to the porous medium can be
written using coupled Onsager equations. The Lagrangian
forms of these equations are, respectively,

IR N R N £ 3

Ji =13 L ef* LlJ ]C = LUK_LU aX (58)
- . o

Ji = o =L Lfe =L % oS _jec o (59)

y J Y OX Y 6X

where Lg, L{], Luf, and L are the Onsager coefficients and
the potentials (" and i) in Egs. (58) and (59) are
assumed to be independent of the deformation. The total
fluid pressure, ﬁf*, is described as the sum of the mechan-
ical fluid pressure, p/, and the osmotic fluid pressure, p°.
The electro-chemical potential, i<, is the sum of an
electrical potential, u®, and a chemical potential, x°.
However, for a single neutral species, y“=0. The poten-
tials may then be determined as

X o=/ xt=p +p° (60)
XD =p" ) =+ p =y =i (61)
where

p° =pg—Rop‘c (62)
1= g + RO log(y°c). (63)

The necessary transport properties that must be specified
are the hydraulic permeability (klf]f), the convection cou-
pling coefficient (b =bf), the diffusivity (d5), the osmotic

. Strain energy density:

coefficient (¢°), and the activity coefficient (y°). By making
use of Darcy's Law, Fick's Law, and the definitions of the
potentials, these transport properties can be related to the
Onsager coefficients as follows:

F_f
i =¥ (64)
L = bk =R bfic=1F (65)
Ll;jc 7dcc +de f bijc (66)

In order to be used in the porous media theory, the
Eularian Onsager coefficients must be transformed to
their Lagrangian forms as follows:

L = e L] = JH (67)
L = JHaL = HRIR] = JHRIYS = JH L = 1 (68)
~ C

L =JHyL =] g Hiedi; + JHim by R Bc. (69)

In one-dimension, the Onsager equations and their
respective properties become

Jr o =i e o I g 70)
i =cv = LT e = ch()g—;(—fcc a:—; (71)
¥ = jarf = jaef (72)
L9 =jHLY = JHT RS = JHR b e = JHLC = 1 (73)
[ =JHL® =JHd" + cbTIbc (74)

It is important to note that in the present work, the
Eulerian transport properties f, b*°, bY, and d< are
assumed to be isotropic and constant.

In order to demonstrate our
approach, we chose here to utilize a simple Neo-
Hookean strain energy density function. This form has
been used by Kuhl (Himpel et al., 2005; Goktepe et al.,
2010) and may be written as

¥ =121n()) + Lu[Cy5;—3-2 In())] (75)

where Cj; is the right Cauchy-Green tensor. The 2nd Piola-
Kirchhoff stress is then calculated as

? a Cyié
Sijzgzzayj :ﬂah’l U) ( ij 1)_2”()111(])
OEj " oCyj " oGy oC; oC;
oIn*() Oy A(Cydy) ., 0In() oF;
TRy oc; Mg oF; dC;
- oFjj Fj | oCy K oC;j

= [221n()(Fri) " ~2u(Fii)” ]< Fi(Cy )) + pd
=[A1In()—u] (Cijl) + udij

For flowing confined compression (which is used here),
J=F, E= }(F*-1), and C=F? so Eq. (76) may be written as

(76)

=[AInF)—ulF2 +u (77)
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The incremental tangent modulus may now be deter-
mined by taking the increment/rate of Eq. (77)

2% 2In(F . :
<F§ _% Fr;( )4 %) E = (2u—24 In(F) + )FF (78)

If we consider Eq. (78) for when F=1:
S =(2u + A)F =HuF (79)

where H, is the aggregate modulus. By writing Eq. (78) in
the form of S =HAE or AS=HaAE where H, is the incre-
mental tangent modulus and by using the fact that E = FF,
the following is obtained

S = (2u-241In(F) + HFE (80)
or
AS=HAAE (CHY)
where the incremental tangent modulus is defined as
Ha = (2u + 2-24 In(F))F™. (82)
2.4.  Governing equations for growth
2.4.1. Assumptions

The growth theory utilized here will follow closely the work
of Kuhl (Himpel et al., 2005; Goktepe et al., 2010) and as such
attends to growth at the kinematic level. It will be assumed in
this model that growth is stress-based and that other factors
which may contribute to the growth of a soft tissue (i.e. the
concentration of a mobile species, etc.) can currently be
neglected. It is important to note, however, that growth
factors other than stress may be implemented into the model
in the future and that different growth laws may be used in
place of the one chosen here. Finally, it must be noted that
the stress upon which the growth loop will act is the stress in
the solid skeleton, i.e. the effective stress, S&¥. The reader
should note that the stresses used in the following growth
theory refers to the effective stress from the above described
MPHETS theory.

