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Soft materials play an integral role in many aspects of modern life including biomedicine, energy 
storage, and consumer goods, and their accurate modeling is critical to understand their unique 
properties and functions. However, the successful modeling of soft materials is limited to a few well-
trained specialists in the field. My long-term goal is to democratize constitutive modeling through 
automated model discovery and make it accessible to a more inclusive and diverse community. The 
overall objective of this proposal is to establish a new family of constitutive neural networks that 
simultaneously and fully autonomously discover the model, parameters, and experiment that best 
explain a wide variety of soft matter systems. To train, test and validate these networks, I will perform 
tension, compression, and shear experiments on the heart, arteries, muscle, lung, liver, skin, brain, 
hydrogels, silicone, artificial meat, foams, and rubber, and quantify model uncertainties using a Bayesian 
approach. My central hypothesis is that automated model discovery will facilitate the exploration of a 
large parameter space of models, and provide unprecedented new insights into soft matter systems that 
are out of reach with traditional theoretical and numerical approaches today. My immediate deliverable 
is a fully documented open source scientific discovery platform that includes our new neural networks, 
experimental data, benchmarks, models, and parameters, freely available on GitHub. This discovery 
platform has the potential to induce a ground-breaking change in constitutive modeling and could 
forever change how we simulate materials and structures. This project will democratize constitutive 
modeling; stimulate discovery in soft matter systems; provide enabling deep-learning based tools to 
characterize, create, and functionalize soft matter; and train the next generation of civil, mechanical, and 
manufacturing innovators to adopt and promote these new technologies. 
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Section a: Extended Synopsis of the Scientific Proposal  
 

I. OVERVIEW AND WORK PACKAGES. 
 

Constitutive modeling and parameter identification are the cornerstones of the mechanics of materials 
and structures. For decades, the gold standard in constitutive modeling has been to first select a model 
and then fit its parameters to data. However, the scientific criteria for model selection remain poorly 
understood, and the success of this approach depends largely on user experience and personal 
preference. This limits the successful use of constitutive modeling—and with it the accurate design and 
analysis of engineering structures—to a few well-trained specialists in the field. My long-term goal is to 
democratize constitutive modeling through automated model discovery and make it accessible to a 
more inclusive and diverse community of students, scientists, and industries to accelerate the design 
of new functional materials and structures with tailored material properties. The overall objective of 
this proposal is to establish, train, test, and validate a new family of constitutive neural networks that 
simultaneously and fully autonomously discover the model, parameters, and experiment that best 
explain the behavior of a wide variety of soft materials. This discovery platform has the potential to 
induce a paradigm shift in constitutive modeling and could forever change how we simulate materials 
and structures. My central hypothesis is that automated model discovery facilitates the exploration of a 
large parameter space of models and enables the identification of complex relationships between 
microstructure and properties that are not apparent from experimental data alone. Automating the 
process of model discovery will help us eliminate user bias, identify new phenomena in soft matter 
systems, lead to a deeper understanding of the mechanics of soft matter, and guide the creation of more 
accurate design tools. My deliverable is an open source discovery platform that features a new family of 
constitutive neural networks, a comprehensive benchmark library to train, test, and validate these 
networks for a wide variety of soft materials, and a comprehensive documentation to readily adopt this 
new technology for other soft matter systems. The rationale for embedding model discovery into a 
custom-designed network architecture is that this will allow us to reverse engineer our own neural 
networks from the modular building blocks of popular constitutive models and to efficiently screen a 
large parameters space to select the best model out of more than a million possible combinations of 
terms. This will provide unprecedented new insights into constitutive modeling that are out of reach with 
traditional theoretical and numerical approaches today. I plan to accomplished these goals in three work 
packages summarized Figure 1. 
 

 
 

Figure 1. Automated model discovery. Discovering the best model, parameters, and experiment to explain a wide variety of 
soft matter systems including the heart, arteries, muscle, lung, liver, skin, brain, hydrogels, silicone, artificial meat, foams, and 
rubber. I will establish a new family of neural networks; train, test and validate them on tension, compression, and shear data; 
quantify their performance on new multiaxial experiments; and embed them into a Bayesian analysis to quantify uncertainty. 
 

WP 1. Establish a new family of constitutive neural networks that reproducibly discover the model, 
parameters, and experiment that best explain a wide variety of soft matter systems.  
WP 2. Quantify the performance of our discovered models on previously unseen data for the heart, 
arteries, muscle, lung, liver, skin, brain, hydrogels, silicone, artificial meat, foams, and rubber. 
WP 3. Quantify the uncertainty of our models, parameters, and experiments by embedding our networks 
into a Bayesian analysis to discover parameter distributions and credible intervals. 
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II. BACKGROUND AND STATE OF THE ART. 
 

Soft materials are complex to understand and challenging to model. For decades, chemical, physical, 
and material scientists alike have been modeling the hyperelastic response of soft matter under finite 
deformations[7,58,60,72,94,103]. They have proposed numerous competing constitutive models to best 
characterize the behavior of natural and man-made soft materials and calibrated their model 
parameters using uniaxial tension, compression, shear, and biaxial tests[14,24,31,39,69,70,85]. With this 
proposal, I challenge the conventional wisdom and propose a radically different approach towards 
constitutive modeling: I abandon the common strategy to first select a constitutive model and then tune 
its parameters by fitting the model to data[33]. Instead, I propose to simultaneously and fully 
autonomously discover both the constitutive model and material parameters that best explain the 
experimental data. While constitutive models for stiff materials are well-studied and well-understood, 
soft materials typically undergo finite deformations[93,]; they are highly nonlinear[92], often incom-
pressible[29], anisotropic[84], tension-compression asymmetric[10], and generally challenging to model. In 
the age of machine learning, this raises the question: Can we leverage the power of neural networks to 
systematically learn the best constitutive models for soft matter systems? 
 

