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a b s t r a c t

Surface wrinkling of mucosae is crucial for the biological functions of many living tissues.

In this paper, we investigate the instability of a cylindrical tube consisting of a mucosal

layer and a submucosal layer. Our attention is focused on the effects of internal pressure

and surface tension on the critical condition and mode number of surface wrinkling

induced by tissue growth. It is found that the internal pressure plays a stabilizing role but

basically has no effect on the critical mode number. Surface tension also stabilizes the

system and reduces the critical mode number of surface patterns. Besides, the thinner the

mucosal layer, the more significant the effect of surface tension. This work may help gain

insights into the surface wrinkling and morphological evolution of such tubular organs as

airways and esophagi.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The growth and morphogenesis of biological tissues and
organs are mediated not only by genetic factors but also by
environmental effects, e.g. chemical concentrations and
mechanical forces (Taber, 1995; Jones and Chapman, 2012;
Li et al., 2012). For example, the early development of solid
tumors is distinctly affected by the diffusion of nutrient
chemicals within the extracellular matrix. The inhomoge-
neous distribution of nutrients, caused by such reasons as the
consumption of tumors themselves, may engender nonuni-
form cell proliferation and, consequently, elicit specific struc-
tures (e.g., a central necrotic core observed in human cervical
carcinoma spheroid) and mechanical stresses (Sutherland,
1988; Tracqui, 2009). It has been believed that these intrinsic
stresses incurred by differential volumetric growth closely
r Ltd. All rights reserved.
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associate with irregular surface patterns on the tumors and
their invasion into host tissues (Dervaux et al., 2011; Pham
et al., 2011; MacLaurin et al., 2012). As a matter of fact,
growth-induced stresses regulate the morphogenesis of
almost all biological things in the realms ranging from plants
to animals (Liang and Mahadevan, 2009; Li et al., 2011a, 2011c;
Savin et al., 2011; Li et al., 2012).

In the past decades, much effort has been directed
towards understanding the formation of surface patterns in
a diversity of biological tissues and the underlying physical
mechanisms. As a class of typical soft tissues, mucous
membranes (or mucosae) exist in the inner surfaces of many
living organisms, e.g., airways, arteries, esophagi, stomachs
and gastrointestinal tracts. Mucosae grow in the way of
volumetric variations and are featured by different surface
wrinkles and ridges (Lambert et al., 1994; Taber, 1995; Wiggs
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et al., 1997; Fayed et al., 2010). Such patterns are reminiscent
of those induced by buckling in such mechanical systems
as a stiff film anchored on a compliant substrate. This kind of
composite systems may buckle and evolve into various
morphologies when the compressive stress in the film
exceeds a critical value (Tanaka et al., 1987; Sultan and
Boudaoud, 2008; Breid and Crosby, 2009; Liu et al., 2010). Surface
patterns not only play a significant role in many physiological
functions of healthy tissues but also are clinically relevant to
some diseases (e.g. asthma, inflammation, edema and lym-
phoma) and, hence, their variations have also been regarded as
a pathological phenotype (Wiggs et al., 1997).

Due to its physiological and pathological relevance, surface
wrinkling of mucosae has received much attention (Lambert
et al., 1994; Hrousis et al., 2002; Yang et al., 2007). Recently,
Li et al. (2011b) performed a linear perturbation analysis on the
growth-induced wrinkling of esophagi and airways. Moulton and
Goriely (2011) studied the circumferential buckling instability of a
growing cylindrical tube under an external pressure. These
previous studies showed that the wrinkling patterns of mucosae
are dictated by geometrical and physical parameters of the
system, e.g. the thicknesses and mechanical properties of the
mucosal and submucosal layers (Wiggs et al., 1997; Li et al.,
2011b). In such tubular organs as airways and esophagi, which
have an essential function of transportation, there always exists
air or liquid. The intraluminal fluids exert an internal pressure
on the inner surface of the organs. In addition, the innermucosal
layer has a pronounced surface tension (Hill et al., 1997; Heil and
White, 2002; Heil et al., 2008). Experimental observation in
airways suggests that surface tension is closely relevant to the
closure and opening of airways (Burger and Macklem, 1968; Heil
et al., 2008). Kang and Huang (2010) showed that surface tension
may modulate the critical wavelength and the critical swelling
ratio at the onset of surface instability induced by water-sucking
in a planar hydrogel layer. To date, however, the effects of
internal pressure and surface tension on the surface wrinkling of
growing cylindrical tubes remain unclear.