2.4.2. Growth kinematics

Within the framework of finite growth, the key kinematic
assumption is the multiplicative decomposition of the defor-
mation gradient Fy into an elastic part Fj; and a growth part Fg:

Fj = F.Fy;. (83)

This concept was first proposed by Lee (1969) in the context of
finite elasto-plasticity and was later applied in the context of
growth by Rodriguez and Hoger (1994); it has also been

po LO ,0 t
dav dv

Fig. 1 - Multiplicative decomposition of the deformation
gradient.

adopted by Kuhl amongst others (Himpel et al, 2005;
Goktepe et al, 2010; Ambrosi et al, 2011; Ambrosi and
Mollica, 2002). This decomposition can be depicted as shown
in Fig. 1.

As illustrated, the body is initially at volume dV and
density py. The deformation of the body due to growth will
now be decomposed into two parts. First, every particle of the
body will grow or decrease in mass under a stress free
condition. This growth part of the deformation, denoted by
F?j, results in an intermediate configuration where the body
has volume dv, and density p,. Since the grown body may not
be compatible at this point, an additional elastic deformation,
denoted by F§, may be necessary to ensure the compatibility
of the total deformation. Once this second part of the
deformation has occurred, the body is now in its final grown
state (known as the spatial configuration) with volume dv and
density p,. Again, note that the total deformation of the body
due to growth can be computed by Fij:kang. The theory
presented in the rest of this chapter is based on the work
done by Lubarda and Hoger (2002) and Kuhl (Himpel et al,,
2005; Goktepe et al., 2010). At this point, let us define the right
Cauchy-Green tensor and the elastic right Cauchy-Green
tensor as

Cij = FriFy; (84)
Cf = FyiFyj (83)
And the spatial velocity gradient and the growth velocity
gradient as
ovi -~ 4
Lj= (TXJI = FiFy (86)
ov? -9 _
L= a_x; =F(Fp™ (87)

In analogy to the Jacobian J = det(Fy) of the total deformation
gradient, we may define the Jacobians of the growth defor-
mation gradient and the elastic deformation gradient, respec-
tively, as

J9 = det(F)) (88)
JE= det(Ffj). (89)
Also note that we may write

J = det(Fy) = det(F§Fg,) =J°. (90)

Using the above definitions, the following well-known rela-
tions may be written:

dv=Jdv (91
dug=J9 dV (92)
dv=J¢ dug (93)

and the initial mass element may be obtained as
dM =p,y dV. (94)

By denoting Ry as a mass source per unit volume term in the
material configuration and by neglecting any mass flux
through the surface of the element under consideration, the
grown mass element dm will consist of the initial mass
element dM and the additional mass produced by the mass
source term Ry during the time interval [to,t]. This may be
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calculated as
t
dm=dM + / Ro dt dV (95)
to
In the intermediate configuration, the mass element may also
be written as
dm = p, dv, (96)
Since the deformation map between the intermediate config-

uration and the spatial configuration is a purely elastic map, the
mass element expressed in terms of the spatial quantities is

dm=p, dv (97)
By equating (96) and (97) and using the relationship defined in

Eqg. (93), we may define the density in the intermediate config-
uration as

pg=Jpr. %8)

Further, we define the density of the grown mass element in
the material configuration as

_dm
Po= gy (99
which by Egs. (90), (91), (97), and (98) can be expressed as
Po=Jp: =), (100)
Inserting Egs. (94) and (99) into Eq. (95) yields
t

po=po+ [ Rodt (101)

to

Eq. (101) illustrates that the density of the grown mass element
is equal to the initial density and a term which takes into
account the mass source.