Classical neural networks interpolate data well, but ignore the underlying physics. In the most general 
form, constitutive equations in solid mechanics are tensor-valued tensor functions that define the 
relation between a stress, for example the Piola stress P, and a deformation measure, for example the 
deformation gradient F[2,33,92]. Conceptually, we could use any neural network[56] to learn the functional 
relation between P and F and many approaches in the literature actually do exactly that[35,55]. 
Interestingly, the first neural network that learned a stress-strain model from data was proposed for 
concrete more than three decades ago[25]. In the early days[36,83], neural networks served merely as 
regression operators and were commonly viewed as a black box. This lack of transparency is probably 
the main reason why these early approaches never really generated momentum in our mechanics 
community. Now, more than 20 years later, neural networks have advanced as a promising technology to 
support constitutive modeling[41,64,67]. They hold a tremendous potential to interpolate big data, 
especially when we have no prior information about the data[1,46]. However, they generally perform 
poorly on small data, they are at risk of overfitting[42], and fail to extrapolate or predict scenarios beyond 
their training regime[52]. More importantly, classical off-the-shelf neural networks entirely ignore our prior 
domain knowledge[5] and the functions P(F) that they learn often violate standard arguments of 
thermodynamics and widely-accepted physical laws[3,26,40,89]. With this proposal, I explore whether and 
how we can build our prior domain knowledge in soft matter physics into a neural network. 
 

Constitutive neural networks can be reverse-engineered from constitutive building blocks. To 
understand the art of modeling, it is insightful to perform a systematic comparison of classical popular 
constitutive models[85,96]. Strikingly, the most widely used constitutive models are made up of structurally 
and functionally similar building blocks[20,29]. They are either functions of the set of invariants[33,84], I1, I2, I3 , 
or of the set of principal stretches[57,60,96], l1, l2, l3 , or more precisely, their equivalents in the undeformed 
reference configuration, [I1-3], [I2-3], [I3-1], or [l1-1], [l2-1], [l3-1]. These kinematic descriptors are then 
raised to linear, quadratic, or higher order powers, ( o )1, ( o )2 ,…, ( o )n, as in the neo Hooke[95], Blatz Ko[7], 
and Mooney Rivlin[58,72] models, and possibly further integrated into exponential or logarithmic functions, 
[exp( o )-1] or [ln(1-( o ))], as in the Demiray[14], Gent[24], and Holzapfel[32] models. Coefficients of these 
models, or combinations of them, take the natural interpretation of the shear and bulk moduli µ and k, 
or the Lamé constants L and G. With this proposal, I reverse engineer my own family of constitutive 
neural networks with activation functions that feature popular constitutive building blocks and 
network weights that translate into well-known engineering parameters. 
 
 

III. SCIENTIFIC APPROACH 
 

Throughout this research, I will pursue a holistic scientific approach that seamlessly integrates theory, 
experiment, and computation to automatically discover the best model, parameters, and experiment 
that explain a wide variety of soft matter systems. My research methodology requires a deep knowledge 
in constitutive modelling, soft matter physics, machine learning, and artificial intelligence, and is 
designed around the following three work packages, as illustrated in Figure 1.  
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WP 1. Establish a new family of constitutive neural networks that reproducibly discover the model, 
parameters, and experiment that best explain a wide variety of soft matter systems.  

 

Soft materials play an integral role in many aspects of modern life including biomedicine, energy 
storage, and consumer goods, and their accurate modeling is critical to understand their unique 
properties and functions. A recent trend in soft material modeling is to entirely abandon existing 
constitutive models and fully replace them by neural networks. However, classical neural networks 
perform poorly on small data, they ignore the fundamental laws of physics, and their parameters have 
no physical interpretation. The objective of this work package is to build, train, and test my own family of 
constitutive neural networks that a priori satisfy the fundamental laws of physics through selective input, 
output, architecture, and activation functions. My hypothesis is that my new constitutive neural 
networks seamlessly integrate our prior domain knowledge in soft matter physics and autonomously 
discover the model and parameters that best explain a wide variety of soft materials.  
 

My scientific approach is to reverse-engineer a new family of constitutive neural 
networks from the functional building blocks of popular constitutive models and 
hardwire physical constraints into the network design. Specifically, I will combine our 
recent invariant-based[52-54,89] and principal-stretch-based[87] neural networks into a 
selectively connected feed-forward network architecture with two invariants, I1 and I2, 
and two principal stretches, l1 and l2, as input, two hidden layers, and seven 

activation functions per input, ( o )1, ( o )2, ( o )n, exp( o )1-1,  exp( o )2-1, ln(1- ( o )1), ln(1-( o )2), scaled by twelve 
weights. This will result in 4 x 7 = 28 individual terms and 4 x 12 = 48 network parameters, w = wij. I will 
train the network on soft matter data including classical benchmark data for rubber[94], data from our 
collaborators for skin[54,89], arteries[59], and the heart[34], and our own data for human brain[10-13]. I will 
minimize  the  loss  function,  L( w ; F ) = || P ( F ) – P ||2 /ntrain  ®  min,  the error between model P ( F ) and data  
{ F, P  } divided by the number of training points ntrain, using the Adam optimizer. While our preliminary 
results[54] in Figure 1 suggest that we can robustly and repeatedly discovery a small subset of non-zero 
network weights that define model selection and parameterization, there is a chance that the discovery 
process identifies a large set of terms or becomes non-unique. To mitigate this limitation and reduce the 
risk of overfitting, I will apply L1 and L2 regularization, L( w ; F ) = || P ( F ) – P ||2/ntrain + a1 ||w||1 + a2 ||w||2

2® min, 
by supplementing the loss function with the weighted L1 norm ||w||1 or the weighted L2 norm ||w||2

2. We 
have shown that increasing the parameters a1 and a 2 reduces the number of non-zero weights and with 
it the number of activated terms[53,87]. The small subset of non-zero weights, the four blue terms in Figure 1, 
define the best model[53]. Our new 28-term network will discover this model from 228 = 268,435,456 
possible combinations of terms, from more than 250 million possible models! Importantly, our network 
weights naturally translate into meaningful parameters with physical units and a real physical 
interpretation. My rationale for using machine learning to automate model selection is that this allows us 
to rapidly screen millions of possible models, confirm existing models, and autonomously discover new 
combinations of terms, which are out of reach for conventional manual decision making today.  
 

The deliverables of WP1 are: (i) a general concept to hardwire physical knowledge into a neural network 
design; (ii) a new family of constitutive neural networks for incompressible, hyperelastic materials; (iii) a 
set of mechanistically interpretable network weights that are intrinsically related to traditional invariant- 
and principal-stretch-based parameters; and (iv) a new open-source discovery platform to 
autonomously discover model, parameters, and experiments for soft matter systems that I will make 
publicly available on GitHub @LivingMatterLab. I expect that our custom-designed networks will induce 
a paradigm shift in constitutive modeling, from user-defined to fully automated, to make modeling 
accessible to a more inclusive and diverse community and accelerate scientific discovery and innovation. 
 