In this paper, we will investigate, through combined
theoretical analysis and numerical simulations, the effects
of internal pressure and surface tension on the stability of
airways and esophagi. The critical wrinkling condition and
the characteristic mode number of the induced surface
pattern in the growing system are explored. This paper is
organized as follows. In Section 2, a theoretical model is
presented to analyze the growth behavior of mucosae and
submucosae with the effects of internal pressure and surface
tension. A linear perturbation analysis is performed in
Section 3 to predict the critical conditions of wrinkling.
Nonlinear finite element simulations are also conducted to
verify our analytical solution. The implications and conclu-
sions drawn from the present study are given in Section 4.
Fig. 1 – A growing bilayer tissue in a cylindrical lumen:
(a) initial configuration and (b) current configuration.
2. Model of volumetric growth

2.1. Deformation and stress analysis

Such tubular organs as pulmonary airways and esophagi
have a multiple-layered structure, which can be roughly
divided into three layers, including an innermost mucosal
membrane and a submucosal layer enveloped by a stiff
muscular layer (Li et al., 2011b). In this paper, therefore, we
consider an isotropic and hyperelastic cylinder containing a
mucosal layer and a submucosal layer, which grow either in a
fixed tube or without any external constraint. Usually, muco-
sae are much stiffer than submucosae. Therefore, we assume
that the elastic modulus of the mucosa is higher than that of
the submucosa. The volumetric growth model originally
established by Rodriguez et al. (1994) is employed to analyze
growth-induced deformation. In the cylindrical coordinate
system, the position of a representative material point at the
initial configuration X¼ ðR;Θ;ZÞ transforms to x¼ ðr; θ; zÞ at the
current configuration due to tissue growth, as shown in Fig. 1.
The bilayer tube has the initial inner radius A, the interface
radius B, and the outer radius C. Thus, the initial thicknesses
of the mucosal layer and the submucosal layer are Hm ¼ B−A
and Hs ¼C−B, respectively. Here and in the sequel, the sub-
scripts m and s denote the quantities defined in the mucosa
and submucosa, respectively.

Consider the case of axisymmetric growth, which would
lead to axisymmetric deformation, i.e. r¼ rðRÞ. In the current
configuration, the inner, interfacial and outer radii become a,
b and c, respectively. The associated deformation gradient
tensor is written as F¼ ∂x=∂X¼ diagðλ1; λ2; λ3Þ, where λ1 ¼ ∂r=∂R,
λ2 ¼ r=R and λ3 are the three principal stretches. Here and in
the sequel, the indices 1, 2 and 3 stand for the radial,
circumferential, and axial directions, respectively. According
to the volumetric growth theory (Rodriguez et al., 1994; Ben
Amar and Goriely, 2005), the deformation gradient F can be
decomposed into F¼A⋅G, where G denotes the growth part
and A the elastic deformation part. The growth tensor is
assumed as G¼ diagðg1; g2; g3Þ, where giði¼ 1; 2;3Þ denote the
growth factor in the i-th direction, with gi41 representing
growth and 0ogio1 shrinkage. Assume that the bilayer
deforms and grows under the plane-strain conditions, that
is, the deformation and growth do not happen in the long-
itudinal direction. Thus the growth tensor reduces to
G¼ diagðg1; g2;1Þ and the deformation gradient tensor has
the form of F¼ diagðλ1; λ2; 1Þ. We further assume g1 and g2 to
be spatially uniform and only consider the isotropic growth, i.
e. g1 ¼ g2 ¼ g41. The elastic deformation tensor A has the
form of A¼ diagðα1; α2; α3Þ, where the stretch ratios are
α1 ¼ g−1∂r=∂R, α2 ¼ g−1r=R and α3 ¼ 1. In general, the elastic
deformation of living soft tissues yields little volume change.
Therefore, the nonlinear responses of mucosae and submu-
cosae can be described by the isotropic and incompressible
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neo-Hookean constitutive relation with the strain energy
function W¼ μðα21 þ α22 þ α23−3Þ=2, where μ is the shear mod-
ulus at the ground state. The incompressibility implies the
determinant of the elastic deformation tensor detðAÞ ¼ 1,
which yields α2 ¼ α−11 ¼ α. The incompressibility condition also
requires detðFÞ ¼ detðGÞ, which leads to rR−1∂r=∂R¼ g2. Using
this relation and the interface continuity conditions, the
deformations in the mucosal and submucosal layers are
derived as

