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a b s t r a c t

Various biological tissues are designed to optimally support external loads for complex

geometries and mechanobiological structures. This results in complex microstructures of such

materials. The design of, for instance, (healthy) arteries, which are in the focus of this work, is

characterised by a residually stressed fibre-reinforced multi-layered composite with highly non-

linear elastic response. The complex interaction of material properties with the geometry and

residual stress effects enables the optimal support under different blood pressures, respectively

blood flow, within the vessel. The fibres reinforcing the arterial wall, as well as residual stresses

present in the vessel, strongly influence its overall behaviour and performance. Turn-over and

remodelling processes of the collagenous fibres occurring in the respective layers – either

resulting from natural growth phenomena or from artificially induced changes in loading

condition such as stent deployment – support the optimisation of the multi-layered composite

structure of arteries for the particular loading conditions present in the artery.

Within this contribution, the overall energetic properties of an artery are discussed by

means of the inflation, bending and extension of a double-layered cylindrical tube. Different

states of residual stresses and different fibre orientations are considered so that, for instance,

representative fibre angles that result in extremal states of the total potential energy can be

identified. In view of turn-over and remodelling processes, these orientations are considered to

constitute preferred directions of fibre alignment. In summary, the main goal of this work is to

calculate optimal material, structural and loading parameters by concepts of energy-

minimisation. Several numerical studies show that the obtained values – such as the fibre

orientations, the residual axial stretch and the opening angle – are in good agreement with

respective physiological parameters reported in the literature.

& 2013 Elsevier Ltd. All rights reserved.
r Ltd. All rights reserved.

7; fax: +49 231 755 2688.
do.edu (T. Waffenschmidt), andreas.menzel@udo.edu,
1. Introduction

The investigation of the mechanical behaviour of soft biological
tissues, such as arteries, has gained much attention during the
last decades; see e.g. Humphrey (2002) for a general overview.
Various biological tissues and structures are designed to opti-

mally support external loading, which often results in complex

microstructures of these materials. The design of, for instance,

healthy arteries is characterised by a residually stressed

fibre-reinforced layer-wise orthotropic composite with highly
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Fig. 1 – Polarised light micrographs of the media (a) and the adventitia (b) of a thoracic aorta wall. The images show two
distinct collagen fibre families oriented in the θ–z�plane of the arterial wall. Reprinted from Schriefl et al. (2012), with kind
permission from Royal Society Publishing.
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nonlinear elastic response. As a result of the interaction
between residual stresses and nonlinear anisotropic material
properties, arteries may optimally sustain different blood pres-
sures, respectively blood flow, within the vessel. In addition to
reducing or rather homogenising the distributions of the
respective stress components, the optimal design of the artery
e.g. reduces the change in its axial direction under the action of
blood flow to a minimum.

Fig. 1 shows two representative micrographs of a thoracic
aorta, namely the media (a) and the adventitia (b); the figures
are taken from the work by Schriefl et al. (2012). Several
advanced constitutive models for the simulation of the
mechanical response of arteries have been proposed in the
literature and have successfully been applied to realistic
patient-specific case studies; see, for instance, the works by
Rissland et al. (2009), Holzapfel and Ogden (2010), Balzani
et al. (2012) and Creane et al. (2012).

In order to test basic capabilities of the respective con-
stitutive models with application to the simulation of
arteries, it is common to analyse an idealised test case,
namely the inflation of a thick-walled cylindrical tube. As
an advantage, the underlying boundary value problem can be
solved (almost) analytically without the need for extensive
numerical methods such as the finite element method.
Nevertheless, all representative characteristics of the loading
conditions and the geometry can be captured; see Holzapfel
and Ogden (2003, 2009) and references cited therein. For the
present case of application of a residually stressed artery
subjected to different blood pressures, commonly combined
loading cases including inflation, bending, and axial exten-
sion of the thick-walled tube are considered, thereby often
neglecting the torsion mode; see the article by Holzapfel et al.
(2000) for a particular treatment on arterial wall mechanics.
The bending and extension modes are typically related to
residual stress states within the arterial wall – which may
change in time due to, for instance, ageing effects as dis-
cussed in Cardamone et al. (2009) – whereas the inflation
refers to loading induced by the blood pressure. Alternative
approaches for the inclusion of residual stress states in
arteries are discussed in, for instance, Olsson et al. (2006)
and Hoger (1985).
The problem of the inflation of a tube is commonly studied
by means of hyper-elastic forms together with the underlying
equilibrium conditions, respectively the Euler–Lagrange
equations; see, for instance, Gent and Rivlin (1952), the
monographs by Green and Adkins (1970) as well as Ogden
(1997), and the series of papers by Haughton and Ogden (1979,
1980a,b). This allows the investigation of the distribution of
stresses under particular loading levels, fibre angles and
residual stress states within the multi-layered thick-walled
tube; see the contributions by Pipkin and Rivlin (1962) and
Spencer et al. (1974), wherein inextensibility of the fibres is
assumed. From the mechanical point of view, the fibres
reinforce the arterial wall while the residual stresses
decrease, e.g. the circumferential stresses within the wall.
However, it generally remains unclear which stimulus yields
a particular fibre orientation or realignment under changing
loading conditions.

Moreover, the interaction of the fibre reorientation with
the states of residual stresses shall generally be accounted
for; see the work by Alford et al. (2008), wherein the response
of an artery in the context of varying properties of the
underlying constituents is investigated. Different modelling
concepts have been suggested in the literature to simulate
the alignment of fibres, commonly denoted as turn-over or
remodelling. Particular remodelling formulations are proposed
by, for instance, Driessen et al. (2004), where a kinematics-based
fibre alignment is suggested, or Humphrey and Rajagopal (2002),
wherein a mixture-theory-based remodelling approach is devel-
oped. Coaxial states of stresses and strains render the strain
energy to take an extremal state, see Sgarra and Vianello (1997),
which has motivated alternative remodelling formulation bio-
logical tissues with one fibre family, see e.g. Menzel (2005) and
Menzel and Waffenschmidt (2009), and two families of fibres,
see Menzel (2007). For an overview on different growth and
remodelling approaches the reader is referred to the articles by
Ambrosi et al. (2011) and Menzel and Kuhl (2012).

Within this contribution, an attempt towards the inter-
pretation of the interactions between loading conditions,
states of residual stresses and fibre orientations is made by
means of energy-based arguments. As an exemplary consti-
tutive relation, the model proposed by Holzapfel et al. (2000)



Fig. 2 – Deformation modes of a double-layered thick-walled cylindrical tube, Holzapfel et al. (2000): bending (opening angle α),
inflation (internal pressure p), longitudinal extension (axial stretch λz ¼ l=L), and torsion (angle of twist ϕ); (a) segment of the
arterial wall consisting of media (superscript M) and adventitia (superscript A) reinforced by two families of fibres with fibre
angles βM and βA defined in (b) a stress-free reference configuration B0; (c) residually stressed but load-free configuration Bres;
(d) residually stressed and loaded current configuration Bt.
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is adopted and, by analogy with that work, a thick-walled
double-layered cylindrical tube subjected to combined bend-
ing, inflation and extension is considered. The main goal of
the present work is to obtain additional information on
optimal, say material, structural and loading parameters –

such as the distribution of residual stresses and angles
characterising the orientation of fibre families – by direct
minimisation concepts applied to the total potential energy
of the underlying boundary value problem. In other words,
the total potential energy is minimised with respect to one or
several primary variables, such as the inner circumferential
stretch and a representative fibre angle, to name one exam-
ple. Thus, results previously established in the literature can
be reproduced on the one hand and, as a main goal of this
contribution, characteristic settings of material, structural
and loading parameters which render the total potential
energy to take extremal states can also be investigated on
the other. Such extremal states are assumed to identify
configurations that, from the design point of view, are
favourable.

The present energy-based approach will be restricted to
the special case of a perfect cylindrical geometry. Any further
geometries accompanied by non-uniform loading cases, as
theses intrinsically occur in real patient-specific applications,
are beyond the scope of this work but constitute future work
in combination with advanced finite element techniques.
Moreover, arterial tissue possesses active properties which
are not accounted for in this contribution.

Several numerical studies discussed as this work proceeds
show that the values calculated for, e.g. the axial residual
stretch, the opening angle or the fibre angles, are in good
agreement with the respective physiological parameters
reported in the literature. As expected, these values corre-
spond to an extremal state of the total potential energy and
lead to a reduced, but interestingly not minimal, inner
circumferential stretch as compared to the physiological
values reported in the literature.

The paper is organised as follows: the analytical expres-
sion for the total potential energy for bending, inflation,
extension, and torsion of a thick-walled tube is established
in Section 2. With this total potential energy function in
hand, the Euler–Lagrange equations are derived. Section 3
includes the investigation of characteristic properties of an
arterial tube for a specific constitutive model. Several para-
meter studies are performed by means of a double-layered
thick-walled residually stressed tube in response to different
loading levels. Finally, the paper concludes with a summary
in Section 4.
2. Basic equations of a thick-walled tube

This section reviews the theoretical continuum-mechanical
framework applied as this work proceeds. First, basic kine-
matics of an incompressible thick-walled cylindrical tube,
which represents an artery, are addressed in Sections 2.1 and
2.2. The basic modes of deformation discussed are combined
bending, inflation, extension and torsion, see Ogden (1997),
Holzapfel et al. (2000) or Ogden (2001). Section 2.3 establishes
the representation of the total potential energy for the
problem at hand and the related Euler–Lagrange equations
are summarised in Section 2.4.