WP 2. Train, test, and validate our discovered models on previously unseen data for the heart, 
arteries, muscle, lung, liver, skin, brain, hydrogels, silicone, artificial meat, foams, and rubber. 

 

Benchmarking material models is critical to quantify their performance and accuracy against other 
models and evaluate their potential to solve real-world problems. To date, most constitutive neural 
networks are benchmarked against artificial synthetic data, but their true performance on noisy and 
incomplete real world-data remains insufficiently understood. The objective of this work package is to 
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perform a series of tension, compression, and shear experiments on a variety of soft materials to train, 
test, and validate our model. My hypothesis is that our discovered models will outperform popular 
existing models and generalize robustly to previously unseen data in the spirit of continuous learning.  
 

My scientific approach to test this hypothesis is to perform a comprehensive series of 
benchmark experiments to generate new, previously unseen data for network 
training, testing, and validation. We will train ourselves in multiaxial soft tissue 
testing during research visits to Professor Gerhard Holzapfel’s group at TU Graz. I will 
then purchase the same triaxial testing device (Zwick/Roell, Ulm, Germany) to 
perform new tension, compression, and shear experiments on up to 5 x 5 x 5 mm3 large 

cubic specimens of both natural and man-made soft materials following our previous protocols[10-12]. As 
Figure 1 indicates, I will expand our existing benchmark library for rubber[52], skin[47,54], and brain[53] on 
GitHub @LivingMatterLab, and successively add new experimental data on the heart[34,76], arteries[51,59], 
muscle[73-75,102], lung[17,18], liver, hydrogels, silicone, artificial meat, and foams. To address the limitation of 
incompressibility and isotropy of our networks from WP1, I will now add the third, fourth, and fifth 
invariants[29,84], I3, I4, I5, to our network architecture[54],, and discover the best model, parameters, and 
experiments across all data in our open source library. For comparison, I will then constrain all but a few 
selected network weights to zero, and use our network to learn the best parameters of popular 
constitutive models including neo Hooke[95] with y = ½ µ [I1-3], Demiray[14] with y = ½  a/b [exp(b[I1-3])-1], 
Gent[24] with y = -½  a/b ln(1-(b[I1-3])), Holzapfel[32] with y = ½  a/b [exp(b[I4-3])2-1], and Blatz Ko[7] with y = 
½ µ [I2-3]. I will quantify the performance of model discovery using the coefficients of determination and 
normalized root mean squared errors, and compare our discovered models against these and other 
popular existing models. The goodness of fit R2 in Figure 1 suggests that our newly discovered model in 
grey consistently outperforms these models, in dark red, red, light red, orange, and green[53]. The 
rationale for systematic benchmarking with traditional models is that this will confirm successful existing 
models, identify shortcomings in others, and build trust in our newly discovered models.  
 

The deliverables of WP2 are: (i) a comprehensive experimental data sets of soft matter systems including 
the heart, arteries, muscle, lung, liver, skin, brain, hydrogels, silicone, artificial meat, foams, and rubber; 
(ii) a suite of newly discovered models and parameters for natural and man-made soft materials; (iii) a 
quantitative performance evaluation of our newly discovered models compared to existing traditional 
models; and (iv) new mechanistic insight into the fundamental building blocks of constitutive models for 
soft matter systems. I expect that our open source benchmark library, with dozens of new data sets, 
models, and parameters, will become a standard go to reference that will increase collaboration, 
reusability, transparency, and learning opportunities that will benefit both individual soft matter 
modelers and the mechanics community at large. 
 

WP 3. Quantify the uncertainty of our models, parameters, and experiments by embedding our 
networks into a Bayesian analysis to discover parameter distributions and credible intervals. 

 

Neural networks have been successfully used to fit stress-stretch curves to data; yet, to date, no unified 
concept exists to interpret the data, model, and parameters in view of uncertainty quantification. The 
objective of this work package is to establish a family of Bayesian constitutive neural networks to 
discover models, parameters distributions, and credible intervals for uncertainty quantification. My 
hypothesis is that by embedding our networks into a Bayesian framework, our deterministic models, 
and parameter point estimates from WP1 and WP2 will seamlessly translate into probabilistic models 
and parameter distributions for uncertainty quantification.  
 

My scientific approach to test this hypothesis is to embed our trained neural 
networks into a Bayesian analysis[37,38,50,81,82] and iteratively improve them by gradually 
adding new data. Specifically, the Bayesian analysis will infer the best probabilistic 
model, posterior parameter distributions, p(J |P) = p(P|J ) / p(J) . p(P), and experiment 
to explain our previous data[45]. This discovery step will inform the design of new 
experiments with the highest possible degree of information. We will perform these 

discovered experiments, use the new data to update our prior probability distributions, p(J), and start a 
new learning cycle. Our Bayesian approach is a form of continuous learning[45] that inherently provides 



Kuhl Part B1                            DISCOVER  
 

 6 

uncertainty quantification[6,48,61,77]. My rationale is that the weights of our Bayesian networks represent 
well-defined physical parameters with means and credible intervals that will progressively narrow as 
more data become available. I will successively add our new experimental data, probabilistic models, 
and parameter distributions to our open source library on GitHub @LivingMatterLab, and, ultimately, 
integrate all knowledge into a single universal material subroutine for finite element simulations.  
 

The deliverables of WP3 are: (i) a novel iterative technology to seamlessly integrate experiment and 
computation using Bayesian constitutive neural networks; (ii) a suite of newly discovered probabilistic 
models and parameter distributions for a wide variety of natural and man-made soft materials; (iii) a 
fully trained, tested, and validated continuously learning discovery platform for soft matter systems; and 
(iv) a universal material subroutine for finite element simulations that will replace dozens of individual 
material-specific subroutines. I expect that our discovery platform will not only accurately reproduce 
and predict the behavior of soft material systems in complex real-life situations, but also provide a more 
complete picture of model uncertainties and support a more robust and reliable decision making. 
 