r2−a2 ¼ g2mðR2−A2Þ ðA≤R≤BÞ; ð1Þ

r2−c2 ¼ g2sðR2−C2Þ ðB≤R≤CÞ: ð2Þ

The interface between the mucosal and submucosal layers
is assumed to be perfectly bonded. Thus the displacements
and the normal stress are continuous across the interface.
The continuity condition of displacement requires that

rðBÞjm ¼ rðBÞjs: ð3Þ

Once the inner radius a or the outer radius c is known, the
deformation fields in the mucosal and submucosal layers can
be determined.

In the cylindrical coordinate system, the equilibrium
equation reads

∂srr
∂r

þ 1
r
ðsrr−sθθÞ ¼ 0; ð4Þ

where srr and sθθ are the radial and circumferential compo-
nents of the Cauchy stress tensor (Ogden, 1984). For incom-
pressible hyperelastic materials, the constitutive law obeys

r¼A⋅
∂W
∂A

−pI; ð5Þ

where p is a Lagrangian multiplier ensuring elastic incom-
pressibility. Hence, we have

srr ¼ μα−2−p;sθθ ¼ μα2−p: ð6Þ

Solving Eqs. (4) and (6) under specified boundary condi-
tions, the deformations and stresses caused by the volu-
metric growth can be obtained. In the presence of internal
pressure and surface tension, the solutions will be shown in
Subsections 2.2 and 2.3, respectively.

2.2. Solution with the effect of internal pressure

We first derive the solution of displacements and stresses in
the presence of an internal pressure T acting on the inner
surface of mucosa. Two representative boundary conditions
at r¼ c are considered, namely (i) the fixed boundary condi-
tion and (ii) the traction-free boundary condition.

By replacing the variable r by α, the equilibrium equation
in (4) reduces to

∂srr
∂α

¼−μðα−1 þ α−3Þ ð7Þ

The traction boundary condition at the inner surface (r¼ a)
is

srrðαamÞ ¼−T; ð8Þ

where αam represents the stretch ratio at r¼ a.
From Eqs. (1) and (2), the outer boundary condition at r¼ c,

and the continuity condition at the interface, one obtains
a¼ C2−g2m B2−A2� �
−g2s C2−B2� �� �1=2

: ð9Þ

When the outer boundary at r¼ c is fixed, the stresses in
the bilayer cylindrical tube are derived from Eqs. (7) and (8) as

srrm ¼−T þ μm
2 α−2m −α−2am

� �þ ln α2am
α2m

h i
;

sθθm ¼ srrm þ μm α2m−α−2m
� �

A≤R≤Bð Þ;
ð10Þ

srrs ¼ srrm
���
αm ¼ αbm

þ μs
2 α−2s −α−2bs

� �þ ln
α2bs
α2s

h i
;

sθθs ¼ srrs þ μs α2s−α
−2
s

� �
B≤R≤Cð Þ; ð11Þ

where

αam≡ a
gmA ¼ C2

g2mA2 −
gs

2

g2mA2 C2−B2� �
− B2

A2 −1
� �h i1=2

;

αbm≡ b
gmB ¼ C2

g2mB2 −
gs

2

g2m
C2

B2 −1
� �h i1=2

;

αbs≡ b
gsB

¼ C2

g2sB
2 − C2

B2 −1
� �h i1=2

:

ð12Þ

When T¼ 0, the above solution degenerates to that with-
out internal pressure (Li et al., 2011b). It is found that when
the outer boundary is fixed, the only difference between the
two solutions lies in the term −T in all normal stresses in
Eqs. (11) and (12), indicating that the internal pressure simply
causes a uniform hydrostatic stress field sij ¼−Tδij in the
whole system. The reason lies in that both the mucosa and
submucosa are assumed to be incompressible in our analysis.
In this case, when the outer boundary is fixed, the internal
pressure cannot cause any extra deformation in the system.

