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Section a. State-of-the-art and objectives 
 

I. STATE-OF-THE-ART. 
 

Soft materials play an integral role in many aspects of modern life including biomedicine, energy 
storage, and consumer goods, and their accurate modeling is critical to understand their unique 
properties and functions. The objective of this project is to integrate theory, experiment, and 
computation to automatically discover the models, parameters, and experiments that best explain a 
wide variety of natural and man-made soft matter systems as illustrated in Figure 1. 
 

Soft materials are complex to understand and challenging to model. For decades, chemical, physical, 
and material scientists alike have been modeling the hyperelastic response of soft matter under finite 
deformations[12,85,89,131]. They have proposed numerous competing constitutive models to best 
characterize the behavior of natural and man-made soft materials and calibrated their model 
parameters using uniaxial tension, compression, shear, and biaxial tests[23,40,48,49]. With this proposal, I 
challenge the conventional wisdom and propose a radically different approach towards constitutive 
modeling: I abandon the common strategy to first select a constitutive model and then tune its 
parameters by fitting the model to data[50,57,63,107,120]. Instead, I propose to simultaneously and fully 
autonomously discover both the constitutive model and the material parameters that best explain the 
experimental data. While constitutive models for stiff materials are well-studied and well-understood, 
soft materials typically undergo finite deformations[129]; they are highly nonlinear, often 
incompressible[130], anisotropic[119], tension-compression asymmetric[21], and generally challenging to 
model[138]. Two classes of models have emerged to simulate soft materials, models in terms of the 
principal invariants[50], I1 = tr( C ), I2 = ½ [ tr2( C ) - tr( C2

 )], I3 = det( C ), with a free energy function, y( I1 , I2, I3 ), 
and models in terms of the principal stretches[89,133], l1, l2 , l3 , with a free energy function, y( l1, l2 , l3 ). In 

Figure 1. This project will integrate theory, experiment, and computation to automatically discover the models, parameters, 
and experiments that best explain a wide variety of natural and man-made soft matter systems including the heart, arteries, 
muscle, lung, liver, skin, brain, hydrogels, silicone, artificial meat, foams, and rubber. My main deliverable is a open source 
scientific discovery platform that will include our new constitutive neural networks, experimental data, benchmarks, models, 
and parameters, fully documented and freely accessible on GitHub @LivingMatterLab.  
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finite deformations, F = dx / dX is the deformation gradient, C = F 

t • F is the right Cauchy Green 
deformation tensor, and the squared stretches l i

2 are its eigenvalues, C = S i l i
2  N i Ä N i . The choice of the 

appropriate invariant- or principal-stretch-based model depends largely on user experience and 
personal preference. In the age of machine learning, this raises the question: Can we leverage the power 
of neural networks to systematically learn the best constitutive models for soft matter systems? 
 

Classical neural networks interpolate data well, but ignore the underlying physics. In the most general 
form, constitutive equations in solid mechanics are tensor-valued tensor functions that define the 
relation between a stress, for example the Piola stress, P = lim dA®0 ( df / dA ), as the force df per 
undeformed area dA, and a deformation measure, for example the deformation gradient F[50,129]. 
Conceptually, we could use any neural network as a function approximator[81] to learn the relation 
between P and F, and many approaches in the literature, including the one in Figure 2, actually do 
exactly that[3,41,52,79]. Interestingly, the first neural network that learned a stress-strain model from data 
was proposed for concrete more than three decades ago[41]. In the early days[53], neural networks served 
merely as regression operators and were commonly viewed as a black box. This lack of transparency is 
probably the main reason why these early approaches never really generated momentum in our 
mechanics community. Now, more than 20 years later, neural networks have advanced as a promising 
technology to support constitutive modeling. They hold a 
tremendous potential to interpolate big data, especially 
when we have no prior information about the data[5]. 
However, they generally perform poorly on small data, they 
are at risk of overfitting[62], and fail to extrapolate or predict 
scenarios beyond their training regime[93]. More 
importantly, classical off-the-shelf neural networks entirely 
ignore our prior domain knowledge and the functions P(F) 
that they learn often violate standard arguments of 
thermodynamics and widely-accepted physical 
constraints[42]. This motivates the question whether and 
how we can build our prior domain knowledge in soft 
matter physics into a neural network. 
 

Physics informed neural networks integrate physics into the loss function. Two successful but 
fundamentally different strategies have emerged to integrate physical knowledge into network 
modeling, physics informed neural networks that add physics equations as additional terms to the loss 
function[60], see Figure 3, and constitutive artificial neural networks that explicitly modify the network 
input, output, and architecture to hardwire physical constraints into the network design[71], see Figure 6. 
The former are more general and typically work well for ordinary[11,72]

 or partial[5,97,101]
 differential 

equations, while the latter are specifically tailored 
towards constitutive equations[73,74]. In fact, one 
such neural network, with strain invariants as input, 
free energy functions as output, and a single hidden 
layer with logistic activation functions in between, 
has been proposed for rubber materials almost two 
decades ago[118] and recently regained attention in 
the constitutive modeling community[71,146]. While 
these constitutive neural networks generally provide 
an excellent fit to experimental data, how exactly 
they can best integrate thermodynamic constraints 
remains a question of ongoing debate[80]. 

 

Constitutive neural networks hardwire physical constraints into the network design. Constitutive 
artificial neural networks a priori build the first and second law of thermodynamics into the network 
architecture[79] and select specific activation functions to ensure compliance with thermodynamic 
constraints[74]. Recent studies suggest that this approach can successfully reproduce the constitutive 
behavior of rubber-like materials[42]. Alternative approaches use a regular neural network and ensure 

Figure 3. Physics-informed neural networks minimize a loss 
function L ® min that consists of a data loss Ldata, the error 
between data and model || x – x(t) ||, and a physics loss Lphys, 
the physics residual || r ||, to learn the network parameters,  q 
= { w, b } and the physics parameters J = { k, c, m } [72]. 

Figure 2. Classical neural network with two fully 
connected hidden layers and eight nodes per layer 
to approximate the nine components of the Piola 
stress P(F) as functions of the nine components of 
the deformation gradient F using 80 weights, 17 
biases, and a total of 97 parameters[74].  



Kuhl Part B2                            DISCOVER  
 

 3 

thermodynamic consistency a posteriori via a pseudo-potential  correction in a post processing step[58]. 
To demonstrate the versatility of these different approaches, several recent studies have successfully 
embedded constitutive neural networks in a finite element analysis, for example, to model plane rubber 
sheets[71], sheets with holes[127], or entire tires[118], the numerical homogenization of discrete lattice 
structures[80], microstructures with inclusions[4], evolving microstructures[144], the deployment of 
parachutes[7], or surgical procedures[124]. Regardless of all these success stories, one major limitation 
remains: the lack of an intuitive interpretation of the network model and its parameters[62]. 
 

