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A B S T R A C T

In this work, we present a novel anisotropic data-driven hyperelasticity framework for the
constitutive modeling of soft biological tissues that allows direct incorporation of experimental
data into the constitutive model, without requirement of a predetermined mathematical formula
for the strain–energy density function. The data-driven framework is constructed through a
dispersion-type anisotropic formulation based on a generalized structure tensor in the sense
of Holzapfel et al. (2015) that take into account in- and out of plane dispersion. The partial
derivatives of the strain energy density functions are replaced with appropriate B-spline interpo-
lations where the control points are calibrated against experimental data obtained from uniaxial
tension, triaxial shear, and (equi)biaxial tension deformations. The model calibration phase
incorporates the normalization condition and the polyconvexity condition is enforced through
the control points of the B-splines in order to ensure a stable constitutive response that allows
unique solution in finite element analysis. The predictive capabilities of the proposed model
are shown against linea alba, rectus sheath, aneurysmal abdominal aorta, and myocardium
tissues. On the numerical side, the stress and moduli expressions of the model are derived and
implemented into the finite element method. The performance of the model is demonstrated
through representative boundary value problems.

. Introduction

Soft biological tissues, such as muscle, skin, and cartilage play important roles in the human body and have unique mechanical
roperties that are essential for proper functioning. Significant effort has been devoted to the constitutive modeling of biological
oft tissues in the last decades, with a focus on understanding their mechanical behavior, which is crucial in developing treatments
nd therapies that rely on mechanobiological functions. Soft biological tissues exhibit a highly non-linear mechanical response
nder large deformations. The literature abounds with endeavors to capture the non-linear mechanical behavior of biological soft
issues, which can be broadly classified into two categories: approaches that assume perfectly aligned fibers, and (ii) approaches
hat consider fiber dispersion. Tong and Fung (1976) proposed a hyperelastic free energy function in terms of Green–Lagrange
train components, and this approach was further developed in subsequent works by Fung et al. (1979), Chuong and Fung (1983),
nd Humphrey (1995). Various free energy function in terms of the invariants of the right Cauchy–Green tensor have been proposed
n e.g. polynomial (Horgan and Saccomandi, 2005; Humphrey et al., 1990; Murphy, 2013), power (Balzani et al., 2006; Ghaemi
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et al., 2009), and exponential (Holzapfel et al., 2000, 2005; May-Newman and Yin, 1998; Weiss et al., 1996) functional forms,
respectively. However, these models assume that fibers are perfectly aligned. There is a number of morphological studies on animal
or human samples that address fiber dispersion in the biological soft tissues (Karlon et al., 1998; Schriefl et al., 2012b, 2013,
2012c; Sommer et al., 2015; Strijkers et al., 2009; Usyk et al., 2001). To address this issue, Lanir (1979) proposed a framework for
modeling flat biological tissues using an angular integration approach that considers the dispersion of collagen and elastin fibers.
The angular integration-type fiber dispersion approach has been further elaborated by Alastrué et al. (2009, 2010), Billiar and
Sacks (2000), Driessen et al. (2005), Sacks (2003), Zulliger et al. (2004). Alternative approach to account for fiber dispersion is the
use of a generalized structure tensor (GST) in the sense of Gasser et al. (2006) that uses a single dispersion parameter motivated
y a planar von Mises density distribution function. This model was later extended by Holzapfel et al. (2015) to include out-
f-plane dispersion of fibers in terms of two scalar dispersion parameters based on a bivariate von Mises distribution. For more
nformation, we refer to the comprehensive reviews (Fung, 1993; Humphrey, 1995, 2002; Gasser et al., 2006; Chagnon et al.,
015; Mihai et al., 2015; Kalra et al., 2016; Holzapfel et al., 2019; Bhattarai et al., 2021; Dal et al., 2023a) inter alia. In recent