In the case when the outer boundary is traction free at
r¼ c, the following relation for the internal pressure can be
derived from Eq. (7):

T¼−
Z αc

αa

μ α−1 þ α−3
� �

dα: ð13Þ

For a given pressure T, Eqs. (1)–(3) and (13) constitute a
closed equation system to solve a and αam.

2.3. Solution with the effect of surface tension

Now we consider the effect of surface tension in the inner
surface (r¼ a) under two outer boundary conditions: (i) fixed
(i.e. r Cð Þ ¼ C) and (ii) traction-free. The stress boundary
condition at r¼ a reads (Dervaux and Ben Amar, 2011).

r⋅n¼ κγn; ð14Þ

where κ is the curvature at r¼ a in the current configuration,
γ is the surface tension, and n the unit outward vector normal
to the current boundary. Before the occurrence of wrinkling,
one has κ¼1=a.

When the outer boundary is fixed, by using the condition
rðCÞ ¼C, it is known that the displacement field also satisfies
Eq. (9). Using the equilibrium equation in Eq. (7) and the
boundary conditions, the growth-induced stress fields in the
mucosal and submucosal layers are obtained as

srrm ¼− γ
a þ μm

2 α−2m −α−2am
� �þ ln α2am

α2m

h i
;

sθθm ¼ srrm þ μm α2m−α−2m
� �

A≤R≤Bð Þ;
ð15Þ

srrs ¼ srrm
���
αm ¼ αbm

þ μs
2 ðα−2s −α−2bs Þ þ ln

α2bs
α2s

h i
;
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sθθs ¼ srrs þ μs α2s−α
−2
s

� �
B≤R≤Cð Þ; ð16Þ

where the expressions of αam, αbm and αbs are the same as
Eq. (12).

When the outer boundary is traction free at r¼ c, Eq. (13)
still holds for the internal pressure in the system.
Fig. 2 – Relation between the mode number of surface
pattern and the corresponding growth factor of wrinkling.
3. Wrinkling analysis

3.1. Linear perturbation method

The buckling behavior of the cylindrical tube is here analyzed
by invoking an incremental deformation theory (Ogden, 1984;
Ben Amar and Goriely, 2005; Li et al., 2011a; Li et al., 2011b).
Previously, we have performed a linear perturbation analysis
to predict the stability of deformation (Li et al., 2011b).
Following the same procedure, we here study the effects of
internal pressure and surface tension on the critical condition
of wrinkling and the induced surface patterns. In the analy-
sis, the current configuration is chosen as the reference
configuration, in which the displacement perturbation will
be specified.

The incremental equilibrium equation is

div _S0 ¼ 0; ð17Þ
where _S0 is the incremental nominal stress tensor.

Surface wrinkling occurs when the deformation in the
system bifurcates into a non-axisymmetric mode. In the
linear stability analysis, we assume that the incremental
displacements along the radial and circumferential directions
have the form of

u¼ ~u rð Þ cos nθ; v¼ ~v rð Þ sin nθ; ð18Þ
where n is the circumferential mode number of wrinkling and
~u and ~v are the functions of r. Using the condition of
incompressibility, the incremental equilibrium condition
(17) reduces to a fourth-order differential equation (Li et al.,
2011b), which, in conjunction with the four boundary condi-
tions at r¼ a and r¼ c and the continuity conditions at
interface r¼ b, constitute a closed system of equations.
Wrinkling will happen when the differential system has a
non-trivial solution. We employ the fourth-order Runge–
Kutta method to numerically solve the differential system
and the determinantal method to obtain the critical condition
and mode number of surface wrinkling (Ben Amar and
Goriely, 2005; Li et al., 2011a, 2011b).