Constitutive neural networks can be reverse-engineered from constitutive building blocks. To 
understand the art of modeling, it is insightful to perform a systematic comparison of classical popular 
constitutive models[77,121]. Strikingly, the most widely used constitutive models are made up of 
structurally and functionally similar building blocks[34,37,46]. They are either functions of the set of 
invariants[50], I1, I2, I3 , or of the set of principal stretches[89], l1, l2, l3 , or more precisely, their equivalents 
in the undeformed reference configuration, [I1-3], [I2-3], [I3-1], or [l1-1], [l2-1], [l3-1]. These kinematic 
descriptors are then raised to linear, quadratic, or higher order powers, ( o )1, ( o )2 ,…, ( o )n, as in the neo 
Hooke[132], Blatz Ko[12], and Mooney Rivlin[85,102] models, and possibly further integrated into exponential or 
logarithmic functions, [exp( o )-1] or [ln(1-( o ))], as in the Demiray[22,23], Gent[40], and Holzapfel[49] models. 
Coefficients of these models, or combinations of them, take the natural interpretation of the shear and 
bulk moduli or Lamé constants. A natural question to ask is whether and how we can reverse engineer 
our own family of constitutive neural networks[13]

 with activation functions that feature these popular con- 
stitutive building blocks and network weights that translate into well-known engineering parameters. 
 

II. PRELIMINARY RESULTS. 
 

My research group has successfully tested[17,18,95,139,141,142], modeled[19,20,43,47,64,84,122,135], and simulated soft 
materials[24,25,30,31,33,65,112,113,145] and fit our models to data[18,19,21,114,115]. However, it is becoming increasingly 
clear that this approach provides only limited insight into the complex behavior of soft materials. To gain 
a more holistic understanding, we will now establish an open source discovery platform that auto-
nomously discovers the best model, parameters, and experiments for a wide variety of soft matter systems.   
 

Triaxial soft matter testing reveals different stiffnesses in tension, compression, and shear. Numerous 
well-documented experiments exist in the literature to calibrate the constitutive models for soft 
materials[27,103,132]. However, most often, these tests are only performed for a single loading mode and fail 
to predict the behavior of soft matter systems under arbitrary loading conditions[21]. To fully characterize 
the three-dimensional response of human brain gray and white matter tissue, we conducted a sequence 
of multiple loading modes, tension, compression, and shear, all on the same specimens[18], see Figure 4. 
In a close collaboration with Professor Gerhard Holzapfel at the Institute of Biomechanics of TU Graz, we 

performed a total of n = 276 tests on 5´5´5 mm3 sized cubical samples 
from the cortex, basal ganglia, corona radiata, and corpus callosum of 
ten human brains, with a three-axes force-sensor (K3D40, ME-Measuring 
Equipment, Henningsdorf, Germany), with motor control and data 
acquisition using the software testXpert II (Zwick/Roell GmbH & Co. KG, 
Ulm, Germany). We found that human brain tissue is nonlinear, with a 
pronounced tension-compression asymmetry[21]. Across all four brain 
regions, the shear modulus was largest in compression with µ = 0.99 - 
2.80 kPa, followed by shear with µ = 0.53 – 1.95 kPa, and tension with µ = 
0.29 - 1.22 kPa[18]. Our results suggest that constitutive models for soft 
materials must be tension-compression asymmetric, and that the 
parameters identified for a single loading mode likely under- or 
overestimate the stiffnesses under arbitrary loading conditions.  

 

Parameter values are highly sensitive to the underlying model. The current gold standard in 
constitutive modeling is to first select a constitutive model and then fit its parameters to data. We have 
successfully used our tension, compression, and shear data from Figure 5 to fit the parameters of 
popular constitutive models[18], including the neo Hooke model[138]

  with y = ½  µ [ I1 - 3 ], the Mooney Rivlin 
model[85,102]  with y = ½  µ1 [ I1 - 3 ] + ½  µ2 [ I2 - 3 ], the Demiray model[23]

  with y = ½  µ [ exp(b [ I1 – 3 ])-1], the 

Figure 4. Our triaxial testing of soft 
materials in tension, compression, 

and shear revealed a highly non-linear 
and asymmetric material behavior[18].  
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Gent model[40]  with y = -½  µ ln(1-(b [ I1 - 3 ]))/b , and the one-term Ogden model[89] with y = 2 / µ S i [ l i
a - 

1 ] / a2. We found that, across all five models, the shear 
moduli in the softest region, the corpus callosum, 

varied between µ = 0.35 kPa and µ = 0.65  kPa, and in 
the stiffest region, the cortex, between µ = 1.35  kPa 
and µ = 2.08  kPa. Strikingly, across all tests and brain 
regions, the shear stiffnesses predicted by the neo 
Hooke model were up to 2.3 times larger than those of 
the Ogden model[18]. This suggest that the shear 
moduli, and possibly other parameters, are highly 
sensitive to model selection, and that reporting 
parameters without reference to the underlying model 
could under- or overestimate the material behavior.   
 

Our constitutive neural networks satisfy common thermodynamic constraints. First, to ensure 
thermodynamic consistency, instead of approximating the nine components of the Piola stress P ( F ), our 
constitutive neural networks approximate the scalar-valued free energy function y ( F ) and derive the 
stress P in a post-processing step[71,88,94], P = ¶y /¶F.  Satisfying thermodynamic consistency directly 
affects the output of our neural network. Second, to a priori satisfy material objectivity or frame 
indifference, we require that the arguments of the free energy function are independent of rotations, and 
are functions of the right Cauchy Green deformation tensor[129], P = ¶y(C  )/¶F = 2F • ¶y(C  )/¶C. Satisfying 
material objectivity directly affects the input of our neural network. Third, to include material symmetry, 

we consider the special case of isotropy, for which the 
free energy function is a function of the strain 
invariants[50], P = ¶y( I1, I2, I3  )/¶F . Considering materials 
with known symmetry classes directly affects the input 
of our neural network. Fourth, we consider the special 
case of perfect incompressibility, I3 = J2 = 1, for which the 
free energy function depends only on the first and 
second invariants I1 and I2, corrected by a pressure 
term[75], P = ¶y( I1, I2  )/¶F  - p F 

-t. Perfect incompressibility 
reduces the input of our neural network. Fifth, we 
include further physical constraints[6] by assuming that 
the free energy is non-negative for all deformation states, 

y ( F ) ³ 0; the free energy  and  the  stresses are zero, y ( F ) 
= 0 and P ( F ) = 0, in the reference configuration, F = I, and the free energy is infinite, y ( F ) ® ¥, for infinite 
compression, J ® 0, and infinite expansion, J ® ¥. Satisfying these physical constraints directly affects 
the choice of the activation functions of our neural network. Sixth, to ensure polyconvexity[9], we select a 
free energy function y that  is  the  sum  of  individual  polyconvex  subfunctions[46], y1 and y2, such  that 
P = ¶y1/¶I1 • ¶I1 /¶F + ¶y2/¶I2 • ¶I2 /¶F - p F 

-t. Satisfying polyconvexity is associated with non-negative network 
weights and affects the architecture and connectedness of our neural network, as illustrated in Figure 6. 
 