2.1. Basic kinematics

Position vectors of particles in an undeformed reference
configuration B0 are denoted by X and position vectors in
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the deformed current configuration Bt at time t by x¼φðX; tÞ.
The kinematics of a thick-walled tube B can conveniently be
described by cylindrical polar coordinates. Adopting common
notation, these coordinates are introduced as R, Θ and Z with
respect to a chosen reference configuration B0. An orthonor-
mal referential frame can be defined in terms of these
coordinates as

ERðΘÞ ¼ cos ðΘÞe1 þ sin ðΘÞe2 ð1Þ

EΘðΘÞ ¼− sin ðΘÞe1 þ cos ðΘÞe2 ð2Þ

EZðΘÞ ¼ e3 ð3Þ

wherein fe1; e2; e3g is a Cartesian frame fixed in space. Related
coordinates with respect to the current configuration Bt are
introduced as r, θ, z so that the corresponding spatial
orthonormal frame reads

erðθÞ ¼ cos ðθÞe1 þ sin ðθÞe2 ð4Þ

eθðθÞ ¼− sin ðθÞe1 þ cos ðθÞe2 ð5Þ

ezðθÞ ¼ e3: ð6Þ

The geometry of the tube considered is visualised in Fig. 2
and its material and spatial settings are specified by

Ri ≤R≤Ro; 0≤Θ≤2π−α; 0≤Z≤L ð7Þ

ri ≤r≤ro; 0≤θ≤2π; 0≤z≤ l; ð8Þ

where Ri, Ro and L represent the inner and outer radii and the
length of the tube in a (undeformed) reference configuration
B0 while ri, ro and l represent the corresponding quantities in
the (deformed) current configuration Bt; see Fig. 2. With these
quantities in hand, the deformation modes of bending,
extension and torsion of an incompressible tube – the
deformation due to inflation under internal pressure p will
be discussed later on – can be represented by the spatial
position vector

x¼φðX; tÞ ¼ rerðθÞ þ zez ð9Þ

specified by means of

rðRÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2−R2

i

kλz
þ r2i

s
; ð10Þ

θðΘ;ZÞ ¼ kΘþ Z
ϕ

L
; ð11Þ

z¼ λzZ: ð12Þ

The parameter k is defined in terms of the so-called opening
angle α, i.e.

k¼ 2π
2π−α

ð13Þ

as used in Holzapfel et al. (2000), so that kjα ¼ 0 ¼ 1 and
kjα-2π-∞. The positive scalar λz represents the axial stretch
and ϕ is the angle of twist. Eq. (10) reflects the assumption of
incompressibility: for the isochoric deformation of the tube
considered the referential sub-volume VðRÞ ¼ πL½R2−R2

i � coin-
cides with the current sub-volume vðrÞ ¼ πl½r2−r2i � from which,
together with (12), Eq. (10) can be concluded; cf. Ogden (1997,
Ch. 2.2.6, pg. 112). The angle θ defined in Eq. (11) is a linear
function in Θ, Z and ϕ. In consequence, the radial spatial base
vector er does not depend on Θ alone in the case of ϕ≠0.
Representative deformation measures can conveniently
be introduced with respect to the coordinates R, Θ, Z and r, θ,
z. To set the stage, Eq. (9) is used together with ∇X½�� ¼ ∂R½��⊗
ER þ R−1∂Θ½��⊗EΘ þ ∂Z½��⊗EZ – see, e.g. Malvern (1969) – to
introduce the deformation gradient F¼∇Xφ as

F¼∇X½rer þ zez� ð14Þ

¼ ∂R½rer þ zez�⊗ER þ ∂Θ½rer þ zez�⊗EΘR−1 þ ∂Z½rer þ zez�⊗EZ: ð15Þ
It is concluded from Eqs. (4)–(6) and (10)–(12) that

∂er
∂R

¼ 0;
∂er
∂Θ

¼ ∂θ
∂Θ

eθ ;
∂er
∂Z

¼ ∂θ
∂z

∂z
∂Z

eθ ; ð16Þ

whereas ∂Rez ¼ ∂Θez ¼ ∂Zez ¼ 0. Based on Eqs. (10)–(12) and (13)
one can specify further partial derivatives, such as

∂r
∂R

¼ R
rkλz

;
∂z
∂Z

¼ λz;
∂θ
∂Θ

¼ k;
∂θ
∂z

¼ ϕ

l
; ð17Þ

and additionally identify ∂Θr¼ ∂Zr¼ ∂Rz¼ ∂Θz¼ 0. With these
relations in hand, the deformation gradient reduces to

F¼ R
rkλz

er⊗ER þ
rk
R
eθ⊗EΘ þ λzez⊗EZ þ r

ϕ

l
λzeθ⊗EZ: ð18Þ

To simplify notation, common abbreviations are adopted and
the radial stretch and a shear measure are introduced as

λr ¼
R

rkλz
and γ ¼ r

ϕ

l
: ð19Þ

The incompressibility assumption, i.e. J¼ detðFÞ ¼ dv=dV¼
λrλθλz≐1 so that cofðFÞ ¼ ∂FJ¼ JF−t reduces to F−t, enables us
to express the, e.g. circumferential stretch as

λθ ¼ ½λrλz�−1 ¼
rk
R
; ð20Þ

so that the deformation gradient, finally, takes the form

F¼ λrer⊗ER þ λθeθ⊗EΘ þ λzez⊗EZ þ γλzeθ⊗EZ: ð21Þ
It is obvious that the matrix of coefficients of F is not
symmetric in the case of activated twist, i.e. γ≠0, so that λr
represents a principal stretch in the radial direction, whereas
λθ and λz do not constitute principal stretches. As this work
proceeds, however, twist will be neglected so that γ ¼ 0, the
matrix of coefficients of F becomes symmetric and λr, λθ, λz
take the interpretation as principal stretches in radial,
circumferential and axial direction.

2.2. Residual stresses

The incorporation of residual stresses is of key importance
within the modelling and simulation of soft biological tissues.
Different concepts have been discussed in the literature to
account for these equilibrated stress contributions present in
the absence of external loading; see, e.g. Hoger (1986) where
special emphasis is placed on circular cylinders. In this work
a framework discussed by Hoger (1993) and Johnson and
Hoger (1995) is adopted which makes use of an additional
configuration. The general concept is similar to the introduc-
tion of a local isomorphism, as advocated by Noll (1967), but
the related energetic contributions are different. Conceptually
speaking, one introduces a residual strain quantity which, in
combination with a hyper-elastic form specified later on,
induces a residual stress contribution.

In this context, let the overall deformation be formally
composed as φ¼φ0○φres, where φres generates a – in general
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incompatible – load-free but residually stressed configuration
Bres. The mapping φ0 accounts for the motion under the
action of external forces. For the problem at hand, φres

induces circumferential residual stretches, while φ0 will be
associated with inflation of the tube and, in general, may also
include a torsional deformation mode. Axial elongation may
either be attached to φres or φ0. As mentioned above, a twist
contribution is neglected as this work proceeds. In view of the
overall deformation gradient one obtains the multiplicative
composition F¼ F0 � Fres, which is illustrated in Fig. 2; cf.
Holzapfel et al. (2000). In terms of the cylindrical coordinates
introduced, the respective contributions to the deformation
gradient take the representations

F0 ¼ R½rλz�−1er⊗ER þ rR−1eθ⊗EΘ þ λzez⊗EZ; ð22Þ

Fres ¼ k−1er⊗ER þ keθ⊗EΘ þ ez⊗EZ; ð23Þ

where the entire axial strain is attached to F0. The circumfer-
ential residual stretch, described by the opening angle α,
must directly be included in Fres, whereas an axial residual
stretch can either be incorporated in Fres or F0, or can be
enforced by Dirichlet boundary conditions. Moreover, note
that this composition of the deformation gradient can con-
veniently be used to model residual stresses within finite
element formulations for the simulation of complex bound-
ary value problems; the reader is referred to, e.g, Alastrué
et al. (2007, 2009) and references cited in these works.

2.3. Total potential energy

The total potential energy of a conservative system consid-
ered additively combines the internal contribution Πint,
reflecting the action of internal forces, and an external
contribution Πext ¼Πvol

ext þ Πsur
ext due to the volume and surface

forces applied, i.e.

Π ¼Πint þ Πvol
ext þ Πsur

ext þ const: ð24Þ

The existence of a strain energy function Ψ ðF;XÞ is assumed,
with the dependency on X often not explicitly mentioned in
the following, so that the internal energy contribution of B
can be represented as

Πint ¼
Z
Bt

J−1Ψ ðFÞ dv¼
Z
B0

Ψ ðFÞ dV: ð25Þ

In view of the specific application considered as this work
proceeds, the volume force contribution is neglected—in other
words, −∂φΠvol

ext ¼ b≐0 is consistently assumed. Moreover, for the
case of pressure loading the traction vector t is proportional to
the outward normal unit vector n and its length is referred to the
volume-related pressure, i.e. −∂φΠsur

ext ¼ t≐−pvol n. Similarly, the
referential volume-related traction vector takes the Piola-
transformed representation t ¼−pvol cofðFÞ �N, where N is the
referential outward unit vector referring to the referential inner
surface of the tube ∂B0i. In case of pressure loading, the refe-
rential surface-related energy contribution can be expressed as

~Π
sur
ext ¼

Z
∂B0i

psurφ � cofðFÞ �N dA ð26Þ

with psur ¼ R 1
0 pvolðαvÞα2 dα being the surface-related pressure for

any sufficiently smooth vector function v; cf. Podio-Guidugli and
Vergara Caffarelli (1990) and Šilhavý (1997, sect. 13). For the
loading case considered in the present work, one obtains with
regard to Eq. (26) the equivalent volume-related external energy
contribution

~Π
vol
ext ¼−

Z
Vt

pvoldv¼−
Z
V0

J pvol dV: ð27Þ

The equivalence between ~Π
sur
ext and ~Π

vol
ext can be illustrated by

relating the surface integral in Eq. (26) to a volume integral by
means of Gauss's theorem. To be specific, one obtains

~Π
sur
ext ¼−

Z
∂V0

psur φ � cofðFÞ �N dA

¼−
Z
V0

∇X � ½psurφ � cofðFÞ� dV

¼−
Z
V0

psurF : cofðFÞ þ φ � cofðFÞ � ∇Xpsur dV

¼−
Z
Vt

3psur þ φ �∇xpsur dv

¼−
Z
Vt

pvol dv¼ ~Π
vol
ext ð28Þ

wherein use of the Piola identity ∇X � cofðFÞ ¼ 0 has been made;
cf. Podio-Guidugli and Vergara Caffarelli (1990).