IV. GROUND-BREAKING NATURE AND HIGH-RISK/HIGH-GAIN ASSESSMENT 
 

Soft matter systems are neither traditional solids nor liquids. They exhibit complex and tunable 
behaviors, which make them highly suitable for a wide range of applications in biomedicine, 
pharmaceutics, food science, energy storage, soft robotics, and wearable electronics. This project 
addresses the critical need to understand the unique behavior of soft materials through automated 
model discovery, a ground-breaking new paradigm to autonomously discover the model, parameters, 
and experiment that best explain soft matter systems. Clearly, this is a timely but very ambitious, high-
risk goal that would have been unthinkable several years ago: It integrates cutting-edge developments in 
constitutive modelling and soft matter physics[20,21,35,66,89] with recent discoveries in deep learning and 
artificial intelligence[1,41,46,52,67,71,90]. Throughout my career, I have pioneered technologies to test, model, 
and simulate soft materials[15,16,19,27,28,43,44,79,91,97,98,102]

 and fit these models to data[9-13,22,23,30,62,65,78,80,86,99-101]. 
However, it is becoming increasingly clear that this approach provides only limited insight into the 
complex behavior of soft materials. To gain a more holistic understanding, I propose to establish an open 
source discovery platform that I will share with students, scientists, and industries across all disciplines 
to advance our collective understanding of soft matter systems. As a founding member of the Living 
Heart Project, an open source translational research initiative to revolutionize cardiovascular science 
through realistic simulation, I have a successful track record in partnering with more than 400 
participants from research, medicine, industry, and regulatory agencies from more than two dozen 
countries[4,22,23,62,63,68,76,77,78,86,91]. Similar to the Living Heart Project, this project has the potential for high 
gain, as it aims to enable everyone—not just a few well-trained specialists—to accurately model and 
simulate soft matter systems. To mitigate the potential high risk that this project is too visionary to 
work, I have prototyped my scientific approach for rubber[52], skin[54,89], and human brain[53,87]. I envision 
that generalizing this concept to other soft materials is conceptually feasible and straightforward. To 
ensure high gain and translate the results of this project into practise, I have partnered with Abaqus 
FEA/Simulia to create a single universal user material subroutine that will replace dozens of individual 
model-specific subroutines. This new subroutine takes our network output as input and entirely 
eliminates the critical step of model selection in a finite element analysis. To address the high risk that 
this subroutine does not generalize well to other materials, I will crowdsource a large lay audience of 
potential users in engineering classes, workshops, and summer schools. I am confident that integrating 
science and education by crowdsourcing will gradually make our discovery platform more robust and 
user-friendly, and create a broader and more inclusive user community. This project has the potential to 
induce a ground-breaking change in constitutive modeling—from user-defined model selection to 
automated model discovery—which would forever change how we simulate materials and structures. 
 

V. REQUESTED RESOURCES 
 

I am currently the Robert Bosch Chair of Mechanical Engineering at Stanford University. This ERC 
Advanced Grant will allow me to gradually transition back to Europe: During the first two years, I will 
spend half of my time, sabbaticals and teaching-free summers, at the FAU Erlangen. In year three, my 
family plans to return to Europe fulltime. This project requests part-time support for myself, two 
postdocs, a part-time staff member, a triaxial testing device (Zwick/Roell, Ulm, Germany), and research 
visits to the TU Graz to collaborate with Professor Gerhard Holzapfel on soft tissue testing and modelling. 
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learning. Journal of the Royal Society Interface 18:20210411. 

36. Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. 
Proceedings of the National Academy of Science 79:2554-2558. 

37. Joshi A, Thakolkaran P, Zheng Y, Escande M, Flaschel M, De Lorenzis L, Kumar S (2022) Bayesian-EUKLID: 
Discovering hyperelastic mateirals laws with uncertainties. Computer Methods in Applied Mechanics and 
Engineering 398: 115225. 

38. Kaczmarski B, Moulton DE, Goriely A, Kuhl E (2023) Bayesian design optimization of biomimetic soft actuators. 
Computer Methods in Applied Mechanics and Engineering 408: 115939. 

39. Kakaletsis S, Lejeune E, Rausch MK (2023) Can machine learning accelerate soft material parameter 
identification from complex mechanical test data? Biomechanics and Modeling in Mechanobiology 22: 57-70. 

40. Kalina KA, Linden L, Brummund J, Metsch P, Kastner M (2022) Automated constitutive modeling of isotropic 
hyperelasticity based on artificial neural networks. Computational Mechanics 69: 213-232. 

41. Karniadakis GE, Kevrekidis IG, Lu L, Perdikaris P, Wang S, Yang L (2021) Physics-informed machine learning. 
Nature Reviews Physics 3:422-440. 

42. Klein DK, Fernandez M, Martin RJ, Neff P, Weeger O (2022) Polyconvex anisotropic hyperelasticity with neural 
networks. Journal of the Mechanics and Physics of Solics 159: 105703. 

43. Kuhl E (2016) Biophysics: Unfolding the brain. Nature Physics 12: 533-534. 
44. Kuhl E (2019) Connectomics of neurodegeneration. Nature Neuroscience 22: 1200–1202.  
45. Kuhl E (2021) Computational Epidemiology. Data-driven modeling of COVID-19. Springer Nature. 
46. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521: 436-444. 
47. Limbert G, Kuhl E (2018) On skin microrelief and the emergence of expression microwrinkles. Soft Matter 14: 

1292-1300. 
48. Linka K, Peirlinck M, Sahli Costabal F, Kuhl E (2020) Outbreak dynamics of COVID-19 in Europe and the effect of 

travel restrictions. Computer Methods in Biomechanics and Biomedical Engineering 23:710-717. 
49. Linka K, Hillgartner M, Abdolazizi KP, Aydin RC, Itskov M, Cyron CJ (2021) Constitutive artificial neural networks: 

A fast and general approach to predictive data-driven constitutive modeling by deep learning. Journal of 
Computational Physics 429: 110010. 

50. Linka K, Schafer A, Meng X, Zou Z, Karniadakis GE, Kuhl E (2022)  Bayesian Physics-Informed Neural Networks 
for real-world nonlinear dynamical systems. Computer Methods in Applied Mechanics and Engineering 402: 
115346. 

51. Linka K, Cavinato C, Humphrey JD, Cyron CJ (2022) Predicting and understanding arterial elasticity from key 
microstructural features by bidirectional deep learning by deep learning. Acta Biomaterialia 147: 63-72. 

52. Linka K, Kuhl E (2023) A new family of Constitutive Artificial Neural Networks towards automated model 
discovery. Computer Methods in Applied Mechanics and Engineering 403: 115731. 

53. Linka K, St Pierre SR, Kuhl E (2023) Automated model discovery for human brain using Constitutive Artificial 
Neural Networks. Acta Biomaterialia 160: 134-151. 
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54. Linka K, Buganza Tepole A, Holzapfel GA, Kuhl E (2023) Automated model discovery for skin: Discovering the 
best model, data, and experiment. Computer Methods in Applied Mechanics and Engineering 410: 116007. 