Our neural network robustly discovers a four-term model for gray matter. When trained with individual 
tension, compression, and shear data, our 
network in Figure 6 trains robustly and 
converges within less than 5,000 epochs with R2 
values of 0.99, 1.00, 1.00 within 2-3 minutes on a 
standard desktop computer[75]. However, the 
broad color spectrum in Figure 7 indicates that 
the network discovers a wide range of terms. 
Notably, when trained with all data combined, 
right column, the network robustly discovers a 
four-term model that only features the second 
invariant,  y ( I2 ) = ½  µ2 [ I2 - 3 ]2 + ½  a2/b2 [exp(b2 

Figure 5. Our triaxial testing of gray and white matter 
from four brain regions revealed the stiffest response in 
compression and the softest in tension[21]. Graphs report 
means and standard deviations of a total of n = 276 tests.  

Figure 6. Our constitutive neural network for isotropic 
incompressible materials approximates the free energy 
function y ( I1, I2 ) as a function of the invariants I1, I2 of 
the deformation gradient F using 24 weights in total[75].  

Figure 7. Model and parameter discovery for gray matter. 
Convergence of loss function, top, and stress response, bottom; 
dots illustrate experimental data; color code highlights the terms 
of the discovered model according to Figure 6 [75].  
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[I2-3]2) -1] - ½  a1/b1 ln(1-(b1 [I2-3])) - ½  a2/b2 ln(1-(b2 [I2-3] 2)), while the weights of the other eight terms 
consistently train to zero. The non-zero weights naturally translate into physically meaningful 
parameters with well-defined physical units: four stiffness-like parameters µ2 = 7.60 kPa, a2 = 6.23 kPa, a1 

= 1.25 kPa, and  a2 = 4.67 kPa, and three nonlinearity parameters, b2 = 1.65, b1 = 0.99, and b2 = 1.40 [75]. 
 

III. OBJECTIVES. 
 

My long-term goal is to democratize constitutive modeling through automated model discovery and 
make it accessible to a more inclusive and diverse community of students, scientists, and industries to 
accelerate the design of new functional materials and structures with tailored material properties. The 
overall objective of this proposal is to establish, train, test, and validate a new family of constitutive 
neural networks that simultaneously and fully autonomously discover the model, parameters, and 
experiment that best explain the behavior of a wide variety of soft materials. My project will provide 
unprecedented new insights into constitutive modeling that are out of reach with traditional theoretical 
and numerical approaches today. I will achieve these goals by completing three work packages: 
 

WP 1. Establish a new family of constitutive neural networks that reproducibly 
discover the model, parameters, and experiment that best explain a wide 
variety of soft matter systems.  
WP 2. Quantify the performance of our discovered models on previously 
unseen data for the heart, arteries, muscle, lung, liver, skin, brain, hydrogels, 
silicone, artificial meat, foams, and rubber. 
WP 3. Quantify the uncertainty of our models, parameters, and experiments 
by embedding our networks into a Bayesian analysis to discover parameter 
distributions and credible intervals. 

 

This project has the potential to induce a ground-breaking change in constitutive modelling—from 
user-defined model selection to automated model discovery—which would forever change how we 
simulate materials and structures. 
 
Section b. Methodology 
 

IV. SCIENTIFIC APPROACH 
 

Throughout this research, I will pursue a holistic scientific approach that seamlessly integrates theory, 
experiment, and computation to automatically discover the best model, parameters, and experiment 
that explain a wide variety of soft matter systems. My research methodology requires a deep knowledge 
in constitutive modelling, soft matter physics, machine learning, and artificial intelligence, and is 
designed around three work packages, as illustrated in Figure 8.  
 

Figure 8. Automated model discovery. Discovering the best model, parameters, and experiment to explain a wide variety of soft 
matter systems including the heart, arteries, muscle, lung, liver, skin, brain, hydrogels, silicone, artificial meat, foams, and 
rubber. I will establish a new family of neural networks; train, test and validate them on tension, compression, and shear data; 
quantify their performance on new multiaxial experiments; and embed them into a Bayesian analysis to quantify uncertainty. 
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WP 1. Establish a new family of constitutive neural networks that reproducibly discover the model, 
parameters, and experiment that best explain a wide variety of soft matter systems. 

 

Introduction. Soft materials play an integral role in many aspects of modern life including biomedicine, 
energy storage, and consumer goods, and their accurate modeling is critical to understand their unique 

properties and functions. A recent trend in soft material modeling is to entirely 
abandon existing constitutive models and fully replace them by neural networks. 
However, classical neural networks perform poorly on small data, they ignore the 
fundamental laws of physics, and their parameters have no physical interpretation. 
The objective of this work package is to build, train, and test my own family of 
constitutive neural networks that a priori satisfy the fundamental laws of physics 
through selective input, output, architecture, and activation functions. My hypothesis 

is that my new constitutive neural networks seamlessly integrate our prior domain knowledge in soft 
matter physics and autonomously discover the model and parameters that best explain a wide variety 
of soft materials. My approach is to reverse-engineer a neural network-like structure from the functional 
building blocks of popular constitutive models and hardwire physical constraints into the network 
design. Importantly, our network weights naturally translate into meaningful parameters with physical 
units and a real physical interpretation. The rationale for using machine learning to automate model 
selection is that this allows us to rapidly screen millions of possible models, confirm existing models, and 
autonomously discover new combinations of terms, which are out of reach for conventional manual 
decision making today. My expectation is that our custom-designed networks will induce a paradigm 
shift in constitutive modeling, from user-defined to fully automated, which will make modeling 
accessible to a more inclusive and diverse community and accelerate scientific discovery and innovation. 
 

Justification and Feasibility. Our new 
family of constitutive neural networks 
combines decades of research on the 
mechanics of materials and structures with 
state-of-the-art technologies in machine 
learning. By incorporating our prior domain 
knowledge, instead of using existing neural 
networks as a black box[118], we simplify the 
network architecture, make it more reliable 
and efficient, and ensure that it complies 
with basic physical principles[6,9,94,129]. Mathe-
matically speaking, model selection is a 
highly nonlinear nonconvex optimization 
problem that we could, in principle, solve 
with classical optimization schemes or 
system identification[14,15,16,35,54,78,137,138]. Instead, we formulate model selection as a custom-designed 
network to exploit the power of adaptive gradient-descent based optimizers developed for deep 
learning[67]. We have prototyped this idea for rubber[74], skin[76,126], muscle[136]and human brain[75], using 
invariant-based[74] and principal-stretch-based[123] networks, and envision that combining both into a 
single architecture to analyze other soft materials will be conceptually feasible and straightforward. 
 

Research Design. In WP1, I will reverse-engineer a new family of constitutive neural networks for soft 
matter systems from the functional building blocks of popular constitutive models. My research design 
for WP1 uses a four-step approach that tightly integrates building a family of constitutive neural 
networks, training the networks on single loading modes, testing the networks on previously unseen 
loading modes, and discovering the best models and parameters for selected soft matter systems.  
 

WP 1.1. Build a family of constitutive neural networks for soft matter systems.  First, we will build a 
new family of constitutive neural networks that combine our invariant-based[75] and principal-stretch-
based[123,133]

 neural networks into a selectively connected feed-forward constitutive neural network 
architecture with two invariants, I1 and I2, and two principal stretches, l1 and l2, as input. From these 

Figure 9. Automated model discovery for human brain tissue. Stress as 
a function of stretch and shear strain; dots illustrate the tension, 
compression, and shear data; color code highlights the discovered 
model; individual training with Rtrain

2 on the diagonal, testing with Rtest
2 

on off-diagonal, and combined training with Rtrain
2 in the right column. 
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kinematic descriptors, I will calculate four input terms that are zero in the reference configuration, [ I1 - 3 ] 
and [ I2 - 3 ] as well as [ l1

2 + l2
2 + l3

2 - 3 ] and [ l1
-2 + l2

-2 + l3
-2 – 3 ]. 