Note that the change in sign from Eqs. (26)–(28)1 refers to
the change in direction of the outward normal vectors related
to the inner lateral surface of the tube, ∂B0i, and the surface of
the inner volume of the tube, ∂V0. Furthermore, it becomes
apparent that the relation between psur and pvol is in line with
the definition mentioned above, and as a special case, i.e. if
∇xpsur ¼ 0, one observes the relation psur ¼ 1

3 p
vol. An alterna-

tive derivation based on the introduction of n in terms of the
vector product of two surface tangent vectors is included in,
e.g. Bonet and Wood (1997, chap. 6).

Summarising the total potential energy for the tube
problem at hand and making use of the coordinates and
deformation measures introduced above, one obtains

Π ¼
Z l

z ¼ 0

Z 2π

θ ¼ 0

Z ro

r ¼ ri

~Ψ ðλθðrÞ; λzÞÞr dr dθ dz

−
Z l

z ¼ 0

Z 2π

θ ¼ 0

Z ri

r ¼ 0
pr dr dθ dzþ const:

¼ 2π l
Z ro

r ¼ ri

~Ψ ðλθðrÞ; λzÞr dr−pπr2i lþ const; ð29Þ

wherein it is assumed that the internal energy density can be
expressed as a function of the principal stretches and the in-
compressibility constraint has been accounted for. Moreover,
external contributions acting on the outer surface boundary
are assumed to vanish identically. The volume-related pres-
sure is homogeneously distributed within Vt, so that
∇xpvol ¼ 0, for the inflation of the thick-walled tube addressed
in this work. Moreover, the notation is simplified by the
abbreviation p¼ pvol.

Due to the non-linear dependency of ~Ψ on r, the integral
expression in Eq. (29) can in general not be evaluated
analytically. A possible numerical integration scheme will
be discussed in Section 3.

2.4. Euler–Lagrange equations

In order to derive the Euler–Lagrange equations, i.e. the
equations off equilibrium, the variation of the total potential
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energy is calculated to identify stationary points of ΠðF;φÞ.
Starting with the representation of the total potential energy
with respect to referential volumes and surfaces and assum-
ing dead traction loading on the outer boundary, one obtains
the following relations

δΠjX ¼ δ

Z
B0

Ψ dV−δ
Z
V0

pJ dV−δ
Z
∂B0o

φ � to dA ð30Þ

¼
Z
B0

∂FΨ : ∇Xδφ dV−
Z
V0

J∂φp � δφþ p cofðFÞ : ∇Xδφ dV

−
Z
∂B0o

δφ � to dA ð31Þ

¼
Z
B0

∇X � ½δφ � ∂FΨ �−δφ � ½∇X � ∂FΨ � dV

−
Z
V0

J∂φp � δφþ p∇X � ½δφ � cofðFÞ� dV

−
Z
∂B0o

δφ � to dA ð32Þ

¼
Z
∂B0

δφ � ∂FΨ �N dA−
Z
B0

δφ � ½∇X � ∂FΨ � dV

−
Z
V0

∇X � ½pδφ � cofðFÞ� dV

−
Z
∂B0o

δφ � to dA ð33Þ

¼
Z
∂B0

δφ � P �N dA−
Z
B0

δφ � ½∇X � P� dV

−
Z
∂V0

p δφ � cofðFÞ �N dA

−
Z
∂B0o

δφ � to dA≐0; ð34Þ

wherein Gauss's theorem, the Piola identity and J∂φp¼ cofðFÞ �
∇Xp have been applied; cf. Podio-Guidugli and Vergara Caf-
farelli (1990) and Haughton (2001). Moreover, the Piola stres-
ses are introduced as P¼ ∂FΨ and the traction vector
prescribed at the outer boundary ∂B0o is denoted as
to≐const. Based on this, the local Euler–Lagrange equations
take the representation

0¼∇X � P in B0 ð35Þ

t ¼ P �N¼ to on ∂B0o ð36Þ

t ¼ P �N¼−p cofðFÞ �N on ∂B0i: ð37Þ

As indicated above, the referential outward normals N in the
first and third term of Eq. (34) refer to differently oriented
surfaces, namely the surface of tube ∂B0 and the surface of
the inner volume of the tube ∂V0, respectively. Consequently,
a change in sign from the third term in Eqs. (34)–(37) is
considered. By analogy with Eq. (29), the Piola stresses are
next assumed to take a spectral form with respect to the base
systems introduced in Eqs. (1)–(6), namely P¼ PrRer⊗ERþ
PθΘeθ⊗EΘ þ PzZez⊗EZ. Note that this form, together with
Eq. (21) and γ _¼ 0, includes coaxiality of conjugated stresses
and strain measures which, however, does not generally
restrict the underlying constitutive relation to isotropy. With
this assumption in hand and N¼7ER for the particular
application considered, the Euler–Lagrange equations can be
represented as
0¼ ∂PrR
∂R

þ PrR
R

−
PθΘ
R

� �
er þ

1
R
∂PθΘ
∂Θ

eθ þ
∂PzZ
∂Z

ez in B0 ð38Þ

t ¼ PrRer on ∂B0 ð39Þ

t ¼ pλ−1r er on ∂B0i ð40Þ

Instead of choosing representations in terms of the Piola
stresses P, which refer to referential area elements, the Euler–
Lagrange equations can be formulated in terms of the Cauchy
stresses r¼ P � cofðF−1Þ, which refer to spatial area elements.
Making use of the Piola identity, the variation of the total
potential can be rewritten as

δΠjX ¼
Z
∂Bt

δφ � r � n da−
Z
Bt

δφ � ½∇x � r� dv

−
Z
∂Vt

pδφ � n da−
Z
∂Bo

δφ � to da≐0: ð41Þ

Based on this, the Euler–Lagrange equation in terms of spatial
arguments take the representation

0¼∇x � r in Bt ð42Þ

t¼ r � n¼ to on ∂Bto ð43Þ

t¼ r � n¼−pn on ∂Bti ð44Þ

In view of the base system introduced in Eqs. (4)–(6), together
with the assumed coaxiality of conjugated stresses and strain
measures, the Cauchy stresses allow representation in spec-
tral form as r¼ srrer⊗er þ sθθeθ⊗eθ þ szzez⊗ez. By analogy with
the derivations reviewed above and with n¼7er, the Euler–
Lagrange equations can be summarised as

0¼ ∂srr
∂r

þ srr
r
−
sθθ
r

� �
er þ

1
r
∂sθθ
∂θ

eθ þ
∂szz
∂z

ez in Bt ð45Þ

t¼ srrer on ∂Bto ð46Þ

t¼ per on ∂Bti ð47Þ

In summary, stationary points of ΠðF;φÞ for the rotation-
ally symmetric inflation of a thick-walled tube can be repre-
sented with respect to the base systems in (1)–(6) as

δΠjX ¼
Z
∂B0

δφrPrRR dΘ dZ−
Z
B0

δφr
∂½RPrR�
∂R

−PθΘ
� ��

þδφθ
∂PθΘ
∂Θ

þ δφz
∂½RPzZ�
∂Z

�
dR dΘ dZ

−
Z
∂Bti

δφrpλ
−1
r R dΘ dZ−

Z
∂B0o

δφr trR dΘ dZ ð48Þ

¼
Z
∂Bt

δφrsrrr dθ dz−
Z
Bt

δφr
∂½rsrr�
∂r

−sθθ
� ��

þδφθ
∂sθθ
∂θ

þ δφz
∂½rszz�
∂z

�
dr dθ dz

−
Z
∂Bti

δφrpr dθ dz −
Z
∂Bto

δφrtrr dθ dz≐0 ð49Þ

with δφ¼ δφrer þ δφθeθ þ δφzez. As this work proceeds, PrR ¼ 0
on ∂B0o is assumed, respectively srr ¼ 0 on ∂Bto, but the tube
could also interact with the ambient space such that the
radial stresses do not vanish identically on the outer surface
boundary. Note that in case of shear stresses being activated
at the outer surface boundary, the stresses do not remain
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coaxial with respect to conjugated strain measures for the
constitutive relations considered later on.
3. Analysis of a double-layered thick-walled
tube

The structural response of a thick-walled double-layered
arterial tube subjected to combined bending, inflation and
extension is investigated by means of minimising the total
potential energy functional (29). Several multivariable opti-
misation problems with respect to combinations of up to five
variables of loading-type and structure-type are set up and
solved. The computational results are discussed and com-
pared to physiological values taken from the literature.

3.1. Constitutive model

To set the stage, the underlying constitutive model adopted
for the following investigations is briefly reviewed. To be
specific, use of an orthotropic model with two families of
fibres is made as introduced by Holzapfel et al. (2000); for a
general review on the modelling of fibre reinforced materials
the reader is also referred to Spencer (1972) and the contribu-
tions in Spencer (1984) and Boehler (1987). The strain energy
density of this model is assumed to additively decompose
into an isotropic part Ψn

iso, representing the contribution of
the non-collagenous ground material, and an anisotropic part
Ψn

ani, representing the contributions of the different families
of collagen fibres, i.e.

ΨnðF;an
0 1;…;NÞ ¼ Ψn

isoðFÞ þ Ψn
aniðF;an

0 1;…;NÞ; ð50Þ

wherein n¼M represents the media and n¼A the adventitia.
Moreover, a0 1;…;N denotes a set of N referential unit-
vectors characterising the fibre families considered. The iso-
tropic part of the strain energy is specified by a common
neo-Hookean format

Ψn
isoðFÞ ¼

cn

2
½I1−3�; ð51Þ

with
Table 1 – Material, structural and geometrical parameters for a c
respectively Chuong and Fung (1983). The index n¼M refers t
parameter set is used throughout if not otherwise stated. Note
depend on the opening angle α; cf. Eq. (61).