2.4.3. Conservation equations in growth
Taking the time derivative of Eq. (101) will yield the local
balance of mass in the material configuration:

Po=Ro (102)

By using the relation p, =J%p,, we can write

. 0%g) _ P 0 o9 OF} ap

5 —Rp — 979 9 99

Po=Ro="5" =y 5 +J oFY o ) %
=P E + 1%, pgﬂL@ +J%,4 (103)

which may be rewritten to represent the local balance of
mass in the intermediate configuration as

=(°)"Ro.
The local balance of linear momentum in the material
configuration may be written (in the absence of body forces
and source terms) as
_ 9v; _ O(FySy))

Posor = o,

Py + gLl (104)

(105)

Since this work is focused on the particular case of growth
under constant density, certain simplifications to the pre-
viously developed theory can be made. First, if density is kept
constant then

Po=pg=p (106)

where p is the material's constant density. This means that
the volume must change if there is a mass change. Eq. (104)

can now be written as

Ro=J9pLY (107)

Thus, if F?j and Pg are known, then the mass source can be
directly determined.

2.4.4. Constitutive equations in growth

We will restrict ourselves to materials that undergo
isotropic growth. An equation describing the growth which
allows the calculation of the growth deformation tensor F9
must be developed. We begin with an isotropic free energy
density per unit mass ¥ which is a function of the elastic
right Cauchy-Green tensor Cj and the grown material

density pg
¥ = ¥(C§, Po) (108)
Using Egs. (83) and (84), Cjj can be rewritten as
C§ = (Fg) ™ Com(Fpy) ™ (109)
The time derivative of ¥ can be calculated as

_or_ oG o¥

~ ot dCj at - dpg ot

B <ac 9Gji , oChy F),> L)

aclk 0Cpj Ot 01-"9 ot a—o ot
= (B e () =2 s () ) 4 2o, (10

However, since density is assumed to remain constant during
growth, po =0 and Eq. (110) becomes

=(F <F9 )"'Cji—2Ci. (Fg )HEDT (111)

ace
A free energy density function per unit volume can be defined
as

o =po¥ (112)

from which the Second Piola-Kirchhoff stress is derived using

0¥o

S =25

(113)

The Second Piola-Kirchhoff stress corresponding to the inter-
mediate configuration is

¥
e g 9 Y
S§ = FieSimFfy, =27 o (114)
Correspondingly, S; may also be calculated as
Sij = (Fj) " Sim(F) - (115)

At this point, we can also define the Mandel Stress for the
intermediate configuration, which is the work conjugate to
the growth velocity gradient Lg. defined in Eq. (87), as

M = Ci, S (116)

The tangent modulus of the material model for growth may

be calculated by using the form of S;; as specified in Eq. (76) as

S

JCyy

=UCHHC ™ + =2 IngoICH) T CH ™+ (CHTHCR) T
(117)

e
il =2

As done previously by Lubarda and Hoger (2002) and by Kuhl
(Himpel et al., 2005; Goktepe et al., 2010), the isotropic growth
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deformation gradient can be defined as
F?}. = U (118)
where v is an isotropic stretch ratio due to volumetric growth

and §; is the Kronecker Delta. Using this definition, the
following relations can be written:

J9=v3 (119)

Po="1%p, (120)
v

L= o0 121

Since density is assumed to remain constant during growth,
Eq. (120) can be rewritten

Po=1%pg =V’p. (122)
The mass source term is thus
Ro =J9LY = 3pv2v. (123)

It can be now be seen that the mass source term is driven by
the evolution of the stretch ratio due to volumetric growth
and that an equation describing its evolution must be

developed. Therefore, it will be assumed (see Himpel et al.,
2005) that

v =f(v, M) (124)

IInitialize variables |

l

| Solve predictor/corrector steps for drained state — output new “F” and “S” ‘

|

Loop until convergence is reached or until maximum iterations reached

Loop over specified number of growth steps

Loop over all elements

Growth loop — output new tangent modulus and new “S”

I

Solve predictor step — output new “F” and “S”
Check convergence

Fig. 3 - MPHETS with growth finite element implementation.