The network will have two hidden layers, and seven activation 
functions for all four inputs, ( o )1, ( o )2, ( o )n, exp( o )1-1,  exp( o )2-1, 
ln(1- ( o )1), ln(1-( o )2), scaled by twelve weights, see Figure 10. This 
will result in 4 x 7 = 28 individual terms and 4 x 12 = 48 network 
parameters, w = wij. Importantly, by constraining our network 
input, output, activation functions, and architecture, in contrast 
to classical off-the-shelf neural networks, our custom designed 
network will a priori satisfy thermodynamic consistency, 
material objectivity, material symmetry, and polyconvexity. 
 

WP 1.2. Train the networks on soft matter data from a single loading mode. Second, we will train our 
networks on soft matter data including classical benchmark data for rubber[132], data from our 
collaborators for skin[125], arteries[87], and the heart[51], and our own data for human brain[18]. We will train 
the network on soft matter data from the single loading modes of tension, compression, and shear, and 
for comparison, for all three loading modes combined. We will minimize the loss function,  L( w ; F ) = || P ( 

F ) – P ||2
 /ntrain  ® min,  the error between model P ( F ) and data { F, P  } divided by the number of training 

points ntrain, using the Adam optimizer, a robust adaptive algorithm for gradient-based first-order 
optimization[74]. We expect the loss function to converge robustly within 10,000 epochs[75]. For batch sizes 
of 32, we expect each training run to take 3-5 minutes on a standard desktop computer. Our experience 
shows that, during this process, the majority of our 48 network weights will train to zero. The small 
subset of non-zero weights defines the best model. Our new 28-term network will discover this model 
from 228 = 268,435,456 possible combinations of terms, from more than 250 million possible models! 
 

WP 1.3. Test the networks on previously unseen data from different modes. Third, will test our networks 
on previously unseen data using the unused modes of tension, compression, and shear that we have not 
previously used for training in WP1.2. We will characterize the performance of the discovered model and 
parameters by comparing the computationally modeled and experimentally measured stress-stretch 
relations in terms of the goodness of fit, Rtrain

2 and Rtest
2, that we will calculate separately for training and 

testing[75]. For completeness, we will also calculate and report the normalized mean squared errors for 
training and testing[136]. From our experience, we expect the networks to train well on individual tension, 
compression, and shear tests, with Rtrain

2 values consistently close to one as Figure 9 suggests. We expect 
the network to test well for materials that are tension-compression symmetric, but less well for tension-
compression asymmetric materials like the human brain[21]: Networks trained on tension data alone 
could potentially perform poorly when tested with compression data, in extreme cases with Rtest

2 values 
close to zero[75]. For comparison, we will also train the network on all three loading modes combined, and 
expect a less perfect fit than for training with individual data sets, with Rtrain

2  values on the order of 0.9[126].  
 

WP 1.4. Discover models and parameters for a wide variety of soft materials. Fourth, we will explore 
the generalizability and performance of our discovery platform by discovering models and parameters 
for other published soft matter data from silicone, foams, hydrogels, liver, cartilage, and arteries[87]. 
Importantly, our network weights naturally translate into meaningful parameters with physical units and 
a real physical interpretation, for example stiffnesses E, shear moduli µ, or Lamé constants L and G. To 
validate our discovery platform, for each material, we will compare our discovered parameters against 
the material parameters reported in the literature. Unfortunately, there is only a very limited number of 
well-documented studies that perform all three modes of testing, tension, compression, and shear on 
one and the same specimen[21,86]. This has inspired WP2, where we will perform our own systematic series 
of experiments for model training, testing, and validation on previously unseen data.   
 

Deliverables and Potential Limitations. WP1 will generate several exciting deliverables including: (i) a 
general concept to hardwire physical knowledge into a neural network design; (ii) a new family of 
constitutive neural networks for incompressible, hyperelastic materials; (iii) a set of mechanistically 
interpretable network weights that are intrinsically related to traditional invariant- and principal-stretch-
based parameters; and (iv) a new open-source discovery platform to autonomously discover model, 

Figure 10. Custom-designed activation 
functions reverse-engineered from the main 
building blocks of popular constitutive 
models are central to our approach[75]. 
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parameters, and experiments for soft matter systems that I will make publicly available on GitHub 
@LivingMatterLab. While our preliminary results suggest that we can robustly and repeatedly discovery a 
small subset of non-zero network weights that define model selection and parameterization[74,75,76,126,], 
there is a chance that the discovery process identifies a large set of terms or becomes non-unique. To 
mitigate this limitation and reduce the potential risk of overfitting, I will apply L1 and L2 regularization, 
L( w ; F ) = || P ( F ) – P ||2 /ntrain + a1 ||w||1 + a2 ||w||2

2® min, by supplementing the loss function with the 
weighted L1 norm ||w||1 or the weighted L2 norm ||w||2

2. We have shown that increasing the parameters a1 

and a 2 reduces the number of non-zero weights and with it the number of activated terms[75,123,136]. I am 
confident that appropriate regularization will stabilize our model discovery. Another limitation that we 
have successfully addressed in the past is that we may need to constrain the network parameters to 
always remain non-negative to ensure polyconvexity[6,9,75,124]. Importantly, in WP1, we will only discover 
point values for these parameters. Embedding our approach into a Bayesian analysis[66,72] in WP3 will 
further stabilize the method by discovering parameter distributions with means and credible intervals.  
 

WP 2. Train, test, and validate our discovered models on previously unseen data for the heart, 
arteries, muscle, lung, liver, skin, brain, hydrogels, silicone, artificial meat, foams, and rubber. 

 

Introduction. Benchmarking material models is critical to quantify their performance and accuracy 
against other models and evaluate their potential to solve real-world problems. To date, most 
constitutive neural networks are benchmarked against artificial synthetic data, but their true 

performance on noisy and incomplete real world-data remains insufficiently 
understood. The objective of this work package is to perform a series of tension, 
compression, and shear experiments on a variety of soft materials to train, test, and 
validate our model. My hypothesis is that our discovered models will outperform 
popular existing models and generalize robustly to previously unseen data in the 
spirit of continuous learning. To test this hypothesis, I will use a combined 

experimental-computational approach and perform a series of tension, compression, and shear 
experiments on 5 x 5 x 5mm3 cubic samples of both natural and man-made soft materials to generate new, 
previously unseen data for network training, testing, and validation. I will quantify the performance of 
model discovery for the heart, arteries, muscle, lung, liver, skin, brain, hydrogels, silicone, artificial meat, 
foams, and rubber using the coefficients of determination during training and testing, Rtrain

2 and Rtest
2, and 

normalized root mean squared errors, and compare our discovered models against a variety of popular 
existing models. The rationale for systematic benchmarking with traditional models is that this will 
confirm successful existing models, identify shortcomings in others, and build trust in our newly 
discovered models. It is my expectation that our open source benchmark library, with dozens of data 
sets, models, and parameters, will become a standard go to reference that will increase collaboration, 
reusability, transparency, and learning opportunities that will benefit both individual soft matter 
modelers and the mechanics community at large. 
 