55. Masi F, Stefanou I, Vannucci P, Maffi-Berthier V (2021) Thermodynamics-based artificial neural networks for 
constitutive modeling. Journal of the Mechanics and Physics of Solids 147: 04277. 

56. McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bulletin of 
Mathematical Biophysics 5: 115–133. 

57. Mihai LA, Budday S, Holzapfel GA, Kuhl E, Goriely A (2017) A family of hyperelastic models for human brain 
tissue. Journal of the Mechanics and Physics of Solids 106: 60-79. 

58. Mooney M (1940) A theory of large elastic deformations. Journal of Applied Physics 11: 582-590. 
59. Niestrawska JA, Viertler C, Regitnig P, Cohnert TU, Sommer G, Holzapfel GA (2016) Microstructure and 

mechanics of healthy and aneurysmatic abdominal aortas: experimental analysis and modelling. Journal of the 
Royal Society Interface 13: 20160620.  

60. Ogen RW (1972) Large deformation isotropic elasticity -- on the correlation of theory and experiment for 
incompressible rubberlike solids. Proceedings of the Royal Society London Series A 326: 565-584. 

61. Peirlinck M, Linka K, Sahli Costabal F, Kuhl E (2020) Outbreak dynamics of COVID-19 in China and the United 
States. Biomechanics and Modelingin Mechanobiology 19: 2179-2193. 

62. Peirlinck M, Sahli Costabal F, Sack KL, Choy JS, Kassab GS, Guccione JM, De Beule M, Segers P, Kuhl E (2019) 
Using machine learning to characterize heart failure across the scales. Biomechanics Modeling and 
Mechanobiology 18: 1987-2001.  

63. Peirlinck M, Sahli Costabal F, Yao J, Guccione JM, Tripathy S, Wang Y, Ozturk D, Segars P, Morrison TM, Levine S, 
Kuhl E (2021) Precision medicine in human heart modeling. Perspectives, challenges and opportunities. 
Biomechanics Modeling and Mechanobiology 20: 803-831. 

64. Peng GCY, Alber M, Buganza Tepole A}}, Cannon W, De S, Dura-Bernal S, Garikipati K, Karniadakis G, Lytton WW, 
Perdikaris P, Petzold L, Kuhl E (2021) Multiscale modeling meets machine learning: What can we learn? 
Archives of Computer Methods in Engineering 28: 1017-1037. 

65. Ploch CC, Mansi CSSA, Jayamohan J, Kuhl E (2016) Using 3D printing to create personalized brain models for 
neurosurgical training and preoperative planning. World Neurosurgery 90: 668-674. 

66. Prume E, Reese S, Ortiz M (2023) Model-free data-driven inference in computational mechanics. Computer 
Methods in Applied Mechanics and Engineering 403: 115704. 

67. Raissi M, Perdikaris P, Karniadakis GE (2019) Physics-informed neural networks: a deep learning framework for 
solving forward and inverse problems involving nonlinear partial differential equations. Journal of 
Computational Physics 378:686–707.  

68. Rausch MK, Zollner AM, Genet M, Baillargeon B, Bothe W, Kuhl E (2017) A virtual sizing tool for mitral valve 
annuloplasty. International Journal for Numerical Methods in Biomedical Engineering 33: e02788.  

69. Reese S, Govindjee S (1997) Theoretical and numerical aspects in the thermos-viscoelastic material behavior of 
rubber-like polymers. Mechanics of Time-Dependent Materials 1: 357-396. 

70. Reese S, Govindee S (1998) A theory of finite viscoelasticity and numerical aspects. International Journal of 
Solids and Structures 35: 3455-3482. 

71. Rezaei S, Harandi A, Moeineddin A, Xu BX, Reese S (2022) A mixed formulation for physics-informed neural 
networks as a potential solver for engineering problems in heterogeneous domains: Comparison with finite 
element method. Computer Methods in Applied Mechanics and Engineering 401: 115616. 

72. Rivlin RS (1948) Large elastic deformations of isotropic materials. IV. Further developments of the general 
theory. Philosophical Transactions of the Royal Society of London Series A 241: 379–397. 

73. Röhrle O, Pullan AJ (2007) Three-dimensional finite element modelling of muscle forces during mastication. 
Journal of Biomechanics 40: 3363-3372. 

74. Röhrle O (2010) Simulating the electro-mechanical behavior of skeletal muscles. Computing in Science & 
Engineering 12: 48-58. 

75. Röhrle O, Davidson JB, Pullan AJ (2012) A physiologically based, multi-scale model of skeletal muscle structure 
and function. Frontiers in Physiology 3: 358. 

76. Sahli Costabal F, Choy JS, Sack KL, Guccione JM, Kassab G, Kuhl E (2019) Multiscale characterization of heart 
failure. Acta Biomaterialia 86: 66-76. 

77. Sahli Costabal F, Matsuno K, Yao J, Perdikaris P, Kuhl E (2019) Machine learning in drug development: 
Characterizing the effect of 30 drugs on the QT interval using Gaussian process regression, sensitivity analysis, 
and uncertainty quantification. Computer Methods in Applied Mechanics and Engineering 348: 313-333. 
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78. Sahli Costabal F, Seo K, Ashley E, Kuhl E (2020) Classifying drugs by their arrhythmogenic risk using machine 
learning. Biophysical Journal 118: 1-12. 

79. Schafer A, Weickenmeier J, Kuhl E (2019) The interplay of biochemical and biomechanical degeneration in 
Alzheimer's disease. Computer Methods in Applied Mechanics and Engineering 352: 369-388. 

80. Schafer A, Chaggar P, Thompson TB, Goriely A, Kuhl E (2021) Predicting brain atrophy from tau pathology: a 
summary of clinical findings and their translation into personalized models. Brain Multiphysics. 2: 100039.  

81. Schafer A, Peirlinck M, Linka K, Kuhl E (2021) Bayesian physics-based modeling of tau propagation in 
Alzheimer's disease. Frontiers in Physiology. 12: 702975. 

82. Schafer A, Chaggar P, Goriely A, Kuhl E (2022) Correlating tau pathology to brain atrophy using a physics-based 
Bayesian model. Engineering with Computers 38: 3867-3877. 

83. Shen Y, Chandrashekhara K, Breig WF, Oliver LR (2004) Neural Network based constitutive model for rubber 
material. Rubber Chemistry and Technology 77: 257-277. 