Type Parameter Description

Material

cn Elastic constant

kn1 Elastic constant

kn2 Elastic constant

Structural βn Fibre angle

Geometrical

Hn Referential wall thickness

Ln ¼ RM
i jα ¼ 0○

Referential length

Rn
i jα ¼ 0○ Inner referential radius

Rn
o jα ¼ 0○ Outer referential radius

Rn
i jα ¼ 160○ Inner referential radius

Rn
o jα ¼ 160○ Outer referential radius
I1 ¼ F : F¼ λ2θ þ λ2z þ λ−2θ λ−2z ð52Þ

for J≐1. The anisotropic part adopted takes the following
exponential form:

Ψn
aniðF;an

0 1;…;NÞ ¼
kn1
2kn2

∑
N

i ¼ 1
½expðkn2 〈En

i 〉
2Þ−1�; ð53Þ

wherein it is assumed that the fibres within each layer n are
mechanically equivalent. The notation 〈�〉¼ ½j�j þ ��=2 reflects
the Macaulay brackets. These allow activation of the fibre
contributions in the tension regime only. To be specific, the
referential strain measure En

i is introduced as

En
i ¼ an

0i � Ft � F � an
0i−1¼ In4i−1: ð54Þ

Even though Eq. (54) does not include any dispersion of fibre
contributions, the formulation can be extended to account for
these as discussed in, for instance, Gasser et al. (2006) and
Menzel et al. (2008). As this work proceeds, the number of
mechanically equivalent fibre families per layer is restricted to
N¼2 and, moreover, their initial orientations are assumed as

an
0 1;2 ¼ sin ðβnÞEZ7 cos ðβnÞEΘ; ð55Þ

see the graphical illustration in Fig. 2. This kinematic relation
together with Eq. (21) and γ ¼ 0 renders stresses and conjugated
strain measures to be coaxial. Furthermore, one observes En

1 ¼ En
2

≐En and the invariant introduced in Eq. (54) can be expressed as

In4i ¼ an
0i � Ft � F � an

0i ¼ sin 2ðβnÞλ2z þ cos 2ðβnÞλ2θ : ð56Þ

In conclusion, the strain energy can be written as a function in
terns of the circumferential and longitudinal stretch, i.e.
~Ψ
nðλθ ; λzÞ, as indicated in Eq. (29).
With these relations in hand, the Cauchy stress tensor

rn ¼ ∂FΨn � cofðF−1Þ can be specified, namely

rn ¼ cn F � Ft þ 4kn1E
nexpðk2〈En〉2Þ½an

1⊗an
1 þ an

2⊗an
2 � ð57Þ

with an
1;2 ¼ F � an

01;2. Alternatively, the Cauchy stress tensor can
be expressed with respect to the base system introduced in
Eqs. (4)–(6), or rather in spectral form, as

snrr ¼ cnλ−2θ λ−2z ð58Þ

snθθ ¼ cnλ2θ þ 4 cos 2ðβnÞkn1 λ2θEnexpðkn2 〈En〉2Þ ð59Þ
arotid artery of a rabbit adopted from Holzapfel et al. (2000),
o the media, whereas n¼A refers to the adventitia. This
that the inner referential radii Rn

i are assumed to linearly

Value Unit

Media (n¼M) Adventitia (n¼A)

3.0 0.3 [kPa]
2.3632 0.5620 [kPa]

0.8393 0.7112 [–]

29.0 62.0 [deg]

0.26 0.13 [mm]

0.71 0.71 [mm]

0.71 0.97 [mm]

0.97 1.1 [mm]

1.43 1.69 [mm]

1.69 1.82 [mm]
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snzz ¼ cnλ2z þ 4 sin 2ðβnÞkn1 λ2zEnexpðkn2 〈En〉2Þ ð60Þ

Even though not highlighted, the Piola stresses can be
represented by analogy with Eqs. (57)–(60).

3.2. Material, structural and geometrical parameters

For reasons of comparability, the material, structural and
geometrical parameters used in this contribution are adopted
from Holzapfel et al. (2000) as originally identified by Chuong
and Fung (1983); see Table 1. Note that in Holzapfel et al.
(2000) the inner referential radii Rn

i are assumed to depend on
the opening angle α. For the subsequent studies, where
different opening angles α are considered, the inner referen-
tial radius RM

i is linearly interpolated by means of

RM
i ðαÞ ¼

RM
i jα ¼ 160−RM

i jα ¼ 0

160
αþ RM

i jα ¼ 0 ð61Þ

depending on the actual value of α, here included in unit-
free form.

For illustration and comparison purposes, contour plots of
the strain energy density (50) for the media and adventitia
based on the parameters summarised in Table 1 are depicted in
Fig. 3 – Contour plots of the strain energy density (50) for the m
parameters given in Table 1.
Fig. 3; cf. Holzapfel et al. (2000). According to the constitutive
assumption that only the ground substance contributes in case
of compressive loading, one observes an isotropic behaviour in
the in-plane compression range, i.e. for λθo1 and λzo1, which
is reflected by the symmetric contour lines within this region. In
contrast, for in-plane tensile loading, i.e. λθ41 and λz41, the
collagen fibres essentially affect the constitutive behaviour, and
one consequently obtains an anisotropic response. In this
regard, one observes that the directions of largest ascent are
essentially different for the media and adventitia, see Fig. 2(a).

3.3. Loading parameters

In the following, parameters essentially affecting the defor-
mation of the specimen are referred to as loading parameters.
The loading parameters used in this contribution are adopted
from Holzapfel et al. (2000) and summarised in Table 2. For later
evaluation and comparison, the physiological inner circumfer-
ential stretch λphysθi corresponding to the physiological values in
Table 2 can be computed by means of the relation

λphysθi ¼ kri
Ri

: ð62Þ
edia (a, b) and for the adventitia (c, d) based on the material



Table 2 – Loading parameters included in the total potential energy (29). The pressure p directly enters the external
potential energy, see Eq. (29), whereas the axial stretch λz and the opening angle α are included in the internal potential
energy via the deformation gradient F, see Eq. (21). The physiological values are adopted from Holzapfel et al. (2000) and

correspond to an inner circumferential stretch of λphysθi ¼ 1:604, see Eq. (62). The discrete pressure values are related to the
systolic blood pressure p¼17.4 [kPa], the diastolic blood pressure p¼8.0 [kPa] and the mean blood pressure p¼13.33 [kPa].

Parameter Description Load case Physiological value Value range Unit

Continuous Discrete

p Internal pressure Inflation pphys ¼ 13:33 0.0–21.33 [8.0, 13.33, 17.4] [kPa]

λz Axial stretch Elongation λphysz ¼ 1:7 0.2–1.9 [0.2, 1.0, 1.9] [–]

α Opening angle Bending αphys ¼ 160:0 0.0–160.0 [0.0, 80.0, 160.0] [deg]

Table 3 – Algorithm to minimise Πðλθi; λz≐const; λ0θi; κÞ as
given in Eq. (29).

1. Set up material, structural and geometrical parameters from
Table 1 for media, n¼M, and adventitia, n¼A, as well as
loading parameters from Table 2 and collect these in pseudo-
vector κ

2. Perform initial guess λ0θi for the primary variable, which is the

inner circumferential stretch
3. Compute argument of minimum of total energy (29)

λmin
θi ¼ arg minλθiΠðλθi; λz≐const; λ0θi; κÞ,
wherein Π is determined by the algorithm given in Table 4 –

the minimisation can be performed by, e.g. the Matlab
fmincon-optimisation-function
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For α¼ 160 ½kPa�, ri ¼ 1:274 ½mm� and Ri ¼ 1:43 ½mm� this results
in a value of λphysθi ¼ 1:604.

3.4. Algorithmic treatment

The solution of the underlying boundary value problem is
obtained by means of the minimisation of the related total
potential energy functional (29), i.e.

λmin
θi ¼ arg min

λθi
Πðλθi; λz≐const; λ0θi; κÞ; ð63Þ

with respect to the primary variable λθi using an initial guess
λ0θi and a pseudo-vector κ which summarises the material,
structural and geometrical parameters as well as the loading
parameters.

Such minimisation problems may conveniently be solved by
typical optimisation techniques available in commercial soft-
ware packages used for numerical calculations as, e.g. Matlab. In
this study, the Matlab optimisation-algorithm fmincon is used
which is based on a sequential quadratic programming (SQP)
method. Without discussing specific algorithmic details at this
stage, this algorithm allows us to find a constrainedminimum of
a scalar function of one or more variables, whereby initial
estimate values must be set. For detailed background informa-
tion on such constrained nonlinear optimisation problems, the
reader is referred to the monographs by Luenberger (1984),
Bertsekas (1996) and Dennis and Schnabel (1996).

Solving the aforementioned minimisation problem (63) for
the single primary variable λθi, see Tables 3 and 4, is equivalent
to solving the corresponding Euler Lagrange equations in
form of Eqs. (35)–(37) or Eqs. (42)–(44). In addition to mini-
mising Π with respect to λθi, one could also think of solving
for extrema of the total or internal potential energy func-
tional with respect to the loading parameters or structural
parameters or combinations thereof. In the following, set-
tings of structural or loading parameters, which lead to
stationary points of the total or internal potential energy
in states of equilibrium, are calculated and it is discussed
whether such extremal states of energy can be referred to an
optimal or rather natural design of arterial walls.

In view of the algorithm implemented, it is important to
note that those problems involving the fibre angles βn as
variable quantities rely on a modified computational strategy:
the minimisation is first performed for those variables not
related to the fibre angles βn, then followed by a maximisa-
tion with respect to the fibre angles βn. Alternatively, one
could also think of minimising the energy with respect to βn.
The physical interpretation of an adaptive biological tissue
suggests, however, that its loading capacity is maximised so
that the internal energy is maximised in the case of Dirichlet
boundary conditions. To give an example, the optimisation in
the present context can be understood as

fβM opt; βA optg ¼ arg opt Πn

βM ;βA ;λθi ;λz ;α

ðλθi; λz; α; βM; βA; κnÞ ð64Þ

¼ arg max
βM ;βA

min
λθi ;λz ;α

Πnðλθi; λz; α; βM; βA; κnÞ
� �

: ð65Þ

In other words, the total potential energy Π is first minimised
with respect to variables fλθi; λz; αg, which results in the quad-
ruple fλmin

θi ; λmin
z ; αmin;Πming. Thereafter, the result is studied by

means of a simple max-function applied to Πmin, which renders
fβM opt; βA optg that maximise Πmin in states of equilibrium.