Justification and Feasibility. Our preliminary studies in Figure 7 solidly suggest that the loss function of 
our constitutive neural network converges consistently within less than 5,000 epochs[75]. For single mode 
training with individual tension, compression, 
or shear data, our model discovery is 
generally non-unique[74] and all weights are 
activated, as we conclude from the rainbow-
type color spectrum in the first three columns 
of Figures 7 and 9. Yet, for multi-mode 
training with all three data sets combined, in 
the right column, the network repeatably 
discovers the same four-term model[75], y ( I2 ) 
= ½  µ2 [ I2 - 3 ]2 + ½  a2/b2 [exp(b2 [I2-3]2) -1] - ½ 

 a1/b1 ln(1-(b1 [I2 - 3])) - ½  a2/b2 ln(1-(b2 [I2 - 3]2)). 
Strikingly, this best-fit model only features 
the second invariant I2. This is in stark 
contrast with the widely used first invariant 

Figure 11. Special cases of neo Hooke, Blatz Ko, Demiray, and 
Holzapfel models. Stress as a function of stretch and shear strain; 
dots illustrate tension, compression, and shear data; color code 
highlights terms of the model in Figure 6 with goodness of fit Rtrain

2.  
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based neo Hooke model[131], y = ½  µ [ I1 - 3 ], Demiray model[23], y = ½  a /b  [exp(b [ I1 - 3 ]) -1], and  Gent  
model[40], y = -½  a/b ln(1-(b [ I1-3 ])), and justifies using a more holistic machine learning approach to 
identify model terms that have been overlooked in the past, but provide a better fit. We will build on our 
preliminary studies for brain tissue[18], and now perform multiaxial tension, compression, and shear tests 
on other soft matter systems. Our experience shows that, while data from different loading modes are 
necessary for unique and repeatable model discovery, approximately twelve data points per curve are 
generally sufficient for successful training and testing[123,136]. 
 

Research Design. In WP2, I will perform a series of multiaxial benchmark experiments to generate an 
open source library of for network training, testing, and validation. My research design for WP2 uses an 
integrative four-step approach that systematically performs new multiaxial experiments to collect 
previously unseen data, expands our network architecture to discover the best model and parameters, 
learns the parameters of popular traditional models, and compares our newly discovered models against 
a variety of traditional models. 
 

WP 2.1. Perform a series of multiaxial tests on natural and man-made soft matter systems. First, we 
will probe the generalizability of our approach by performing a comprehensive series of benchmark 
experiments to generate new, previously unseen data for network training, testing, and validation. 
Together with the senior staff scientist of this project, I will visit Professor Gerhard Holzapfel’s group at 
TU Graz to train myself in multiaxial soft tissue testing[18-20,49,52,87]. I will then purchase the same triaxial 
testing device (Zwick/Roell, Ulm, Germany) to perform new tension, compression, and shear experiments 
on up to 5 x 5 x 5 mm3 large cubic specimens of both natural and man-made soft materials following our 
previous protocols[18]. I will expand our existing library for rubber[74], skin[76], muscle[136], and brain[75] on 
GitHub @LivingMatterLab and successively add our new experimental data. First, we will test man-made 
materials with tunable material properties including rubber[59,99,103,132], foams, silicone, hydrogels, and 
artificial meat. Next, we will test biological samples. Initially, we will test animal samples of the 
heart[51,109], arteries[49], muscle[104-106,136], lung[30,31], liver, skin[68,69,76,108,], and brain[18,27,32,44] from a nearby 
slaughterhouse to optimize our testing protocols. Then, we will gradually move to human samples, 
which are routinely tested both at the Institute for Biomechanics at TU Graz and at the Chair of Applied 
Mechanics at FAU Erlangen, approved by the Ethics Committees of the TU Graz and FAU Erlangen under 
approval numbers 25-420ex12/13 and 405_18B, respectively. This will generate a comprehensive 
benchmark library with data from tension, compression, and shear stretch-stress pairs { l, P }i or { g, P }i for 
dozens of soft matter experiments. We have previously shown i = 1, …, 12 data pairs are generally 
sufficient for successful training and testing[75], although we will also make the raw data available.  
 

WP 2.2. Discover the best model and parameters from all possible models. Second, we will use our 
model discovery platform from WP 1 to discover the best model, parameters, and experiments across all 
data in our open source library. This will result in deliverables similar to Figure 9, with individual training 
displayed on the diagonal, individual testing displayed on the off-diagonal, and combined training for all 
three modes displayed in the right column[75,123,136]. We expect that a limitation of our neural network from 
WP1 is that not all of our materials will be 
incompressible and isotropic. Specifically, 
we expect that at least the heart, arteries, 
muscle, skin, and artificial muscle will be 
anisotropic[36,62,125,143]. To address the limi-
tation of incompressibility and isotropy of 
our networks from WP 1, we will add the 
third, fourth, and fifth invariants[29,46,82,119], I3, 
I4, I5, or rather their representations in the 
undeformed reference configuration, [ I3 - 1], 
[ I4 - 1], [ I5 - 1], to our network architecture, 
and discover the best model, parameters, 
and experiments across all data in our open 
source library. While we have previously 
shown that the weights of the fifth invariant  

Figure 12. Goodness of fit Rtrain
2 and Rtest

2 for our discovered model 
compared to traditional models. Our method in gray outperforms the 
classical neo Hooke, Demiray, Gent, Holzapfel, and Blatz Ko models in 
dark red, red, light red, orange, and green, both in training and testing[75]. 
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I5 tend to train to zero for skin[76], we will still keep it for completeness for all twelve materials. We expect 
to discover models with two, three, or four leading terms, and have shown that we can modulate the 
number of vanishing weights through L1 or L2 regularization[75,123,136] to systematically control the number 
of relevant terms in our models.  
 

WP 2.3. Learn the best parameters for popular traditional constitutive models. Third, we will use our 
network architecture to learn the best parameters of popular constitutive models, similar to a traditional 
parameter identification[57,63,107,117]. Specifically, we will constrain all but a few selected network weights 
to zero, and use our network to learn the best parameters of widely used classical models including the 
neo Hooke model[131] with y = ½ µ [I1-3], the Demiray model[23] with y = ½  a/b [exp(b[I1-3])-1], the Gent 
model[40] with y = -½  a/b ln(1-(b[I1-3])),  the Holzapfel model[49] with y = ½  a/b [exp(b[I4-3])2-1], and the 
Blatz Ko[12] model with y = ½ µ [I2-3]. We will compare our learned parameters to the parameters 
reported in the literature, including shear moduli, stiffnesses, and exponential coefficients. This 
comparison will confirm both our experimental method and our parameter discovery.  
 