84. Spencer AJM (1971) Theory of Invariants. In: Eringen AC, Ed., Continuum Physics Vol. 1: 239-353, Academic 
Press, New York. 

85. Steinmann P, Hossain M, Possart G (2012) Hyperelastic models for rubber-like materials: consistent tangent 
operators and suitability for Treloar's data. Archive of Applied Mechanics 82:1183-1217. 

86. St Pierre SR, Peirlinck M, Kuhl E (2022) Sex matters: A comprehensive comparison of female and male hearts. 
Frontiers in Physiology 13: 831179. 

87. St Pierre SR, Linka K, Kuhl E (2023) Principal-stretch-based constitutive neural networks autonomously 
discover a subclass of Ogden models for human brain tissue. Brain Multiphysics 4: 100066. 

88. Tac V, Sahli Costabal F, Buganza Tepole A (2022) Data-driven tissue mechanics with polyconvex neural ordinary 
differential equations. Computer Methods in Applied Mechanics and Engineering 398: 115248. 

89. Tac V, Linka K, Sahli Costabal F, Kuhl E, Buganza Tepole A (2023) Benchmarks for physics-informed data-driven 
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90. Thakolkaran P, Joshi A, Zheng Y, Flaschel M, De Lorenzis L, Kumar S (2022) NN-EUKLID: Deep-learning 
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from a computational study. Computational Mechanics 70: 565-579. 

92. Truesdell C, Noll W (1965) Non-linear field theories of mechanics. In: Flügge S, Ed., Encyclopedia of Physics, Vol. 
III/3, Spinger, Berlin. 

93. Truesdell C (1969) Rational Thermodynamics, Lecture 5. McGraw-Hill, New York. 
94. Treloar LRG (1944) Stress-strain data for vulcanised rubber under various types of deformation. Transactions of 
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Journal of Applied Physics 38: 2997-3002. 
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Seminars in Cell and Developmental Biology 140: 13-21. 
99. Weickenmeier J, de Rooij R, Budday S, Steinmann P, Ovaert TC, Kuhl E (2016) Brain stiffness increases with 
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100. Weickenmeier J, Kurt M, Ozkaya E, Wintermark M, Butts Pauly K, Kuhl E (2018) Magnetic resonance 
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post mortem. Journal of the Mechanical Behavior of Biomedical Materials 84: 88-98. 
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103. Zopf C, Kaliske M (2017) Numerical characterisation of uncured elastomers by a neural network based 
approach. Computers and Structures 182: 504-525. 
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Section b:  Curriculum vitae  
 

Personal Information 
 

Family name, First name  Kuhl, Ellen 
Researcher unique identifiers   Google Scholar  jjQDKYYAAAAJ 
     ORCID   0000-0002-6283-935X  

Researcher ID  G-4444-2011 
Scopus ID  7004398913 
Research Gate  Ellen-Kuhl 

Date of birth, Nationality   15.08.1971, German 
URL for web site    https://livingmatter.stanford.edu 
 

Education 
 

2004 Habilitation Mechanical Engineering, Technical University of Kaiserslautern, Germany 
2000 PhD Civil Engineering, University of Stuttgart, Germany 
1995 MS Civil Engineering, Leibniz University of Hannover, Germany 
1993 BS  Computational Engineering, Leibniz University of Hannover, Germany 
 

Current Positions 
 

2021 - Walter B. Reinhold Professor in the School of Engineering, Stanford University, Stanford 
2019 -  Robert Bosch Department Chair of Mechanical Engineering, Stanford University, Stanford 
2016 - Professor of Mechanical Engineering and Bioengineering, Stanford University, Stanford 
 
 

Previous Positions 
 

2010 - 2016 Associate Professor of Mechanical Engineering, Stanford University, Stanford, California 
2011 - 2011 Professor of Mechanical and Process Engineering, ETH Zurich, Switzerland 
2007 - 2009 Assistant Professor of Mechanical Engineering, Stanford University, Stanford, California 
2002 - 2006 Assistant Professor of Mechanical and Process Engineering, TU Kaiserslautern, Germany 
2001 - 2002 Habilitation Researcher, Mechanical and Process Engineering, TU Kaiserslautern, Germany 
2000 - 2001 Postdoctoral Researcher, Aerospace Engineering, TU Delft, the Netherlands 
1996 - 2000 Graduate Researcher, Civil Engineering, University of Stuttgart, Germany 
1995 - 1996 Graduate Researcher, Civil Engineering, Leibniz University of Hannover, Germany 
 

Awards and Fellowships 
 

2021 Ted Belytschko Applied Mechanics Award; American Society of Mechanical Engineers (ASME)  
2017 Fellow; American Society of Mechanical Engineers (ASME) 
2016 Humboldt Research Award; Alexander von Humboldt Foundation 
2014 Fellow; American Institute for Medical and Biological Engineering (AIMBE)  
2014 Midwest Mechanics Seminar Speaker  
2010 - 2014 CAREER Award; National Science Foundation (NSF)  
2009 Hellman Faculty Scholar 
2001 - 2004  Habilitation Research Award; German National Science Foundation (DFG)  
1996 - 1999 Graduate Research Fellowship; German National Science Foundation (DFG)  

Supervision of Graduate Students and Postdoctoral Fellows 
 

2002 – 2023  Doctorates: 14 completed and 6 ongoing; Postdoctorates: 9 completed and 1 ongoing 
 

Teaching Activities (Selection)  
  

2007 - 2023 Statics, Finite Element Analysis, Continuum Mechanics, Introduction to Neuromechanics, 
Mechanics of the Cell, Mechanics of the Brain, Mechanics of Growth; Data-Driven 
Modeling of Covid-19, Automated Model Discovery; Stanford University, California  

2017, 2019 Introduction to Neuromechanics; FAU Erlangen Nuremberg, Germany 
2011 Mechanics I; ETH Zurich, Switzerland  
2001 - 2006 Mechanics II Strength of Materials, Linear and Nonlinear Continuum Mechanics, Linear 

and Nonlinear Finite Element Methods, Biomechanics; TU Kaiserslautern, Germany  
2012, 2018 Modeling of Living Matter; 5th and 8th Summer School on Biomechanics; TU Graz, Austria 
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2017 Growth and Remodeling; 23rd CISM-IUTM International Summer School; Udine, Italy 
2003 Open Systems and Growth, Commas Summer School; University of Stuttgart, Germany 
 