Remark 3.1. Note that a closed-form evaluation of the
integral in Eq. (29) is generally not available due to the
non-linearity of the constitutive model. In analogy to
Holzapfel et al. (2000), an m ¼ 3-point Gaussian integration
scheme with fifth-order accuracy is applied, see Table 4,
which turns out to be sufficiently accurate for the computa-
tion of the energy expressions and stress contributions of
interest within the range of deformations considered.

3.5. Results

In the following, the results of the optimisation of the total
potential energy functional (29) with respect to different
parameters are presented and discussed. The underlying
multivariable optimisation problems are performed in view
of combinations of five, four, three and two parameters of



Table 4 – Algorithmic determination of functional
Πðλθi; λz≐const; λ0θi; κÞ as given in Eq. (29).

1. Given: material-, structural- and geometrical parameters, see
Table 1, and loading parameters, see Table 2, summarised in
pseudo-vector κ

2. Calculate opening angle measure

k¼ 2π=½2π−α�
3. Calculate current radii of media

rMi ¼ λθiR
M
i =k

rMo ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½½RM

o �2−½RM
i �2�=½kλz� þ ½rMi �2

q

4. Calculate current radii of adventitia

rAi ¼ rMo

rAo ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½½RA

o �2−½RA
i �2�=½kλz� þ ½rAi �2

q

5. Apply m¼3-point Gaussian quadrature rule for n¼M;A with

quadrature points ξj ¼ f−
ffiffiffiffiffiffiffiffi
3=5

p
; 0;

ffiffiffiffiffiffiffiffi
3=5

p
g and weights

wj ¼ f5=9; 8=9; 5=9g
loop over number of quadrature points j¼ 1;…;m

(a) Calculate current radius

rj ¼ ½rni þ rno �=2þ ξj½rno−rni �=2

(b) Calculate referential radius

Rj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kλz½r2j −½rni �2� þ ½Rn

i �2
q

(c) Calculate circumferential stretch

λθj ¼ krj=Rj

(d) Calculate strain energy density

Ψn
j ¼ ~Ψ

nðλθj ; λz≐constÞ
by means of Eqs. (50), (51), and (53) calculate internal potential
energy

Πn
int≈πl½rno−rni � ∑

m

j ¼ 1
Ψn

j rjwj

6. Calculate external potential energy

Πext ¼−pπ½rMi �2l

7. Calculate total potential energy

Π ¼ΠM
int þ ΠA

int þ Πext
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loading type, fλz; α;pg, and structural type, fβng, i.e.
min
λθi ;λz ;α

Π ðλθi; λz; α; κÞ ð66Þ

opt
βM ;βA ;λθi ;λz ;α

Πnðλθi; λz; α; βM; βA; κnÞ ð67Þ

min
λθi ;λz

~Π ðλθi; λz; ~κÞ ð68Þ

opt
βM ;βA ;λθi ;λz

Π⋆ðλθi; λz; βM; βA; κ⋆Þ ð69Þ

min
λθi ;α

Π˘ ðλθi; α; κ˘ Þ ð70Þ
opt
βM ;βA ;λθi ;α

Π⋄ðλθi; α; βM; βA; κ⋄Þ ð71Þ

opt
β;λθi

Π▵ðλθi; β; β; κ▵Þ ð72Þ

Note that λ0θi is not explicitly indicated in the energy func-
tions above. Moreover, an identical fibre orientation within
the media and adventitia, i.e. βM ¼ βA ¼ β, is assumed for
optimisation problem (72). In order to structure the examples
discussed in the following, minimisation problems are typi-
cally investigated first, followed by related optimisation
studies. Furthermore, the most general cases are addressed
first and thereafter reduced to specific applications. In other
words, results from the more general cases are transferred to
simpler minimisation and optimisation problems in order to
render a better illustration of the results obtained.

3.5.1. Minimisation of Π ðλθi; λz; α; κÞ
In the sequel, the minimisation of the three-variable energy
functional Π with respect to the inner circumferential stretch
λθi, the axial (residual) stretch λz and the opening angle α is
investigated; cf. (66). The pressure is set to the physiological
value pphys ¼ 13:33 ½kPa�.

Fig. 4(a) depicts the solution space fλmin
θi ; λz; αg of the

minimisation of Π . The colour code used in Fig. 4(a) illustrates
the value of the total potential energy Πmin; cf. (63). Moreover,
Fig. 4(b) shows the total potential energy Πmin over λz and α,
the colour code refers to the primary variable λmin

θi . The red
spot at λmin

θi ¼ 1:657, λmin
z ¼ 1:654 and αmin ¼ 90:609 ½deg�, asso-

ciated with the solution of the minimisation problem (66),
corresponds to the minimal total potential energy Π

min on
this constrained equilibrium-surface, see also Table 5.

Interestingly, the stretch-values λmin
θi ¼ 1:657 and λmin

z ¼ 1:654
correspond quite well to the physiological values λphysθi ¼ 1:604
and λphysz ¼ 1:7. The corresponding opening angle αmin ¼
90:609 ½deg�, however, differs significantly from its physiological
counterpart αphys ¼ 160:0 ½deg�. From Fig. 4(a), one observes that
in the case of a constant axial stretch λz and an increasing
opening angle α the inner circumferential stretch λθi decreases,
whereas the potential energy Π in Fig. 4(b) increases.

3.5.2. Optimisation of Πnðλθi; λz; α; βM; βA; κnÞ
Next, the optimisation of the five-variable energy functional
Πn with respect to the inner circumferential stretch λθi, the
axial (residual) stretch λz, the opening angle α and both fibre
angles βM and βA is discussed; cf. (67). The pressure is set to
the physiological value pphys ¼ 13:33 ½kPa�.

Fig. 5(a) depicts the subset fλmin
θi ; βM; βAg of the solution

space of the corresponding minimisation of Π . The colour
code used in Fig. 5(a) illustrates the value of the minimised
total potential energy Π

min; cf. (66). Moreover, Fig. 5(b) shows
the total potential energy Π

min over βM and βA, the colour
code refers to the primary variable λmin

θi . The red spot at
λoptθi ¼ 1:676, βM opt ¼ 29:388 ½deg� and βA opt ¼ 90:000 ½deg�, asso-
ciated with the solution of the optimisation problem (67),
corresponds to the optimal total potential energy Πn opt on
this constrained equilibrium-surface. For ease of reference,
essential results are also summarised in Table 6.

Even though the opening angle αmin ¼ 91:263 ½deg� signifi-
cantly deviates from the physiological value of αphys ¼



Table 5 – Results of the minimisation problem (66). The
initial values are set to λ0θi ¼ 1:0, λ0z ¼ 1:0 and α0 ¼ 90:0 ½deg�.
The superscript �min is omitted.

λθi ½–� λz ½–� α ½deg� Π ½kPa�

1.657 1.654 90.609 −71.724
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160:0 ½deg�, the resulting values for the inner circumferential
stretch λoptθi ¼ 1:676, the axial (residual) stretch λoptz ¼ 1:593 and
especially the result for the fibre angle in the media
βM opt ¼ 29:388 ½deg� correspond remarkably well to their phy-
siological counterparts λphysθi ¼ 1:604, λphysz ¼ 1:7 and βMphys ¼
29:0 ½deg�, see Tables 1 and 2. With regard to the medial
fibre angle βM opt, the good correspondence may be explained
by the fact that the media is by far the stiffest component of
an (healthy) artery which consequently carries the main load,
especially for the present case of a mean pressure level of
pphys ¼ 13:33 ½kPa�. In contrast, the influence of the adventitial
fibre angle βA on the total potential energy Π

min for medial
fibre angles in the range βM ¼ 25:0–50:0 ½deg� is almost
negligible, i.e. Π

min≈const for βA∈½0;90� ½deg� in the range
Fig. 4 – Plots of the solution space of minimisation problem (66).
stretch λz and the opening angle α, whereby the colour code ref
potential energy Πmin over λz and α, whereby the colour code re
λmin
z ¼ 1:654 and αmin ¼ 90:609 ½deg� corresponds to the minimal t
surface, see also Table 5. (For interpretation of the references to
version of this article.)

Fig. 5 – Plots of subsets of the solution space of optimisation pr
over the medial and adventitial fibre angle βM and βA, whereby
(b) Shows the total potential energy Π

min over βM, βA, whereby th
at λoptθi ¼ 1:676, βM opt ¼ 29:388 ½deg� and βA opt ¼ 90:000 ½deg� corres
constrained equilibrium-surface, see also Table 6. (For interpret
reader is referred to the web version of this article.)
βM ¼ 25:0–50:0 ½deg�, see Fig. 5(b). This means that – within
this range – βA can take any value between 0.0 [deg] and
90.0 [deg] without significant changes in total potential
energy Π

min. For larger values of both fibre angles in a range
of βn ¼ 60:0–90:0 ½deg�, however, a sudden decrease in total
potential energy Π

min is observed which clearly illustrates the
(a) Depicts the inner circumferential stretch λθi over the axial
ers to the total potential energy Πmin. (b) Shows the total
fers to the primary variable λθi. The red spot at λmin

θi ¼ 1:657,
otal potential energy Π

min on this constrained equilibrium-
colour in this figure caption, the reader is referred to the web

oblem (67). (a) Depicts the inner circumferential stretch λmin
θi

the colour code refers to the total potential energy Π
min.

e colour code refers to the primary variable λmin
θi . The red spot

ponds to the optimal total potential energy Π� opt on this
ation of the references to colour in this figure caption, the
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reduced load bearing capability for fibre angles oriented in
almost axial direction of the artery at this particular state of
deformation.