WP 2.4. Compare the performance of newly discovered models to traditional models. Fourth, we will 
systematically compare our newly discovered models from WP 2.2 to the traditional models from WP 2.3. 
Specifically, during both training and testing, we will calculate the Rtrain

2 and Rtest
2 values and the 

normalized root mean squared errors to quantify the goodness of fit of all models similar to Figure 13. 
The goodness of fit R2 for human brain data in Figure 12 suggests that our newly discovered model with 
and without L2 regularization highlighted through the grey bars consistently outperforms the traditional 
neo Hooke[131], Demiray[23], Gent[40], Holzapfel[49], and Blatz Ko[12] models highlighted through the dark red, 
red, light red, orange, and green bars. The rationale for systematic benchmarking with traditional 
models is that this will confirm successful existing models, identify shortcomings in others, and build 
trust in our newly discovered models. We will also benchmark our constitutive neural networks against 
more recent data-driven approaches[28,45,61,96], including symbolic[1,2,116] or sparse[14,26,34,35,] regression, 
system identification[137,138], and classical parameter identification[18,63,83,86]. We will share all data, models, 
and parameters of this work packages, in our open source library on GitHub @LivingMatterLab for other 
potential users to reproduce our results, train their own networks, benchmark their results, or simply use 
our models and parameters for their own soft material simulations. 

Deliverables and Potential Limitations. The deliverables of WP2 are: (i) a comprehensive experimental 
data sets of soft matter systems including the heart, arteries, muscle, lung, liver, skin, brain, hydrogels, 
silicone, artificial meat, foams, and rubber, (ii) a suite of newly discovered models and parameters for 
natural and man-made soft materials; (iii) a quantitative performance evaluation of our newly 
discovered models compared to existing traditional models; and (iv) new mechanistic insight into the 
fundamental building blocks of constitutive models for 
soft matter systems. I expect that our open source 
benchmark library, with dozens of new data sets, 
models, and parameters, will become a standard go to 
reference that will increase collaboration, reusability, 
transparency, and learning opportunities that will 
benefit both individual soft matter modelers and the 
mechanics community at large. We recognize that our 
proposed approach is initially limited to isotropic 
hyperelastic materials. We have recently prototyped a 
feed forward neural network for transversely isotropic 
materials by including the fourth and fifth invariants, I4 
and I5, and successfully discovered models and 
parameters for skin[76,126], see Figure 15. We have also 
prototyped a recurrent neural network for viscoelastic 
materials by treating the viscous overstress as history 
variable, and discovered the model, elastic 
parameters, and viscoelastic long-term modulus and 
relaxation times for muscle[136], see Figure 13. If 

Figure 13. Automated model discovery for passive 
skeletal muscle. Stress as a function of stretch and stretch 
rate; dots illustrate stress relaxation data; color code 
highlights the discovered viscoelastic model; increasing 
the regularization from a = 0.0, left, to a = 0.1, right, 
selectively reduces the number of discovered terms. 
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necessary, it will be straightforward to expand our network to compressible[46], transversely isotropic[76], 
or orthotropic[51], viscoelastic[99,100,136] materials, or, potentially even include other types of inelasticity 
such as damage[24,135], plasticity, or even poroelasticity. A more involved limitation is the lack of sufficient 
train, test, and validation data. We conclude from our experience in Figures 7 and 9 that model discovery 
can become non-unique when discovering parameter point values in single mode training. This is why it 
will be critical to purchase our own test system and have 24/7 access to a triaxial test facility to always be 
able to go back and collect more data if needed. In general, we do expect that embedding our approach 
into a Bayesian analysis in WP3 will stabilize our method by discovering parameter distributions with 
means and credible intervals[54,66,72], instead of single parameter point values.  
 

WP 3. Quantify the uncertainty of our models, parameters, and experiments by embedding our 
networks into a Bayesian analysis to discover parameter distributions and credible intervals. 

 

Neural networks have been successfully used to fit stress-stretch curves to data; yet, 
to date, no unified concept exists to interpret the data, model, and parameters in view 
of uncertainty quantification. The objective of this work package is to establish a 
family of Bayesian constitutive neural networks to discover models, parameters 
distributions, and credible intervals for uncertainty quantification. My hypothesis is 
that by embedding our networks into a Bayesian framework, our deterministic 

model, and parameter point estimates from WP1 and WP2 will seamlessly translate into probabilistic 
models and parameter distributions for uncertainty quantification. I will test this hypothesis by 
adopting an iterative experimental-computational approach and embed our trained neural networks in a 
Bayesian analysis; discover probabilistic models, parameter distributions, and experiments that best 
explain prior data; perform new experiments; update our prior beliefs; and iteratively repeat this cycle to 
narrow our credible intervals. My rationale is that the weights of our Bayesian constitutive neural 
networks represent well-defined physical parameters with means and credible intervals that will 
progressively narrow as more new data become available. This progressive updating is a form of 
continuous learning in which the model continuously improves the understanding of its parameters 
based on new information. Once validated across a wide range of soft matter data, it is my expectation 
that our probabilistic model discovery platform will not only accurately reproduce and predict the 
behavior of soft material systems in complex real-life situations, but also provide a more complete 
picture of our model uncertainties and support a more robust and reliable decision making. 
 

Justification and Feasibility. We will build on our physics informed Bayesian neural networks for real-
world nonlinear dynamical systems[72], where we have successfully used Bayes' theorem[10], p(J  | P ) = p( P | 

J ) / p(J ) •  p( P ), to estimate the posterior probability distribution of the network parameters J  = {wij} such 
that the statistics of the neural network agree with the experimental data P. Here p(P|J ) is the likelihood, 
the conditional probability of the data P for given fixed 
network parameters J ; p(J ) is the prior, the probability 
distribution of the network parameters J ; p( P ) is the 
marginal likelihood; and p(J  | P ) is the posterior, the 
conditional probability of the network parameters J  for 
the given data P[66]. We have previously embedded a 
reaction-diffusion model for Alzheimer’s disease in a 
Bayesian analysis and shown that tau misfolding and 
brain shrinkage are larger in the diseased group than in 
healthy controls[114,115], see Figure 14. We have also 
successfully applied Bayesian neural networks in the spirit 
of continuous learning to simulate the outbreak dynamics 
of Covid-19 by adding new disease data in real time[66,70,90] 
and to simulate soft biomimetic actuators inspired by the 
elephant trunk[55,56].  Our results suggest that our physics 
informed Bayesian neural networks outperform 
traditional Bayesian neural networks and have better 

Figure 14. Our Bayesian analysis of tau misfolding 
and brain shrinking in a reaction-diffusion model for 
Alzheimer’s disease shows that misfolding and 
shrinking are larger in the diseased group, shown in 
blue, than in the healthy group, shown in green[115]. 
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predictive potential and narrower credible intervals[72]. From this experience, we believe that translating 
this approach to our constitutive neural networks from WP1 and WP2 is generally feasible and relatively 
straightforward. To disseminate this new technology to a broad user audience, we have started a 
partnership with Abaqus FEA/Simulia to explore the feasibility of integrating all this knowledge into a 
single universal user material subroutine for simulations in Abaqus and other finite element platforms. 
 