Loop over specified number of growth steps

Loop over all elements

f
C=FF;
J? = det(Fy)

sl
Fj=_F

MI=CySy

oM
v
if M{>M’

vi—vy i
K =k;[ ]
v -1

ok, _ m;
o v=v' 7
else if M;<-M"

v—v~ "
& :k{ }
1-v

Ok, __m; K,

o v-v
else

no growth

R=v,, -v,—k M At

Growth Loop — repeat until convergence or until max iterations reached

8¢ = w8, + (@) - pcy)

Ly =2c) (e +(e-amu)cses + cics,)

v =Lom:+ o, C
v

Thij  ji

K:l—[k‘,%+M; o, }At
ov ov

Av=-K"'R

v = L Ay
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+S,f,:|
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n=n+l

Fig. 2 - Implementation of the growth loop. Note that all Mandel stresses are calculated from the effective stress.
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where the trace of the Mandel stress in the intermediate
configuration provides a representative scalar value of the
volumetric stress condition. The simplest form for such a
function is

U = ky (U)ME. (125)

In order to prevent unlimited growth, k, is defined as
(Lubarda and Hoger, 2002; Himpel et al., 2005; Goktepe et al.,
2010)

ko(V) =kF vr—v)™ for M >MY (126)
v Vivt-1 u

S i e MY
ko(V) =k, [1 U’] for M§<-M. (127)

In Egs. (126) and (127), the constants vt >1 and v~ <1 denote
the limiting values the stretch ratio can reach due to
growth and atrophy, respectively. The remaining terms
(kf, m, k;, m;) are constant material parameters which
dictate how quickly the growth or atrophy of the model
occurs. For the case of tensile loading, M” is a value of the
Mandel stress which represents a physiological threshold
below which growth does not occur; correspondingly, once
M° exceeds M”, growth is activated. Similar statements can be
made for compression using (127).
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Fig. 4 - Solution variables for MPHETS confined compression
problem with fluid and chemical potentials set to zero. Note
that positive displacement indicates movement to the right.

(a) Solid only compression problem: k! =k, = 1e-9. (b) Solid

only compression problem: k; =k, = 1le-8.

2.5. Combining MPHETS and growth

2.5.1. Growth finite element implementation

In this section, the constitutive theory discussed for density
preserving growth will be numerically implemented and
standard finite element techniques based on an internal
variable formulation for the stretch ratio will be applied. To
solve the highly nonlinear governing equations for finite
growth on a local level, a finite difference scheme will be
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Fig. 5 - Solution fields for the MPHETS problem with growth
assuming no osmosis. The gray lines indicate the time
dependent MPHETS problem reaching mechanical
equilibrium. (a) Time history of the displacement field. (b)
Time history of the fluid potential field. (c) Time history of the
chemical potential and concentration fields.
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used to discretize the evolution equations (Eq. (125)) for the
growth multiplier v. To numerically solve the equations on a
global level, the finite element method will be used to
discretize the equations for finite growth in space (Egs. (83),
(105), and (114)). This will all be done as shown in the
previous literature (Himpel et al., 2005; Goktepe et al., 2010).
For space limitations, we refer the reader to the afore
mentioned paper for details of how the growth theory is
implemented into a finite element code. We simply present
here a figure briefly summarizing its details and implementa-
tion (Fig. 2). Note that the growth loop is iterated until v has
converged or until the maximum number of growth steps is
reached.

2.6.  Combining MPHETS and growth

Now that the MPHETS and growth theory have been fully
developed, the two must be incorporated together. To accom-
plish this, three key assumptions are made which are stated
as follows:

(1) The rate at which growth occurs in a soft tissue (which
may be on the order days, months, or even years) is
significantly slower than the time required for a soft
tissue to reach a drained or flowing mechanical equili-
brium (which is on the order of seconds to a few hours).

(2) The stress upon which the growth loop acts is the stress
in the solid skeleton, i.e. the effective stress, S,

(3) The porosity of the porous medium remains constant
during growth, i.e. any new porous media added due to
growth will have the same porosity as the tissue before
growth.

With these assumptions, the MPHETS and growth finite
element problems will be solved as detailed in Fig. 3. First,
the MPHETS problem will be solved. Again, since this is
assumed to occur quickly, no growth will have yet occurred.
Once this is finished, growth is allowed to occur and the
growth loop (detailed in Fig. 2) is implemented. Once the
growth loop finishes, the predictor step from the MPHETS
problem is solved using an updated tangent modulus and
effective 2nd Piola-Kirchhoff stress obtained from the growth
loop. This results in a slightly modified deformation and
stress state, upon which the growth loop acts again. This is
repeated until convergence is reached or until some specified
amount of time has passed.