Interestingly, fibre angles of βM ¼ 27:551 ½deg� and
βA ¼ 34:898 ½deg� lead to a minimal inner circumferential
stretch λθi ¼ 1:594 which obviously is not identical with the
location where the optimal total potential energy Πn opt is
obtained. Even if, in this case, the medial fibre angle corre-
sponds quite well to the physiological value again, a signifi-
cant deviation with respect to the adventitial fibre angle and
a large deviation with respect to the inner circumferential
stretch is obtained.
Table 7 – Parameter study of the minimisation problem
(68) prescribing different combinations of the internal
pressure p and the opening angle α. Within rows 1–4,
parameters according to Table 1 are used whereas row 5
results from the minimisation problem (66) and provides
the numerical values of the red spot in Fig. 6. The
superscript �min is omitted.
3.5.3. Minimisation of ~Π ðλθi; λz; ~κÞ
The minimisation of the two-variable energy functional ~Π

with respect to the inner circumferential stretch λθi and the
axial (residual) stretch λz is discussed as this subsection
proceeds; cf. (68). The material, structural and geometrical
parameters used are chosen as given in Table 1 and the
internal pressure is set to the physiological value of
pphys ¼ 13:33 ½kPa�. Moreover, the opening angle α, associated
with the circumferential residual stretch, is assumed as
αmin ¼ 90:609 ½deg� which corresponds to the value calculated
for the minimisation problem (66), see also Table 5. Practi-
cally speaking, the minimisation problem addressed here
constitutes a special case of the problem discussed in
Section 3.5.1, but allows to conveniently visualise quantities
of interest for a pre-fixed value for α.

Fig. 6 shows the (a) internal, (b) external and (c) total
potential energy Π over λθi and λz. Fig. 6(a) and (b) underline
Table 6 – Results of the optimisation problem (67). The
initial values are set to λ0θi ¼ 1:0, λ0z ¼ 1:0, α0 ¼ 90:0 ½deg�.
The superscript �opt is omitted.

λθi ½–� λz ½–� α ½deg� βM ½deg� βA ½deg� Πn ½kPa�

1.676 1.593 91.263 29.388 90.000 −70.833

Fig. 6 – Illustration of minimisation problem (68). Surface plot of
λθi and λz for the material, structural and geometrical parameter
pphys ¼ 13:33 ½kPa�. The opening angle α is assumed as αmin ¼ 90:
Table 5. The white lines in (a) and (c) illustrate the equilibrium-p
the minimal internal potential energy on this constrained equilib
represents the minimal total potential energy on this constraine
colour in this figure caption, the reader is referred to the web v
the significant influence of the axial stretch λz on the internal,

as well as on the external potential energy contribution.

Using the algorithm summarised in Table 3, the white line

within the plot of the total potential energy in Fig. 6(c) is

associated with the solution of the minimisation problem (63)

and, in consequence, represents the equilibrium-path. The

red spot at λmin
θi ¼ 1:657 and λmin

z ¼ 1:654, associated with the

solution of the minimisation problem (68), represents the

minimum value of the total potential energy on this con-

strained equilibrium-path; see also the last row in Table 7. It

is remarkable that the related value of the (residual) axial

stretch value corresponds very well to the assumed physio-

logical value of λphysz ¼ 1:7, cf. also the values in Table 2 which

are considered to be physiological.
Moreover, a small parameter study for the minimisation

problem (68) is performed by prescribing different combinations
of the internal pressure p and the opening angle α. The
corresponding results are summarised in Table 7. Within rows
1–4, parameters according to Table 1 are used, whereas row 5
results from the minimisation problem (66) and provides the
numerical values of the red spot in Fig. 6. Interestingly, the
the (a) internal, (b) external and (c) total potential energy over
s as given in Table 1 and an internal pressure of
609 ½deg� as identified by the minimisation problem (66), see
ath. The red spot in (a) at λθi ¼ 1:624 and λz ¼ 0:478 represents
rium-path. The red spot in (c) at λmin

θi ¼ 1:657 and λmin
z ¼ 1:654

d equilibrium-path. (For interpretation of the references to
ersion of this article.)

Input output

p ½kPa� α ½deg� λθi ½−� λz ½−� ~Π ½kPa�

0.000 0.000 1.000 1.000 0.000
13.330 0.000 1.693 1.642 −53.230
0.000 160.000 0.915 1.002 0.015

13.330 160.000 1.616 1.657 −60.600
13.330 90.609 1.657 1.654 −71.720



Fig. 7 – Plots of subsets of the solution space of optimisation problem (69). (a) Depicts the inner circumferential stretch λmin
θi

over the medial and adventitial fibre angle βM and βA, whereby the colour code refers to the total potential energy ~Π
min.

(b) Shows the total potential energy ~Π
min with respect to βM, βA, whereby the colour code refers to the primary variable λmin

θi .
The red spot at λoptθi ¼ 1:638, βM opt ¼ 29:388 ½deg� and βA opt ¼ 90:000 ½deg� corresponds to the optimal total potential energy Π⋆opt

on this constrained equilibrium-surface, see also Table 8. (For interpretation of the references to colour in this figure caption,
the reader is referred to the web version of this article.)
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minimum total potential energy is obtained for α¼ 90:609 ½deg�,
which, however does not yield theminimal inner circumferential
stretch λθi, which is obtained for α¼ 160:0 ½deg�. In addition, one
observes that the values of the axial stretch λz are very similar in
the case of pphys ¼ 13:33 ½kPa� and correspond very well to the
assumed physiological value of λphysz ¼ 1:7.
3.5.4. Optimisation of Π⋆ðλθi; λz; βM; βA; κ⋆Þ
The optimisation of the four-variable energy functional Π⋆

with respect to the inner circumferential stretch λθi, the axial
(residual) stretch λz and both fibre angles βM and βA is
addressed in this subsection; cf. (69). The pressure is set to
the physiological value pphys ¼ 13:33 ½kPa� and the opening
angle is fixed as αphys ¼ 160:0 ½deg�.

Fig. 7(a) depicts the subset fλmin
θi ; βM; βAg of the solution space

of the corresponding minimisation of ~Π ; cf. (68). The colour code
illustrates the value of the minimised total potential energy
~Π
min

. Moreover, Fig. 7(b) shows the total potential energy ~Π
min

over βM and βA, the colour code refers to the primary variable
λmin
θi . The red spot at λoptθi ¼ 1:638, βM opt ¼ 29:388 ½deg� and
βA opt ¼ 90:000 ½deg�, associated with the solution of the optimi-
sation problem (69), corresponds to the optimal total potential
energy Π⋆opt on this constrained equilibrium-surface. Essential
results are summarised in Table 8. The results obtained,
especially with regard to the optimal fibre angles βM opt and
βA opt, are qualitatively and quantitatively very similar to the
previous ones summarised in Table 6 and illustrated in Fig. 5. In
fact the optimisation problem considered in this subsection is a
special case of the problem discussed in Section 3.5.2 but with
the value of α fixed.
3.5.5. Minimisation of Π̆ ðλθi; α; κ̆Þ
The minimisation of the two-variable energy functional Π̆

with respect to the inner circumferential stretch λθi and the
opening angle α is elaborated on next; cf. (70).
Fig. 8 shows the (a) internal, (b) external and (c) total
potential energy Π̆ over λθi and α for the parameters as given
in Table 1. The axial (residual) stretch is assumed as λmin

z ¼
1:654 and the opening angle, associated with the circumfer-
ential residual stretch, is set to αmin ¼ 90:609 ½deg� as identi-
fied by the minimisation problem (66), see also Table 5.

One observes from Fig. 8(a) that the internal potential
energy changes slightly with varying opening angle α, while
Fig. 8(b) highlights the dependency of the external potential
energy on α with minimal values of λθi obtained at approxi-
mately α¼ 100710 ½deg�. The white line in the plot of the total
potential energy in Fig. 8(c) is associated with the solution of
the minimisation problem (63) and, in consequence, repre-
sents the equilibrium-path for a prescribed internal pressure
of pphys ¼ 13:33 ½kPa� and an axial stretch λz ¼ 1:654. The red
spot at λmin

θi ¼ 1:657 and αmin ¼ 90:610 ½deg�, associated with
the solution of the minimisation problem (70), represents the
minimal total potential energy on this constrained equili-
brium-path, see also the last row in Table 9.

Moreover, a small parameter study of the minimisation
problem (70) is performed by prescribing different combina-
tions of the pressure p and the axial stretch λz. The corre-
sponding results are summarised in Table 9. Within rows 1–4,
parameters according to Table 1 are used, whereas row 5
results from the minimisation of (66) and gives the numerical
values of the red spot in Fig. 8. Interestingly, the minimum
total potential energy is obtained for λz ¼ 1:654 which, how-
ever, does not yield the minimal inner circumferential stretch
λθi, obtained for λz ¼ 1:7.
3.5.6. Optimisation of Π⋄ðλθi; α; βM; βA; κ⋄Þ
The optimisation of the four-variable energy functional Π⋄

with respect to the inner circumferential stretch λθi, the
opening angle α and both fibre angles βM and βA is performed
next; cf. (71). The pressure is set to the physiological value



Table 9 – Parameter study of the minimisation problem
(70) prescribing different combinations of the pressure p
and the axial stretch λz. Within rows 1–4, parameters
according to Table 1 are used, whereas row 5 results from
the minimisation problem (66) and provides the numer-
ical values of the red spot in Fig. 8. The superscript �min is
omitted.
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pphys ¼ 13:33 ½kPa� and the axial (residual) stretch is fixed to
λphysz ¼ 1:7.

Fig. 9(a) depicts the subset fλmin
θi ; βM; βAg of the solution

space of the corresponding minimisation of Π
˘
. The colour

code used in Fig. 9(a) illustrates the value of the minimised

total potential energy Π̆min; cf. (70). Moreover, Fig. 9(b) shows

the total potential energy Π̆min over βM and βA, the colour

code refers to the primary variable λmin
θi . The red spot at

λoptθi ¼ 1:832, βM opt ¼ 62:449 ½deg� and βA opt ¼ 90:000 ½deg�, asso-
ciated with the solution of the optimisation problem (71),

corresponds to the optimal total potential energy Π⋄ opt on
this constrained equilibrium-surface. Essential results are
summarised in Table 10.