Research Design. In WP3, I will quantify the uncertainty of our models, parameters, and experiments to 
build confidence in my approach and support more robust and reliable simulations. My research design 
for WP3 uses an integrative four step approach that embeds our constitutive neural networks into a 
Bayesian analysis; tests and trains the Bayesian network on our soft matter data from WP2; iteratively 
discovers better models, parameters distributions, and credible intervals; and, ultimately, embeds all 
this knowledge into a single universal material subroutine for finite element analyses.   
 

WP 3.1. Build a family of Bayesian constitutive neural networks for soft matter systems. First, I will 
embed our constitutive neural networks from WP1 into a Bayesian framework. My objective is to use 
Bayes’ theorem[10], p(J  | P ) = p( P | J ) / p(J ) •  p( P ), to estimate the posterior parameter distributions, p(J  | P ), 
of a set of network parameters J   = {wij}, such that the statistics of the network output P = ¶y(J ) /¶F agree 
with our experimental data P. Here p(P|J ) is the likelihood, the product of the individual point-wise 
likelihoods for each deformation level of our data set, for which we select a normal distribution N (µ,s), 
where the mean µ is the output of our model Pij = ¶y(J ) /¶Fij for given network parameters J, and s is the 
likelihood width, i.e., the standard deviation, for example s = 0.05[66]. For the prior probability 
distributions p(J ), we will select weakly informed priors[72], informed by our prior knowledge from WP1 
and WP2, with normal distributions N (µ,s) with a zero-mean µ = 0 for all network parameters, J   = {wij}.  
 

WP 3.2. Train and test the Bayesian networks on soft matter data. Second, we will train and test our 
new Bayesian constitutive neural networks on our newly collected data from WP2.1. Importantly, instead 
of using the means of the data to discover point values of parameters as we have done in WP2.2, we will 
now use each individual data set to discover parameter distributions with means and credible 
intervals[72]. Specifically, we will infer the posterior parameter distributions p(J  | P ) using Bayes’ 
theorem[10] and employ Hamilton Monte Carlo sampling using Tensorflow-Probability. Using our previous 
protocols, we will use the first 3000 samples to tune the sampler and the subsequent 3000 samples to 
estimate the conditional probability of the network parameters J  for our given experimental data P.  In 
contrast to WP2.2., where we learn point values for the network weights J, our Bayesian neural network 
now learns probability distributions for the network weights, from which we can extract means, credible 
intervals, and uncertainty to make probabilistic predictions[115]. Importantly, unlike standard Bayesian 
neural networks for which the network weights are random variables without any real physical 
interpretation, our custom-designed Bayesian networks learn distributions of physics-based parameters 
such as stiffnesses E, shear moduli µ, or Lamé constants L and G, with means and credible intervals that 
teach us something about the underlying physics[72].  
 

WP 3.3. Iteratively discover better models, parameter distributions, and credible intervals. Third, we 
will iteratively discover better models for the heart, arteries, muscle, lung, liver, skin, brain, hydrogels, 
silicone, artificial meat, foams, and rubber by gradually performing more experiments to narrow our 
credible intervals. Specifically, our Bayesian 
analysis in WP3.2 will infer the best 
probabilistic model, posterior parameter 
distributions, p(J |P) = p(P|J ) / p(J) . p(P), 
and experiment to explain our previous 
data. This discovery step will inform the 
design of new experiments with the highest 
possible degree of information. We will 
perform these discovered experiments, use 
our new experimental data to update our 
prior probability distributions, p(J), and 
start a new learning cycle. Importantly, our 

Figure 15. Automated model discovery for skin. Stress as a function of 
stretch; dots illustrate biaxial extension data; color code highlights the 
discovered model; Rx

2 and Ry
2 values suggest that the off-x test with the 

largest R2 values is the best experiment[76].  
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Bayesian approach represents a form of continuous learning[70,90] that progressively integrates new 
knowledge in the form of newly recorded stretch-stress pairs, { l, P }i. It naturally enables uncertainty 
quantification[54,66] from the inferred posterior parameter distributions, p(J |P ). As the network is exposed 
to more and more data, it will progressively improve its performance. We will quantify performance 
improvement by calculating and comparing the coefficients of determination R2 and the width of the 
inferred credible intervals. I will successively add our new experimental data, probabilistic models, and 
parameter distributions to our open source library on GitHub @LivingMatterLab. 
 

WP 3.4. Integrate all knowledge into a single universal material subroutine. Finally, to make our new 
technology available to a broad user audience, I will integrate our gained knowledge into a single 
universal material subroutine. To mitigate the potential high risk associated with this objective, I have 
initiated a partnership with Abaqus 
FEA/Simulia. Together, we are exploring the 
feasibility of creating a user interface that 
seamlessly takes our network output as 
input and selectively activates a few terms 
that define the best model and parameters 
to perform realistic finite element 
simulations of soft matter systems. We will 
build on our current prototype based on 
the network in Figure 6, and integrate the 
third, fourth, and fifth invariants, I3, I4, I5, to 
add compressibility and transverse 
isotropy[76]. Next, we will add features of 
mixed invariants, I1 and I3, or I1 and I4, to 
incorporate pressure-sensitive effects like 
the Poynting effect[83]. This will be more 
cumbersome, especially in implicit codes like Abaqus standard, since these terms will introduce more 
involved derivatives in the stress and tangent expressions. First, we will validate our implementation 
against our homogeneous tension, compression, and shear benchmarks from WP1 and WP2 in our open 
source library similar to Figure 16. Then, we will perform heterogeneous finite element simulations of our 
samples in tension, compression, and shear to explore to which extent the assumption of homogeneity 
under- or over-estimates the soft matter stiffness as indicated in Figure 17. Finally, we will perform finite 
element simulations of complex real-life systems to demonstrate the generalizability of our discovered 
models, similar to the examples in Figure 18. We will simulate both man-made and natural soft matter 
systems[8,38,128]. Yet, we envision the highest gain for simulations of realistic biological systems, for which 

in vivo stresses play a critical 
role in clinical decision ma-
king[44,111,122], disease manage-
ment[39,91,109,112,145], or persona-
lized treatment design [92,98,110], 
where stress measurements 
in the living body are out of 
reach with current diagnostic 
technologies today.  

 

Deliverables and Potential Limitations. The deliverables of WP3 are: (i) a novel iterative technology to 
seamlessly integrate experiment and computation using Bayesian constitutive neural networks; (ii) a 
suite of newly discovered probabilistic models and parameter distributions for a wide variety of natural 
and man-made soft materials; (iii) a fully trained, tested, and validated continuously learning discovery 
platform for soft matter systems; and (iv) a universal material subroutine for finite element simulations 
that will replace dozens of individual material-specific subroutines. While our preliminary results suggest 
that Bayesian regularization stabilizes network training—even on sparse and noisy data—the lack of 
sufficiently rich data remains a general limitation of neural networks. Importantly, we can always return 
to collect more data, for example for combined loading modes, treat our previously inferred distributions 

Figure 17. Effects of inhomogeneous deformation. We will perform finite element 
simulations to explore the heterogeneous nature of the deformation and stress profiles 
to investigate whether and to which extent the assumption of homogeneity under- or 
over-estimates the soft matter stiffness in shear, compression, and tension[21].  