Institutional Responsibilities (Selection / Most Recent) 
 

2022 -  Member, Bio-X Leadership Council; Stanford 
2021 -  Member, Wu Tsai Human Performance Alliance Executive Committee; Stanford 
2019 -  Chair, Department of Mechanical Engineering; Stanford  
2019 -  Member, School of Engineering Executive Committee; Stanford  
2014 -  Member, Department of Mechanical Engineering, Advisory Committee; Stanford 
2020 - 2022 Chair, Department of Mechanical Engineering Strategic Planning Committee; Stanford 
2018 - 2019 Chair, Department of Mechanical Engineering Graduate Admission Committee; Stanford 
2017 - 2018 Chair, Department of Mechanical Engineering Graduate Curriculum Committee; Stanford 
2017 - 2018 Member, Stanford University Long-Range Planning Steering Group Research; Stanford 
2016 – 2017 Member, Stanford University Leading the Biomedical Revolution; Stanford  
2015 – 2017 Fellow, Stanford University; Stanford 
2015 - 2016  Chair, Department of Mechanical Engineering Faculty Search Committee; Stanford 
 

Professional Service (Selection / Most Recent) 
  

2020 - Member-Elect, Expertengremium für Exzellenzstrategie, German Science Foundation (DFG) 
2018 -  Chair, US National Committee on Biomechanics (USNCB) 
2018 -  Member-Elect, World Council of Biomechanics (WCB) 
2020 - 2022 Chair TTA Data-Driven Modeling, US Association for Computational Mechanics (USACM) 
2016 - 2018  Member-at-Large, US Association for Computational Mechanics (USACM) 
2016 - 2018 Vice Chair, US National Committee on Biomechanics (USNCB)    
2016 - 2018 Member, NIH IMAG Interagency Modeling Analysis Group Steering Committee (IMAG)   
2015 - 2019 Chair TTA Biological Systems, US Association for Computational Mechanics (USNCM)   
2014 - 2016 Secretary and Treasurer, US National Committee on Biomechanics (USNCB) 
 

Review Activities (Selection) 
 

2018  German National Science Foundation (DFG) ING Excellence Initiative Panel  
2017  German National Science Foundation (DFG) ING Excellence Initiative Panel  
2012 German National Science Foundation (DFG) ING Excellence Initiative Panel  
2012 - 2018 National Institutes of Health (NIH) Mod Anal Bio Systems (MABS) Study Section Member 
2012 - 2014 American Heart Association (AHA), Bioengieering , Basic Sciences, Peer Review Study Group 
2012 -  Qatar National Research Fund (QNRF) Division of Engineering 
2011 -  National Science Foundation (NSF) CMMI Biomech Model Mechanobio (BMMB) CAREER 
2010 - National Science Foundation (NSF) CMMI Mech Materials Structures (MOMS) CAREER 
2009 -  Stanford Bio-X Interdisciplinary Initiative Seed Grants (Bio-XIIP) V-X; Rounds I and II 
2009 - Swiss National Science Foundation (SNF) Divisions of Med, Eng Sci, Math Nat Sci, … 
2009 -  Israel National Science Foundation (ISF) Division of Engineering 
2007 - National Science Foundation (NSF) BMMB, MOMS, CBET, CDSE, DMS, DCI, ENG, PHY, EFRI, … 
2006 -  German National Science Foundation (DFG) Divisions of Eng Sci, Life Sci, SFB 926, … 
 

Membership of Professional Societies 
 

APS American Physical Society  
ASME American Society of Mechanical Engineers  
BMES Biomedical Engineering Society  
ESB European Society of Biomechanics  
EUROMECH European Mechanics Society (EUROMECH), Member 
IACM International Association for Computational Mechanics  
USACCM US Association for Computational Mechanics  
 

Other 
 

2018 –  All American Triathlete 
2019 - 2023 Ironman Word Championship Qualifier; Kailua Kona, Hawaii  
2009 - 2023  Marathon Runner; Berlin, Boston, Chicago, New York, San Francisco, Zurich 
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Appendix: All on-going grants and submitted grants applications of the PI (Funding ID)  
 
 

On-going grants 
 

Project Title Funding source Amount 
(Euros) 

Period Role of the 
PI 

Relation to current  
ERC proposal 

1663671 
SI2-SSI 
Collaborative 
Research: The 
SimCardio open 
source multi-
physics cardiac 
modelling 
package 

National Science 
Foundation NSF 

$1,431,169 6 years 
-2023 

Co-Principal 
Investigator 

None: Project 
develops open 
source software 
package for physics-
based multi-scale 
cardiac simulations 
in health and 
disease from 
medical images 

Wu Tsai 
Performance 
Alliance; 
Moonshot 1: 
The Digital 
Athlete  

Joe and Clara 
Tsai Foundation 

Public-
private 
partner-
ship 
supported 
through a 
total 
donation 
of $220M  

10 years 
-2031 

Co-Principal 
Investigator 

None: Project 
creates open source 
predictive computer 
models to guide 
training and 
treatment for 
athletes to better 
understand human 
health 

 

 

 
 

Submitted grant applications 
 

Project Title Funding source Amount 
(Euros) 

Period Role of the 
PI 

Relation to current  
ERC proposal 

Mechanics of 
Bioinspired Soft 
Slender 
Actuators 

National Science 
Foundation NSF 

$650,000 3 years Principal 
Investigator 

None: Project would 
seek to understand 
soft biomimetic 
robots inspired by 
the elephant trunk 
through modeling, 
simulation, and 
experiment 

Automated 
Model Discovery 
for Soft Matter 

National Science 
Foundation NSF 

$400,000 3 years Principal 
Investigator 

None: Project would 
prototype different 
strategies for model 
discovery; it could 
inform Aim 1 of this 
project, but there 
would be no direct 
overlap  
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Section c:  Ten years track-record  
 

Top 10 publications since 2013 (Google Scholar h-index 5/23: 77, 19,000 citations in total) 
 

1. Budday S, Nay R, de Rooij R, Steinmann P, Wyrobek T, Ovaert TC, Kuhl E. Mechanical properties of 
gray and white matter brain tissue by indentation. J Mech Behavior Biomed Mat 2015; 46: 318-330; 
568 citations 

2. Budday S, Sommer G, Birkl C, Langkammer C, Hayback J, Kohnert J, Bauer M, Paulsen F, Steinmann 
P, Kuhl E, Holzapfel GA. Mechanical characterization of human brain tissue. Acta Biomat 2017; 48: 
319-340; 433 citations. 