Even if it turns out that the resulting values, as sum-
marised in Table 10, are quite different compared to the
physiological values, it is worth to note that, in this case, the
medial fibre angle of βM opt ¼ 62:449 ½deg� coincidentally corre-
sponds very well to the assumed physiological adventitial
value of βA phys ¼ 62:0 ½deg�. This enlarged value for the medial
fibre angle can be considered as a consequence of the –

compared to the previous problems – higher prescribed axial
(residual) stretch λz ¼ 1:7¼ const. This results in fibre direc-
tions βM closer, but not fully, oriented with respect to the
axial direction; see Fig. 10 and the remark below. Similar to
the previous observations, however, the adventitial fibre
angle seems to be unaffected by these effects and always
results in βA opt ¼ 90:0 ½deg�. Interestingly, fibre angles of
βM ¼ 34:898 ½deg� and βA ¼ 53:265 ½deg� lead to a minimal inner
circumferential stretch λθi ¼ 1:643 which again is not identical
Fig. 8 – Illustration of minimisation problem (70). Surface plot of
λθi and α for the parameters as given in Table 1. The axial residua
α, associated with the circumferential residual stretch, is set to α

(67), see also Table 5. The white lines in (a) and (c) illustrate the
α¼ 0:0 ½deg� represents the minimal internal potential energy on
λmin
θi ¼ 1:657 and αmin ¼ 90:610 ½deg� represents the minimal total
(For interpretation of the references to colour in this figure capt

Table 8 – Results of the minimisation problem (69). The
initial values are set to λ0θi ¼ 1:0 and λ0z ¼ 1:0. The super-
script �opt is omitted.

λθi ½−� λz ½−� βM ½deg� βA ½deg� Π⋆ ½kPa�

1.638 1.587 29.388 90.000 −60.053
with the state at which the minimal total potential energy is
obtained.

In addition to the results displayed in Fig. 9, the relation
between the axial stretch λz, internal pressure p and medial
fibre angle βM opt is illustrated in Fig. 10, where the colour code
refers to the optimal fibre angle βM opt corresponding to a
particular loading state defined by λz and p. The opening
angle is assumed as αphys ¼ 160:0 ½deg�. The physiological
region corresponding to pphys ¼ 8:0–17:4 ½kPa� and λphysz ¼
1:65–1:75 is marked by a white-shaded rectangle.

It is obvious from Fig. 10 that for low axial stretch values
but high pressure, favourable fibre angles are oriented
towards the circumferential direction, i.e. βM opt ¼ 0:0 ½deg�,
which is indicated by the dark blue colour in the upper left
region. In contrast, a fibre angle aligned with respect to the
axial direction, i.e. βM opt ¼ 90:0 ½deg�, is obtained for high
values of the axial stretch but low pressure as indicated by
the dark red colour in the lower right. However, for high axial
stretch values of λz ¼ 1:8–1:9, irrespective of the pressure
magnitude, one permanently obtains a fibre angle aligned
with respect to the axial direction. Interestingly, there is a
the (a) internal, (b) external and (c) total potential energy over
l stretch λz is assumed as λmin

z ¼ 1:654 and the opening angle
min ¼ 90:609 ½deg� as identified by the minimisation problem
equilibrium-path. The red spot in (a) at λθi ¼ 1:6895 and
this constrained equilibrium-path. The red spot at
potential energy on this constrained equilibrium-path.
ion, the reader is referred to the web version of this article.)

Input Output

p ½kPa� λz ½−� λθi ½−� α ½deg� Π̆ ½kPa�

0.000 1.000 1.000 −0.001 0.000
13.330 1.000 1.743 90.040 −50.920
0.000 1.700 – – —

13.330 1.700 1.644 90.460 −71.510
13.330 1.654 1.657 90.610 −71.720
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physiologically characteristic region indicated in yellow,
where the fibre angle and the axial stretch remain almost
constant, i.e. βM opt≈62:0 ½deg� and λz≈1:7, respectively. For
pressures being located within the physiological range,
i.e. p¼ 8:0–17:4 ½kPa�, one consequently observes only slight
variations with respect to the axial stretch, i.e. λz≈1:7 for a
fibre angle of βM opt≈62:0 ½deg�, which illustratively underlines
the physiological suitability of these values.

3.5.7. Optimisation of Π▵ðλθi; β; β; κ▵Þ
The optimisation of the two-variable energy functional Π▵

with respect to the inner circumferential stretch λθi and the
fibre angle β is focussed on in this section, cf. (72).

Fig. 11 shows the (a) internal, (b) external and (c) total
potential energy with respect to λθi and β for the parameters
as given in Table 1. The fibre angles βM and βA are assumed to
be identical for both layers, i.e. β¼ βM ¼ βA. The axial residual
stretch λz is assumed as λmin

z ¼ 1:654 and the opening angle α,
associated with the circumferential residual stretch, is set to
αmin ¼ 90:609 ½deg� as identified by the minimisation problem
(66), see also Table 5. One observes from Fig. 11(a) that the
internal potential energy landscape varies significantly with
the fibre angle β while Fig. 11(b) shows, as expected, the
external potential energy to be constant in β. The white line
in the plot of the total potential energy in Fig. 11(c) is
associated with the solution of the minimisation problem
(63) and consequently represents the equilibrium-path for a
prescribed internal pressure of pphys ¼ 13:33 ½kPa�, an axial
Fig. 9 – Plots of subsets of the solution space of optimisation pr
over the medial and adventitial fibre angle βM and βA, whereby
Shows the total potential energy Π

˘ min

with respect to βM and βA,
The red spot at λoptθi ¼ 1:8323, βM opt ¼ 62:449 ½deg� and βA opt ¼ 90:0
Π⋄ opt on this constrained equilibrium-surface, see also Table 10
caption, the reader is referred to the web version of this article.

Table 10 – Results of the optimisation problem (71). The
initial values are set to λ0θi ¼ 1:0 and α0 ¼ 90:0 ½deg�. The
superscript �opt is omitted.

λθi ½−� α ½deg� βM ½deg� βA ½deg� Π⋄ ½kPa�

1.832 89.861 62.449 90.000 −50.298
stretch of λz ¼ 1:654 and an opening angle of α¼ 90:609 ½deg�.
The red spot at λoptθi ¼ 1:765 and βopt ¼ 53:265 ½deg�, associated
with the solution of the optimisation problem (72), represents
an extremum of the total potential energy on this con-
strained equilibrium-path; see also the last row in Table 11.

Moreover, a small parameter study of the optimisation
problem (72) is performed prescribing different combinations
of the pressure p, the axial stretch λz and the opening angle α.
The corresponding results are summarised in Table 11.
Within rows 1–8, parameters according to Table 1 are used,
whereas row 9 results from the minimisation problem (66)
oblem (71). (a) Depicts the inner circumferential stretch λmin
θi

the colour code refers to the total potential energy Π
˘ min

. (b)
whereby the colour code refers to the primary variable λmin

θi .
00 ½deg� corresponds to the optimal total potential energy
. (For interpretation of the references to colour in this figure
)

Fig. 10 – Illustration of the relation between the axial stretch
λz, internal pressure p and (optimal) fibre angle βM opt as
indicated by the colour code. The opening angle is assumed
as αphys ¼ 160:0 ½deg�. The white rectangle is associated with
the physiological region corresponding to
pphys ¼ 8:0–17:4 ½kPa� and λphysz ¼ 1:65–1:75. (For interpretation
of the references to colour in this figure caption, the reader is
referred to the web version of this article.)



Table 11 – Parameter study of the optimisation problem
(72) prescribing different combinations of the pressure p,
the axial stretch λz and the opening angle α. Within rows
1–8, parameters according to Table 1 are used, whereas
row 9 results from the minimisation problem (66) and
provides the numerical values of the red spot in Fig. 11.
The superscript �opt is omitted.

Input Output

p ½kPa� λz ½−� α ½deg� λθi½−� β ½deg� Π▵ ½kPa�

13.330 1.000 0.000 1.594 0.000 −31.074
0.000 1.700 0.000 0.767 90.000 59.448

13.330 1.700 0.000 1.896 64.286 −34.256
13.330 1.000 160.000 1.510 0.000 −34.329
13.330 1.700 160.000 1.798 64.286 −40.034
13.330 1.654 90.609 1.765 53.265 −66.907
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and provides the numerical values of the red spot in Fig. 11. It
becomes apparent that the incorporation of a circumferential
residual stress by means of an opening angle α40:0 tends to
reduce the obtained circumferential stretch λθi. As expected,
one obtains a fibre angles of β¼ 0:0 ½deg� for parameter
combinations including p≠0:0 ½kPa� and λz ¼ 1:0. Similarly, a
fibre angle of β¼ 90:0 ½deg� is observed for a parameter
combination considered with p¼ 0:0 ½kPa� and λz≠1:0. Further-
more, the minimum total potential energy is obtained for
λz ¼ 1:654 and α¼ 90:609 ½deg� which, however, does not yield
the minimal inner circumferential stretch λθi for the para-
meter settings considered—the related minimal values are
λz ¼ 1:0 and α¼ 160:0 ½deg�.

Based on optimisation problem (72), the interaction
between the pressure p, the opening angle α, the fibre angle
β and the axial stretch λz is investigated. A physiological value
of the axial (residual) stretch of λphysz ¼ 1:7 is used according to
Holzapfel et al. (2000). Under the action of real blood flow, i.e.
changing values of internal pressure p, it is obvious that the
axial elongation of an artery should not vary significantly. In
other words, a change of λz for different values of p should not
significantly influence other quantities of interest such as the
inner circumferential stretch λθi. In this context, the primal
aim is to find out whether parameter sets exist with regard to
p, α and especially β, which render the optimal axial stretch to
be almost unchanged, i.e. λz ¼ const.