3.2. Effect of internal pressure

Now we examine the effect of internal pressure on the
wrinkling behavior. At the fixed outer surface (r¼ c), the
incremental displacement boundary condition reads

_x¼ 0 ð19Þ
At the inner free surface (r¼ a), the traction boundary

condition is (Ogden, 1984)

_S
T
0 ⋅n¼− _Tn; ð20Þ

where _T denotes the increment of the internal pressure.
Assume that the internal pressure keeps constant during
deformation, that is, _T¼ 0. Since the deformations in the
mucosal and submucosal layers are independent of T, as
demonstrated in Subsection 2.2, the internal pressure has no
influence on the stability of the tubular structure when the
outer surface is fixed.

In what follows, we will mainly investigate the case where
the outer boundary is traction-free. For illustration, assume that
the mucosa undergoes an isotropic growth and the submucosa
does not grow, that is, g1m ¼ g2m ¼ g and g1s ¼ g2s ¼ 1. When the
mucosa and submucosa grow simultaneously, the problem can
be analyzed similarly. The internal pressure is normalized as
Π ¼ T=μs . The following representative parameters are used:
Hm=C¼ 0:005, Hs=C¼ 0:5, and μm=μs ¼ 50.

Corresponding to an arbitrary value of the mode number
n, the mucosal growth factor g at the onset of wrinkling can
be determined from the linear perturbation method described
above. Under several given values of Π, Fig. 2 shows the
curves of g as a function of n. Among all possible wrinkling
patterns, there exists a minimum value of g in each curve,
which would minimize the elastic strain energy of the
system. This value, denoted as gcrit, is deemed as the critical
growth factor of wrinkling, and the corresponding mode
number, ncrit, is the critical mode number of surface pattern.
It can be seen from Fig. 2 that as the internal pressure
increases, the critical growth factor gcrit increases but the
critical mode number ncrit remains constant. This suggests
that the internal pressure tends to stabilize the system but
basically has no effect on the wrinkling pattern.

Figs. 3a and b respectively depict the variations of the
critical growth factor gcrit and the critical mode ncrit with
respect to the modulus ratio μm=μs, where we take
Hm=C¼ 0:005 and Hs=C¼ 0:5. When the modulus ratio is in a
moderate range (e.g., μm=μso50), the critical growth factor
decreases rapidly with increasing μm=μs. When the mucosa
is much stiffer than the submucosa (e.g., μm=μs4100), the
critical growth factor increases slightly with the increase in
μm=μs. This result can be qualitatively understood as follows.
When the mucosa is moderately stiffer than the submucosa,
instability manifests itself in a localized way and, in other
words, wrinkling occurs only at the inner surface of the
mucosal layer. In this case, the bilayer system with a larger
value of μm=μs will be easier to wrinkle. This is consistent with
the conclusion in the absence of internal pressure (Li et al.,
2011b). However, when the ratio μm=μs is sufficiently large, the



Fig. 3 – Effect of the modulus ratio μm=μs on (a) the critical
growth factor gcrit and (b) the critical mode ncrit. The solutions
with an internal pressure (Π¼ 0:05) are compared with those
without internal pressure (Π¼0). The stars represent the
results of finite element simulations.

Fig. 4 – Morphological evolution of a cylindrical mucosa–submuc
internal pressure is set as Π¼ 0:033.
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elastic strain energy of mucosa will dominate the stability of
the system since the outer surface of the structure is traction-
free. In this case, instability would take place in a global way
similar to the buckling of a bilayer ring. Thus, the composite
structure with a larger mucosal stiffness will become more
difficult to wrinkle.

To validate the above theoretical results, we perform finite
element simulations using the commercial finite element
software, ABAQUS (Version 6.10-1). About 24,000 eight-
noded plane-strain hybrid elements (CPE8RH) are used in
the whole system. The mesh is sufficiently fine to ensure
the mesh-independence of the calculation results. Under the
traction-free boundary condition on the outer surface, the
growth-induced buckling in the bilayer tube with an internal
pressure T is simulated. Assume that as the mucosal layer
grows, the submucosa does not grow and plays a restricting
role, rendering a compressive stress in the growing mucosal
layer. When the circumferential compressive stress reaches a
critical condition, the mucosa becomes unstable and buckles
into a sinusoidal pattern, as shown in Figs. 4b and c. It can be
seen from Fig. 3b that the numerical results have a good
agreement with our theoretical solution. The finite element
method also reveals that an increasing modulus ratio μm=μs
tends to decrease the critical mode number ncrit. The compar-
ison between the results with and without internal pressure
shows that the internal pressure basically has no effect on
the critical mode number of surface pattern.