3. Goriely A, Geers MGD, Holzapfel GA, Jayamohan J, Jerusalem A, Sivaloganathan S, Squier W, van 
Dommelen JAW, Waters S, Kuhl E. Mechanics of the brain: Perspectives, challenges, and 
opportunities. Biomech Modeling Mechanobio 2015; 14: 931-965; 350 citations.  

4. Linka K, Peirlinck M, Sahli Costabal F, Kuhl E. Outbreak dynamics of COVID-19 in Europe and the 
effect of travel restrictions. Comp Meth Biomech Biomed Eng 2020; 23: 710-717; 343 citations. 

5. Baillargeon B, Rebelo N, Fox DD, Taylor RL, Kuhl E. The Living Heart Project: A robust and integrative 
simulator for human heart function. Eur J Mech A/Solids 2014; 48: 38-47; 290 citations. 

6. Alber M, Buganza Tepole A, Cannon W, De S, Dura-Bernal S, Garikipati K, Karniadakis G, Lytton WW, 
Perdikaris P, Petzold L, Kuhl E. Integrating machine learning and multiscale modeling: Perspectives, 
challenges, and opportunities. npj Digital Medicine 2019; 2:115; 289 citations. 

7. Budday S, Steinmann P, Kuhl E. Physical biology of human brain development. Front Cell Neurosci 
2015;  9: 257.1-17; 287 citations.  

8. Budday S, Ovaert TC, Holzapfel GA, Steinmann P, Kuhl E. Fifty shades of brain: A review on the 
material testing and modeling of brain tissue. Arch Comp Mth Eng 2020; 27: 1187-1230; 229 citations. 

9. Budday S, Steinmann P, Kuhl E. The role of mechanics during brain development. J Mech Phys Solids 
2014; 72: 75-92; 219 citations. 

10. Sahli Costabal F, Yang Y, Perdikaris P, Hurtado DE, Kuhl E. Physics-informed neural networks for 
cardiac activation mapping. Front Physiology 2020; 8: 42; 210 citations.   

 

Book Publications 
 

1. Kuhl E. Computational Epidemiology – Data-Driven Modeling of COVID-19, Springer Nature New York, 
ISBN 978-3-030-82889-9, 2021. 

2. De S, Wang W, Kuhl E. (Eds.) Multiscale Modeling in Biomechanics and Mechanobiology, Springer 
Science + Business Media Dordrecht. ISBN 978-1-4471-6598-9, 2015. 

 

Plenary Lectures since 2013 (Selection from > 250 Scientific Presentations) 
 

1. Mechanics meets Machine Learning – What can we learn? Plenary Lecture, 92nd Annual Meeting of the 
Int’l Association of Applied Mathematics and Mechanics (GAMM), 16/08/2022, Aachen, Germany. 

2. Opportunities for Machine Learning in Computational Mechanics. Semi-Plenary Lecture, 15th World 
Congress on Computational Mechanics (WCCM-XV), 02/08/2022, Yokohama, Japan. 

3. Mechanics meets Machine Learning: What can we learn? Plenary Lecture, 11th European Solid 
Mechanics Conference (ESMC), 06/07/2022, Galway, Ireland. 

4. Data-Driven Modeling and Physics-Based Learning in the Biomedical Sciences. Plenary Lecture. 19th 
US National Congress on Theoretical and Applied Mechanics (USNCTAM), 21/06/2022, Austin, Texas.  

5. Data-Driven Modeling of Neurodegeneration. Plenary Lecture. 7th Int’l Symposium on Computer 
Methods in Biomechanics and Biomedical Engineering (CMBBE2021), 07/09/2021, Bonn, Germany. 

6. The Multiphysics of Neurodegeneration. Plenary Lecture. 16th U.S. National Congress on 
Computational Mechanics (USNCCM), 28/07/2021, Chicago, Illinois. 

7. Neuromechanics: Challenges and Opportunities. Plenary Lecture, InterPore 2017, 09/05/2017, 
Rotterdam, the Netherlands. 

8. Neuromechanics: Perspectives, Challenges, and Opportunities. Plenary Lecture, Engineering 
Mechanics Institute (EMI) 2017 Conference, 20/03/2017, Rio de Janeiro, Brazil. 

9. Neuromechanics: Challenges and Opportunities. Semi-Plenary Lecture, 12th World Congress on 
Computational Mechanics (WCCM), 26/07/2016, Seoul, Korea. 

10. Mechanics of the Developing Brain. Plenary Lecture, Computer Methods in Biomechanics and 
Biomedical Engineering (CMBBE), 13/10/2014, Amsterdam, the Netherlands. 
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Former Trainees and Current Academic Affiliations 
 

Swantje Bargmann Professor University of Wuppertal  Wuppertal, Germany  
Silvia Budday Professor FAU Erlangen-Nuremberg Erlangen, Germany 
Adrian Buganza Tepole Associate Professor  Purdue University  West Lafayette, Indiana 
Hüsnu Dal Associate Professor Middle East Technical University Ankara, Turkey 
Mona Eskandari Assistant Professor  University of California  Riverside, California 
Nele Famaey Professor  KU Leuven   Leuven, Belgium 
Martin Genet Assistant Professor Ecole Polytechnique, Palaiseau  Paris, France 
Serdar Göktepe Associate Professor  Middle East Technical University Ankara, Turkey 
Maria Holland Assistant Professor  University of Notre Dame South Bend, Indiana 
Julia Mergheim Professor FAU Erlangen-Nuremberg Erlangen, Germany 
Lise Noël  Assistant Professor  Technical University of Delft  Delft, The Netherlands 
Mathias Peirlinck Assistant Professor  Technical University of Delft  Delft, The Netherlands 
Manuel Rausch Associate Professor  University of Texas  Austin, Texas  
Pablo Saez Assistant Professor UPC Catalunya    Barcelona, Spain 
Francisco Sahli Costabal  Assistant Professor  Pontificia Universidad Catolica  Santiago, Chile 
Alkiviadis Tsamis Assistant Professor University Western Macedonia  Kozani, Greece 
Johannes Weickenmeier  Assistant Professor Stevens Institute of Technology  Hoboken, New Jersey 
 

Service as Editor 
 

2015 - Journal of the Mechanics and Physics of Solids, Associate Editor 
2015 - Annals of Biomedical Engineering, Associate Editor 
2012 - 2016  ASME Applied Mechanics Reviews, Associate Editor 
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