3. Results

We will present two sets of results, one for a grown pure solid
and another for the utilization of MPHETS and growth.

3.1.  Growth of a solid

In this section, the fluid and chemical potentials are set to
zero in the program and the resulting solid-only model is
allowed to grow. The right node is fixed and a compressive
stress of 100 kPa is applied to the left node. The one-dimen-
sional domain for the problem solved was 5mm long and

contained 16 elements, each having linear shape functions
for all nodal variables. The compressive load on this problem
was 13.3 kPa, with all simulations using a unit cross sectional
area. The effective aggregate modulus of the material was
calculated from an effective Young's modulus of 100 kPa and
a Poisson's ratio of 0.49. The values of v*, v, k;, m{, k;, m;
were assigned to be 1.3, 0.7, 1e-9, 2, 1le-9, and 3, respectively.
The total growth time for all models was t=100 (au).

In Fig. 4(a), the steady-state solution of the MPHETS model
is shown and labeled as “Steady-State”; note that at this point
in the solution of the problem, no growth has yet occurred.
Once the MPHETS problem is solved, then growth is allowed
to occur and the model grows to the configuration labeled
“Grown”. For the compression problem, the model atrophies
(loses mass) and shrinks in length as shown in Fig. 4(a). The
magnitude of this atrophy can be controlled by adjusting the
growth constants involved in the solution. For example, if
the constants k! and k, are increased by one order of
magnitude to le-8 and the same compression problem as
before is solved again, the solution shown in Fig. 4(b) below is
obtained. Notice that the steady-state MPHETS solutions
shown in Fig. 4(b) is the same as in Fig. 4(a), however the
model now exhibits significantly more atrophy.
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Fig. 6 — Displacement and fluid potential solutions
for MPHETS confined compression with osmosis.
(a) Displacement field. (b) Fluid potential field.
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3.2 Growth of a porous media

Now the MPHETS problem with non-zero fluid and chemical
potentials will be allowed to grow/atrophy and will be solved
with and without osmotic effects. For these simulations, the
same model geometry and values for Young's modulus and
Poisson's ratio were used as in Section 3.1. The value of k! and
k, was le-8. The value of the hydraulic permeability was
ko=3.7e-12 m*/(Ns), while the value of the convection coeffi-
cient b was 0.8 while the value of the diffusivity d.. was 4.86e
-8m?%s. The value of both the initial porosity n, and the
activity coefficient y© was set to 0.5. For the case where
osmosis was allowed, the value of the osmotic coefficient ¢°
was 25. The value of the universal gas constant was R=8.31
(J/K/mol) and the temperature ¢ was set to 310 K. A mechanical
pressure as well as a pore fluid pressure of 13.3kPa was

a

15

-
o

Mechanical Fluid Pressure (kPa)
(6]

@ |Initial

B Steady-State

A Grown )

0 2 4 6
Location in

Undeformed Model (mm)

Chemical Potential (kJ/mol)

@ |nitial

B Steady-State
A Grown

0 1 2 3 4 5
Location in
Undeformed Model (mm)

Osmotic Fluid Pressure (kPa)

Concentration (mol/m?)

applied to the left hand side of the one-dimensional domain.
The pore fluid pressure of the node on the far right was set to
zero. The original concentration (at t=0) of all nodes except for
the node on the far right was 1.67e—2 mol/m?. The node on the
far right was given an initial concentration of 1.67e—3 mol/m>.
The results for an MPHETS problem with fluid and chemical
potentials present but without osmosis is shown in Fig. 5.
The results for an MPHETS problem with fluid and chemical
potentials present using osmosis are shown in Figs. 6 and 7.
Notice that the steady-state MPHETS solutions of the fluid
and chemical potential fields are the same as the grown
solutions. This is expected since the steady-state solutions of
the fluid and chemical potential fields are independent of the
deformation of the solid. Since the model is in compression
in both problems, Figs. 5(a) and 6(a) show that the material
loses mass (atrophies) and shrinks in length as expected.
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Fig. 7 - Additional solution variables in the MPHETS confined compression problem with osmosis. (a) Time history of the
mechanical fluid pressure and osmotic pressure fields. (b) Time history of the chemical potential and concentration fields.
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For the simulation in which osmosis is included, there is a
small downward curvature in the displacement field near the
left end of the model due to osmotic effects. In other words,
the far left of this model displays a smaller grown displace-
ment than that approximately 1 mm into the model from the
left. This effect is due to the osmotic pressure, which has its
largest magnitude near the left end of the model as can be
seen in Fig. 7(a). This is in contrast to the models solved
without osmosis (see Fig. 5(a)), where the largest grown
displacement occurs on the far left of the model. It can also
be seen that the presence of osmosis also reduces the overall
peak steady state and grown displacement values. These
effects are due to the complex interaction and balance of the
pore fluid pressure and osmotic pressure at the left hand side
of the model.