Fig. 12 shows the axial stretch λz over the inner circumfer-
ential stretch λθi and the fibre angle β for different pressures
of p¼ f8:0; 13:3;17:4g ½kPa� (from top to bottom) and for differ-
ent opening angles α¼ f0:0; 80:0;160:0g ½deg� (from left to
right). With regard to the constant axial stretch range of
about λz ¼ 0:0–1:7, one observes that the inner circumferential
stretch λθi increases with increasing values of the fibre angle
β. It is of interest to note that this effect is reversed for
approximately λz41:7. In other words, λθi first may decrease
with β but for larger values of β significantly increases with β,
which clearly is a consequence of the pronounced material
properties in these directions. Moreover, one observes that a
Fig. 11 – Illustration of optimisation problem (72). Surface plot o
over λθi and β for the parameters as given in Table 1 with β¼ βM

and the opening angle α, associated with the circumferential res
minimisation problem (66), see also Table 5. The white lines in (a
λθi ¼ 1:9797 and β¼ 62:449 ½deg� represents the minimal internal
red spot in (c) at λoptθi ¼ 1:765 and βopt ¼ 53:265 ½deg� represents th
equilibrium-path. (For interpretation of the references to colour i
of this article.)
plateau-type characteristic exists for β¼ 60:0–80:0 ½deg�,
where the axial stretch remains almost unchanged within
the range λz∈½1:7; 1:8�. Furthermore, even if not clearly illu-
strated in Fig. 12, the values of the inner circumferential
stretch λθi increase with increasing internal pressure p.
Practically speaking, the entire surface is shifted towards
larger values of λθi. An increase of the opening angle α,
however, causes the inner circumferential stretch λθi to
decrease, i.e. the entire surface is shifted towards smaller
values of λθi.

Fig. 13 illustrates the inner circumferential stretch λθi over
the fibre angle β¼ βM ¼ βA for different pressures p¼
f8:0;13:3;17:4g ½kPa� and different axial (residual) stretches
λz ¼ f1:6; 1:65;1:7; 1:75g. The opening angle is set to α¼
160:0 ½deg� which corresponds to the red curves in the right
column of Fig. 12. One observes from Fig. 13(a) and (b), which
respectively refer to axial stretches of λz ¼ 1:6 and λz ¼ 1:65,
that λθi increases with increasing fibre angles β (except the
curve for p¼ 8:0 ½kPa�). This behaviour, however, significantly
changes for the graphs in Fig. 13(c) and (d), i.e. for axial
f the (a) internal, (b) external and (c) total potential energy Π

¼ βA. The axial residual stretch λz is assumed as λmin
z ¼ 1:654

idual stretch, is set to αmin ¼ 90:609 ½deg� as identified by the
) and (c) illustrate the equilibrium-path. The red spot in (a) at
potential energy on this constrained equilibrium-path. The
e minimal total potential energy on this constrained
n this figure caption, the reader is referred to the web version
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stretches of λz ¼ 1:7 and λz ¼ 1:75. In theses cases, λθi first
decreases with increasing fibre angles β until a minimum
value is obtained and then increases with β. It is interesting to
note that for the largest axial stretch considered, here λz ¼ 1:75,
the smallest inner circumferential stretches are obtained. These
minimum values, for the respective pressure values chosen,
also refer to different fibre angles β as for smaller axial
stretches. Moreover, one observes that in (c) almost constant
values for λθi are obtained for β¼ 0–40 ½deg�, whereas β turns out
to remain almost constant for λθi41:8. The spots in the graphs
of Fig. 13(a)–(d) refer to the optimisation problem (72). One
observes especially from Fig. 13(c) and (d) that the minimal
circumferential stretch values and the values resulting in a
minimal total potential energy are not identical.

In addition to the previous plots, Fig. 14 shows – by way of
illustration and comparison – the distributions of the Cauchy
stresses over the width of the deformed tube. Three different
cases of residual stress states are considered as represented by
the opening angles α¼ f0:0; 90:601;160:0g ½deg� in combination
with a physiological pressure of pphys ¼ 13:33 ½kPa� and an axial
(residual) stretch of λz ¼ 1:0. The opening angle of
α¼ 90:601 ½deg� corresponds to the solution of the minimisation
problem (66), see also Table 5. Fig. 14(a) shows that the
radial stress srr – in contrast to the tangential stresses sθθ and
szz – turns out to be continuous over the width of the tube,
which is a consequence of the contribution of the equilibrium
condition in radial direction, see Eq. (45). Note, that the
boundary conditions srrjrM

i
¼−13:33 ½kPa� at the inner boundary
Fig. 12 – Axial stretch λz plotted over the inner circumferential s
p¼ f8:0;13:3;17:4g ½kPa� (from top to bottom) and different openin
colour code illustrates the total potential energy Π and the red lin
studied in Fig. 13. (For interpretation of the references to colour in
of this article.)
and srrjrAo ¼ 0:0 ½kPa� at the outer boundary are met. Moreover,
the circumferential stress sθθ constitutes the dominant stress
coefficient within the wall of the tube, since its magnitude is
significantly larger compared to the magnitudes of srr and szz.
In case residual stresses are accounted for via the opening angle
α, the circumferential and axial stresses sθθ and szz obviously
decrease at the inner wall but increase at the outer wall, as can
be seen in Fig. 14(b) and (c). Practically speaking, the gradient of
sθθ and szz with respect to r in themedia is reduced so that their
distributions are more, say, homogenised. As an interesting
side aspect, the mean stresses of sθθ and szz through the wall-
thickness increase in case residual stresses are included,
although residual stress reduces the maximal circumferential
and axial stresses at the inner wall significantly. In contrast to
this, the radial stress coefficient srr increases from the inner
boundary of the wall to its outer boundary and, moreover, the
related graphs possess a kink at the interface between the
media and adventitia due to the change of material parameters.
4. Summary

Various biological tissues are designed to optimally support
external mechanical loads within complex geometries and
mechanobiological structures. This may result in complex
microstructures of these materials. In this work, emphasis is
placed on the modelling and simulation of arteries. The
arterial wall can be considered as a multi-layered composite,
tretch λθi and the fibre angle β for different pressures
g angles α¼ f0:0;80:0;160:0g ½deg� (from left to right). The
e represents an exemplary isoline for λz ¼ const to be further
this figure caption, the reader is referred to the web version



Fig. 13 – Inner circumferential stretch λθi plotted over the fibre angle β¼ βM ¼ βA for different pressures p¼ f8:0;13:3;17:4g ½kPa�
and different axial (residual) stretches λz ¼ f1:6;1:65;1:7;1:75g and an opening angle of α¼ 160:0 ½deg� corresponding to the red
line in the right column of Fig. 12. The horizontal black line indicates the physiological value of the circumferential stretch
λphysθi ¼ 1:604 which, according to Table 2 corresponds to λphysz ¼ 1:7, pphys ¼ 13:33 ½kPa� and αphys ¼ 160:0 ½deg�. The spots indicate
the values obtained form the optimisation problem (72).
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whereby the respective layers possess anisotropic material
properties due to, e.g. the distribution of collagen fibres. As a
prototype example, typically a double-layered thick-walled
cylindrical tube subjected to internal blood pressure is
assumed to represent a healthy in vivo artery. As a key
aspect of the model, states of residual stresses are incorpo-
rated which significantly influence the overall mechanical
properties of the artery.

A main focus of this work is to investigate the interaction
between the mechanical loading levels of the artery, its residual
stress states and material, respectively structural, properties
such as representative fibre orientations. Motivated by the
postulate of the stationary of the total potential energy, a key
contribution of the present work is to access additional infor-
mation on preferred material, structural and loading para-
meters by direct minimisation of the total potential energy
with respect to the parameters of interest in the context of the
particular boundary value problem at hand. From the energetic
point of view, these quantities calculated are considered to be
favourable for the design and adaptation of arterial walls.

An established constitutive model together with a frame-
work to include states of residual stresses is adopted as the
development of a new material model is not in the focus of the
present work. In fact, the energy-based framework discussed
can be transferred to any suitable continuum-mechanics-based
constitutive model. Alternative approaches, not addressed in
this work may be referred to, e.g. a homogeneous target stress
distribution. The overall level of the total potential energy is
strongly influenced by the material and structural properties
and the residual stresses state. The results obtained for the
analysis performed in this work can directly be referred to turn-
over and remodelling phenomena which are related to reor-
ientation processes of the respective fibre families induced by, e.
g. mechanical stimuli. To give an example, the deployment of a
stent changes the state of loading in an artery so that a change
in fibre orientation may result in an energetically favourable



Fig. 14 – Plots of the principal Cauchy stresses rrr;θθ;zz over the width r−rMi of the deformed tube for three different opening
angles α¼ f0:0;90:601;160:0g ½deg� together with p¼ 13:33 ½kPa� and λz ¼ 1:0: (a) radial stress rrr, (b) circumferential stress rθθ,
and (c) axial stress rzz.
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state. This can be considered as a criterion for a computational
remodelling framework.

Several numerical examples given in this work show that
the values calculated for, e.g. the axial residual stretch, the
opening angle or the fibre angles are in good agreement with
physiological values reported in the literature. In this regard,
a physiologically important property of arteries is their
ability to (almost) maintain their length under the action
of blood flow. In other words, the length or rather axial
stretch within the artery remains (almost) constant under
blood pressure loading within the physiologically relevant
limits. The investigation of extremal states of total potential
energy allows us to identify combinations of residual stres-
ses – including a residual stretch in axial direction – and
fibre orientation angles which render the total potential
energy to remain (almost) constant within the interval of
physiological blood pressures. This illustratively underlines
the physiological suitability of the identified values and
motivates to transfer the framework established in this
work to other loading scenarios, such as stent deployment
or the deposition of plaques with age-dependent properties.
The energetically favourable states of residual stress and
fibre orientations for these modified cases can motivate
related computational models for turn-over and remodelling
phenomena.

In addition to the modelling of time-dependant turn-over
and remodelling processes, future research shall include
complex geometries in combination with advanced finite
element formulations. From the computational modelling
point of view, this naturally extends the almost analytical
investigations of this work towards the simulation of patient-
specific mechanobiological structures. Moreover, the combi-
nation of the constitutive model with inelastic effects, such
as damage phenomena and active stress contributions,
constitute an attractive line of future research work.
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