Furthermore, the effect of internal pressure on the mor-
phological evolution during postbuckling is also explored via
finite element simulations. A sequence of deformations in
the system with the increase in the growth factor are shown
in Figs. 4(a–e), where the geometric and physical parameters
are taken as A¼ 90, B¼ 90:5, C¼ 200, μm=μs ¼ 1000 and
Π ¼ 0:033. In real biological organs, the ratio between the
osa system with the growth of the mucosal layer, where the



Fig. 5 – Effect of surface tension on the wrinkling behavior of
a cylindrical mucosa–submucosa system.

Fig. 6 – Dependence of (a) the critical growth factor gcrit and
(b) the critical surface pattern mode ncrit on the modulus ratio
μm=μs under several representative values of surface tension
in the case of traction-free outer boundary condition.

j o u r n a l o f t h e m e c h a n i c a l b e h a v i o r o f b i o m e d i c a l m a t e r i a l s 2 9 ( 2 0 1 4 ) 5 9 4 – 6 0 1 599
elastic moduli of mucosa and submucosa may vary in a broad
range. For example, it was taken in the range of 1–314
by Hrousis et al. (2002). When other representative geometric
and material parameters are used in the calculation, the
morphological evolution induced by the volumetric growth is
similar to that in Fig. 4.

The deformation process shown in Fig. 4 can be divided
into three stages. In the first stage, the cylindrical tube grows
in an axisymmetric manner and keeps the cylindrical sym-
metry. With the growth of the mucosa, the circumferential
compressive stress becomes higher and higher. In the second
stage, the first bifurcation occurs and the system buckles into
a non-axisymmetric morphology when the compressive
stress reaches a critical condition. A sinusoidal wrinkling
pattern forms on the inner surface (Figs. 4b and c), as
predicted by the above theoretical analysis. With further
growth of the mucosa, the wavy wrinkles become deeper
and deeper, leading to a finger-like pattern (Fig. 4d). If the
mucosa is much stiffer than the submucosa, the system may
undergo a secondary bifurcation during postbuckling, enter-
ing into the third stage. One wrinkle grows in amplitude at
the expense of the amplitudes of its two neighbors. The
second bifurcation creates a period-doubling morphology
(Fig. 4e) and, in turn, a pitchfork-like pattern (Fig. 4f). This
wrinkle-to-fold transition releases a part of the elastic strain
energy of the system.

By comparing the postbuckling processes with and with-
out internal pressure, it can be found that the morphology
evolutions for the two cases are quite similar (Li et al., 2001b).
However, both the first and second bifurcations are delayed
due to the presence of an internal pressure, demonstrating its
stabilizing role in the buckling process.

3.3. Effect of surface tension

In this subsection, we examine the effects of surface tension
on the critical condition and the circumferential mode num-
ber of surface wrinkling. At the onset of sinusoidal wrinkling,
the curvature of the inner mucosal surface (r¼ a) has the
following perturbation:

_κ¼ 1
a2

n2−1
� �

~u rð Þ cos nθ: ð21Þ

Correspondingly, the incremental boundary condition
reads

_S0
T
⋅n¼ _κγn−κγ _F0

T⋅n; ð22Þ

where _F0 is the incremental deformation tensor.
For illustration, we set Hm=C¼ 0:005, Hs=C¼ 0:5, and

μm=μs ¼ 50. The growth mode is taken as g1m ¼ g2m ¼ g and
g1s ¼ g2s ¼ 1. The normalized parameter Γ ¼ γ= Aμm

� �
is

employed to characterize the effect of surface tension.
Under the traction-free outer boundary condition, the

relations between the surface pattern mode number n and
the corresponding growth factor g are plotted in Fig. 5 for
several values of surface tension Γ. It is seen that with the
increase in Γ, the critical growth factor gcrit increases while
the critical mode number ncrit decreases. A positive surface
tension, which manifests itself through the curvature at the
mucosal surface, tends to suppress the crests and to shallow
the troughs of wave-like perturbation at the inner surface.
Therefore, surface tension increases the wavelength of the
surface pattern or, in other words, decreases the mode
number.