4, Discussion

When simulating a tissue without considering fluid or che-
mical potentials, the effective stress is equal to the total
stress throughout the one-dimensional domain. In the
MPHETS model, the total stress is the same in each element.
However, due to the non-constant fluid potential distribution,
the effective stress in each element is different. The effective
stress in the left-most element (where exterior loading
occurs) is near zero because the fluid potential is largest
there, ie. the fluid is taking a significant portion of the
applied load in the left-most element. On the other hand,
the effective stress in the right-most element is almost equal
to the total stress since the fluid potential is smallest there
(as imposed by a zero fluid potential boundary condition at
this node). This variance in the effective stress for the
MPHETS model holds significant consequences. For a one-
dimensional finite element problem, we know that the total
stress in each element must be equal for the model to be in
equilibrium. Therefore, we can expect that each element will
grow the same amount in a one-dimensional solid only
problem since the effective stress is equal to the total stress

Solid MPHETS
0.0 T 1

-0.2 4

-0.4

-0.6 A

-0.8 A

-1.0 4

212 4

% Change in Length

1.4

-1.6 4 W Steady State

-1.8 4 Grown State

-2.0 -

Fig. 8 - Percent change in length of FEMs implementing
growth without (labeled Solid) and with (labeled MPHETS)
fluid potential. This plot is a summary of the simulations
described in Figs. 4(b) and 5(a). The negative values indicate
that the models reduced in length.

in each element. With the MPHETS model, however, the
effective stress varies across its length causing each element
to grow a different amount.

The fact that the fluid may take a significant portion of the
loading in an MPHETS model and the differential growth of
each element that occurs when using an MPHETS model
typically results in much smaller total deformations and total
growth for a given applied stress than when using a solid
only model. This is shown in Fig. 8, where the percent change
in total length for a MPHETS model (with chemical potentials
set to zero) as compared to that for a solid only model is
plotted.

4.1.  Limitations and future work

There are several limitations of this work. One of the fore-
most simplifying assumptions is that the models considered
here only grow and do not remodel. This assumption may not
be applicable in certain applications since it is likely that in
some diseases of interest there exist changes in volume at
constant density as well as an alteration of the material
property (e.g., density, strain energy) of the added tissue
mass. While this is a limiting assumption, this work serves
as a first step towards a working model that includes effects
of both growth and remodeling. Future work in our laboratory
is aimed at addressing this limitation. Another limitation of
the work presented is its one dimensionality. This drawback
was considered acceptable here since it is important to
establish a complicated finite element model that is at first
more easily interpretable. Ongoing work in our group is
focused on expanding the current model into axisymmetry
as well as to two and three dimensions. Finally, another
limitation of this current paper is the utilization of the stress
based stimuli for growth. One of the driving motivations for
introducing an MPHETS model is to allow the eventual inclu-
sion of biochemomechanical stimuli into both growth and
remodeling. This is also a future goal of our research group.

4.2. Conclusions

In this work a finite element code was developed that
simulates the growth of a one-dimensional mixed porous
media mass transport swelling model undergoing finite
deformations. For the assumptions made, the results demon-
strate a heterogeneous growth field is achieved that is a
direct result of the complex fluid-solid load distribution
throughout the tissue. It was shown that significantly differ-
ent amounts of growth are experienced for the same loading
conditions and boundary conditions when using the MPHETS
model as compared to a solid-only model. In the example
including both fluid and chemical potentials, the MPHETS
model experienced a marked reduction total deformation and
predicted approximately 51% less growth than when not
including these potentials. It is interesting to note that the
inclusion of osmotic effects also altered the displacement
and growth field of the simulations. This work provides the
opportunity to consider more complex biochemomechanical
stimuli can in the future using the described approach.
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