Figure 16. Validation of universal material subroutine. Stress as a 
function of stretch and shear strain; dots illustrate the tension, 
compression, and shear data; color code highlights the discovered 
model according to Figure 6, but now simulated with our new universal 
user materials subroutine. The finite element simulation accurately 
reproduces the initial stress response in Figure 9. 
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as priors, and calculate new posterior distributions[66,70,90]. If anisotropic effects turn out to be dominant, 
we will include additional invariants, similar to Figure 15, which will also allow us to discover 
microstructural features such as fiber or sheet orientations, fiber dispersion, or volume fractions[49-52]. If 
coupling effects turn out to be relevant, we will revisit our sparsely connected network architecture and 
introduce edges between individual invariants, for example between I1 and I3 to capture the Poynting 
effect[83] or shear thinning, or between I1 and I4 to capture fiber dispersion[51]. If viscous effects turn out to 
be important, we will replace our feed forward architecture by a recurrent neural network[136], which will 
allow us to model dynamic behavior and discover characteristic time constants of the material[78,128,134]. 
While we expect to address most of the limitations of our man-made materials, one shortcoming that is 
inherent to natural materials will remain: the ex vivo nature of our model and parameter discovery. We 
will address this potential limitation by applying our universal material subroutine to perform forward 
finite element simulations and quantify the difference between our discovered ex vivo material 
properties and the in vivo properties from our previous inverse finite element simulations[38,91,109] or from 
our magnetic resonance elastography based stiffness measurements[139,141,142].   
 

V. EXPECTED IMPACT 
 

This project integrates cutting-edge developments in constitutive modeling, soft matter physics, deep 
learning, and artificial intelligence. This unique synergy will advance knowledge and provide innovative 
new technologies including: (i) a new design paradigm to reverse-engineer constitutive neural networks 
from the functional building blocks of popular constitutive models; (ii) a robust and efficient strategy to 
translate network weights into physically interpretable engineering parameters; (iii) the first family of 
constitutive neural networks that simultaneously discover the best models, parameters, and 
experiments—out of more than a million possible models—to characterize soft matter systems; (iv) a 
comprehensive open source library with dozens of data sets for natural and man-made soft materials 
including the heart, arteries, muscle, lung, liver, skin, brain, hydrogels, silicone, artificial meat, foams, 
and rubber; and (v) an open source discovery platform with our constitutive neural networks, models, 
and parameters to promote engineering education and advance scientific knowledge. This research is 
truly transformative in that it will enable a fully automated model, parameter, and experiment discovery, 
entirely without human interaction. This project has the potential to revolutionize constitutive 
modeling, from user-defined model selection to automated model discovery, which would forever 
change how we simulate materials and structures.  
 

This project will inspire the new multidisciplinary course Automated Model Discovery at the interface of 
engineering science and artificial intelligence. It will leverage large experimental undergraduate and 
graduate courses in which students perform multiaxial tests on soft biological tissues to crowdsource a 
large user group and probe model discovery on previously unseen data. I am in close discussion with 
Springer Nature with the objective to publish the content of the course in the textbook Automated Model 
Discovery. Table 1 summarizes the timeline of this project with work packages W1, W2, W3 and major 
milestones and deliverables throughout years 1 to 5. My main deliverable is a fully documented open 
source scientific discovery platform that includes our neural networks, experimental data, 
benchmarks, models, and parameters, freely accessible on GitHub for a wide range of users, 
regardless of their institutional or financial resources.  
 

To broaden participation across the entire European Union and beyond, I will actively recruit users with 
diverse backgrounds at short courses and summer schools, and produce short educational videos. I 
expect that automated model discovery will lower the barrier of entry into science, technology, 
engineering, and mathematics, stimulate a more inclusive and diverse scientific and technological 
community, and, ultimately, enable a more comprehensive understanding of soft matter systems. 
 

To foster technology transfer, I have partnered with Dassault Systemès Simulia to integrate our 
automated model discovery directly into their Abaqus finite element workflow and translate this 
knowledge into engineering practice. This technology has the potential to generate several exciting by-
products of groundbreaking nature. For example, it would enable real-life simulations that critically 
depend on accurate constitutive models to calculate stress profiles across the human body in vivo. These 
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high-resolution stress profiles are out 
of reach with current diagnostic 
technologies today; yet, they are 
highly significant in clinical decision 
making. for example, during brain 
development[25,47,64], neurosurgery[140], 
traumatic brain injury[44], and neuro-
degenerative diseases[33,65,112,113] as 
illustrated in Figure 18. As a founding 
member of the Abaqus Living Heart 
Project, I will leverage my successful 
collaboration with Dassault Systemès 
Simulia[8,39,91,92,98, 109-111,122] and embed 
automated model discovery into 
Abaqus simulations. Integrating our 
discovery platform into a finite 
element analysis will not only allow 
us to accurately reproduce and 
predict the behavior of soft material 
systems in complex real-life 
situations, but also provide a more complete picture of model uncertainties, and support a more robust 
and reliable decision making, especially with applications in the benefit of human health. 
 

This project has broad scientific, social, and economic impact, in that it will democratize constitutive 
modeling, stimulate discovery in soft matter systems, provide enabling machine-learning inspired 
tools to characterize, create, and functionalize soft matter, and train the next generation of civil, 
mechanical, and manufacturing innovators to adopt and promote these new technologies. 
 
Table 1. Timeline of the proposed project with work packages W1, W2, W3 and major milestones in years 1 through 5. 
 

  Y1 Y2 Y3 Y4 Y5 
  

WP 1 Establish a new family of constitutive neural networks that reproducibly discover the model, 
parameters, and experiment that best explain a wide variety of soft matter systems. 

  

WP 1.1 Build a family of constitutive neural networks for soft matter systems.      
WP 1.2 Train the networks on soft matter data from a single loading mode.      
WP 1.3 Test the networks on soft matter data from different modes.      
WP 1.4 Discover models and parameters for a wide variety of soft materials.      
  

WP 2 Train, test, and validate our discovered models on previously unseen data for the heart, arteries, 
muscle, lung, liver, skin, brain, hydrogels, silicone, artificial meat, foams, and rubber. 

  

WP 2.1 Perform a series of multiaxial tests on natural and man-made soft matter systems.      
WP 2.2 Discover the best model and parameters from all possible models.      
WP 2.3 Learn the best parameters for popular traditional constitutive models.      
WP 2.4 Compare the performance of newly discovered models to traditional models.      
  

WP 3 Quantify the uncertainty of our models, parameters, and experiments by embedding our networks 
into a Bayesian analysis to discover parameter distributions and credible intervals. 

  

WP 3.1 Build a family of Bayesian constitutive neural networks for soft matter systems.      
WP 3.2 Train and test the Bayesian networks on soft matter data sets.      
WP 3.3 Iteratively discover better models, parameter distributions, and credible intervals.      
WP 3.4 Integrate all knowledge into a single universal material subroutine.       

 
 

Figure 16. My group routinely performs clinically significant real-life 
simulations that critically depend on accurate constitutive models to calculate 
stress profiles in vivo, for example, in the human brain during brain 
development[25,47,64], neurosurgery[140], traumatic brain injury[44], and 
neurodegenerative diseases[33,65,112,113]. This project will enable more realistic 
simulations and make computational modeling broadly accessible to a more 
inclusive and diverse community. 
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