The effects of the modulus ratio μm=μs on the critical
growth factor gcrit and the critical mode number ncrit are
shown in Fig. 6 under the traction-free outer boundary
condition, where we take Hm=C¼ 0:005 and Hs=C¼ 0:5. In this



Fig. 7 – Dependence of (a) the critical growth factor gcrit and
(b) the critical surface pattern mode ncrit on the modulus ratio
μm=μs under several representative values of surface tension
in the case of fixed outer boundary condition.

Fig. 8 – Dependence of (a) the critical growth factor gcrit and
(b) the critical surface pattern mode ncrit on the normalized
thickness Hm=C under several different values of surface
tension.
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case, the critical growth factor gcrit decreases rapidly with the
increase in the modulus ratio μm=μs when it is relatively small
(i.e. μm=μso10). When the mucosa is much stiffer than the
submucosa (e.g., μm=μs450), gcrit increases with increasing
μm=μs (Fig. 6a). Fig. 6b shows that the critical mode number
ncrit decreases with the increase in μm=μs. In addition, it is
found that the effect of surface tension on ncrit is insignificant.

Under the fixed outer boundary condition, the effects of
the modulus ratio μm=μs on the critical growth factor gcrit and
the critical mode number ncrit are illustrated in Fig. 7, where
we take Hm=C¼ 0:005 and Hs=C¼ 0:5. Clearly, both the critical
growth factor gcrit and the critical mode number ncrit decrease
with the increase in μm=μs. The presence of surface tension
tends to increase the value of gcrit and slightly lower ncrit,
indicating a stabilizing role of Γ.

Fig. 8 shows the effect of the mucosal thickness Hm=C on
the wrinkling behavior of the bilayer system with the outer
boundary condition being fixed, where we take Hs=C¼ 0:5 and
μm=μs ¼ 10. As the mucosal layer gets thicker, both the critical
growth gcrit and the critical mode ncrit decrease. By comparing
the curves with different surface tensions, we find that when
the mucosal layer is very thin, the critical growth gcrit
increases while the critical mode number ncrit decreases with
the increase in Γ. Therefore, for a thinner mucosal layer, the
effect of surface tension is more significant.
4. Conclusions

Recently, much effort has been directed towards understand-
ing the correlation between the morphology and growth of
soft biological tissues (Lambert et al., 1994; Li et al., 2011b).
The bilayered cylindrical tube provides a prototype to study
the growth of airways, intestines, blood vessels and many
other soft tissues or organs. In these systems, the inner
surfaces, composed mainly of a mucosal layer, are usually
featured by various wrinkles. The present paper is aimed to
study the formation of surface wrinkles in such a growing
tubular structure via theoretical analysis and finite element
simulations. Our main attention has been paid to the effects
of internal pressure and surface tension on the critical
condition of surface wrinkling and the induced surface
pattern mode. It is found that the internal pressure tends to
stabilize the system but essentially has no effect on the
critical mode number of wrinkling pattern. A positive surface
tension also plays a stabilizing role and tends to increase
both the critical growth factor and the induced surface
pattern wavelength. In addition, the thinner the mucosa,
the more significant the effect of surface tension. These
results provide insights into the wrinkling behavior of muco-
sae in a more real physiological environment.
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Though only plane-strain problems have been addressed
in the present paper, this model can further examine the case
with both axial and circumferential growth, which may cause
the formation of three-dimensional wrinkles (Li et al., 2009).
In addition, the methodology developed in this paper can be
applied to other systems, such as soft elastomers or poly-
meric gels. For instance, the growth-induced deformation
and buckling behavior of blood vessels can be studied by
introducing a viscous core (Tomar et al., 2011).
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