years, data-driven constitutive modeling has emerged as a promising approach in computational solid mechanics and it may trigger
a new paradigm for constitutive modeling of biological soft tissues. The data-driven approaches can be classified into two main
groups; (i) distance-minimization approach, (ii) explicit data-driven approaches. The distance-minimization approach was developed
by Kirchdoerfer and Ortiz (2016). In classical constitutive modeling or explicit data-driven modeling, the material data is used in
computation by means of material parameters. However, in the approach of Kirchdoerfer and Ortiz (2016), the material data is
directly used inside the computation. They reformulated the classical boundary value problem by means of distances between states
in the constraint and material set. The constraint set involves fundamental balance equations and the problem’s boundary conditions
whereas the material data set includes the admissible material states. The aim of the distance-minimization the approach is to find
the state in the constraint set which is closest to the material data set by using an iterative solver. Kirchdoerfer and Ortiz (2016)
initially applied their approach to linear-elastic truss system, then extended the work to the dynamic application by using Newmark
framework (Kirchdoerfer and Ortiz, 2018). We also refer to Ibanez et al. (2017) for a similar treatment. Later on, the distance-
minimization approach was extended to finite strains (Conti et al., 2020; Nguyen and Keip, 2018; Nguyen et al., 2020; Platzer et al.,
2019). In this context, local search algorithms (Kanno, 2018b), statistical learning based on kernel regression (Kanno, 2018a), or
accelerated distance minimization techniques grounded on smooth tangent operators for the hidden material manifold (Nguyen
et al., 2022) have been recently proposed. Ibanez et al. (2018) and Eggersmann et al. (2019) extended the distance-minimization
approach to inelasticity. The distance-minimization approach is a completely model-free approach and requires new data-driven
solvers; whereas spline-based and neural-network-based approaches can be easily implemented into classical finite element solvers.
On the other hand, in explicit data-driven approaches, the material data does not appear in computation directly; however, the
material data can be reduced to a set of variables depending on the employed technique, i.e., the weights in the neural network
approaches, or control points in the spline-based approaches. The use of data-driven constitutive modeling using neural networks
began with Ghaboussi et al. (1991), who trained a neural network on experimental data. This was followed by the work of Lefik and
Schrefler (2003), who proposed a new non-linear neural network model for elastoplastic materials. Hashash et al. (2004) conducted
the first study in which consistent tangent moduli were derived and a neural network model was implemented into a finite element
simulation. However, prior to this, neural network-based models did not prioritize thermodynamic considerations or convexity. More
recently, Xu et al. (2021) and Linka et al. (2021) introduced constitutive neural network models that consider energy functional
convexity, and Linka and Kuhl (2023) and Tac et al. (2022) proposed polyconvex neural network models to model anisotropic
materials. An alternative approach to data-driven modeling using neural networks is spline interpolation, which was first proposed
by Sussman and Bathe (2009) using cubic splines based on logarithmic strains to interpolate experimental data points for isotropic
materials. This approach has since been extended to transversely isotropic and orthotropic materials (Latorre and Montáns, 2013,
2014). In the first part (Dal et al., 2023b), we have proposed a canonical representation of isotropic hyperelasticity based on (i)
principal stretches, (ii) principal invariants, and (iii) modified invariants and proposed convenient algorithmic treatment for the finite
element method. Most of the existing constitutive models for soft biological tissues were proposed and calibrated for a particular
tissue. The microstructure of different tissue types, such as arterial wall, abdominal muscle, myocardium, or connective tissues and
corresponding macro-mechanical response can vary significantly. Such variation can be either due to distribution of collagen fibers
or due to the organization and interaction the constituents tissue, namely the elastin and collagen. Aging also plays an important
role on the tissue architecture and alters the mechanical response significantly. In this regard, exponential, power, logarithmic,
polynomial forms of functions for the stress expressions, which are appropriate for specific-type of tissues have been proposed,
see e.g. Ateshian et al. (2009), Holzapfel et al. (2000), Ogden and Saccomandi (2007) among others. Although the dispersion-type
anisotropic formulations provide a more flexible representation for the degree and distribution of anisotropy, a particular constitutive
model developed for one type of tissue may not accurately capture the mechanical response of another tissue (Dal et al., 2023a). This
motivates an alternative approach, the data-driven constitutive modeling as a new paradigm in computational biomechanics: Within
this context, this work aims to develop a generalized framework for data-driven anisotropic hyperelasticity, a single computational
framework that can model all existing biological tissues. For the anisotropic response, we take into account the dispersion of fibers
in terms of a generalized structure tensor in the sense of Gasser et al. (2006) and Holzapfel et al. (2015) where the dispersion is
controlled by single/two material parameters along with a mean fiber orientation direction, respectively. The free energy function
is further decomposed into isotropic and anisotropic parts. Rather than assuming an analytical form for the free energy function, we
interpolate the derivatives of the free energy function in terms of B-spline functions which are calibrated from experimental datasets.
The algorithmic treatment of the data-driven framework for the finite element method is presented. The model is implemented
2

into the general-purpose finite element analysis program Feap (Taylor, 2014) and the efficiency of the data-driven framework is
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Fig. 1. Three fundamental maps of a continuum: (a) The deformation gradient 𝑭 as a mapping of an infinitesimal line element, (b) its cofactor cof[𝑭 ] as an
area map, and (c) and its determinant det[𝑭 ] as a volume map.

demonstrated via representative boundary value problems. The paper is organized as follows: Section 2 outlines the fundamentals
of the dispersion-based anisotropic hyperelastic solids. In Section 3, the proposed data-driven approach along with theory of B-splines
is presented. Moreover, basic requirements for material theory such as material objectivity, dissipation inequality, polyconvexity,
and growth conditions are discussed. In Section 4, we demonstrate the performance of the anisotropic data-driven constitutive
framework with respect to experimental results obtained from myocardium, abdominal aortic aneurysm tissue, linea alba, rectus
sheath and myocardium, respectively. In Section 5, the model performance at structural level is demonstrated through a boundary
value problem. Finally, the manuscript closes with concluding remarks in Section 6.

2. Kinematics of hyperelastic deformable solids

In this section, kinematics, fiber dispersion modeling in the sense of structure tensors, and stress expressions for an anisotropic
hyperelastic continuum will be introduced and the corresponding mathematical framework will be briefly discussed.

2.1. Basic maps

Let the deformation map 𝝋(𝑿, 𝑡) represent the motion of a deformable solid body. It maps the reference/Lagrangian configuration
of a material point 𝑿 ∈ B0 onto the current/Eulerian configuration of material points 𝒙 = 𝝋𝑡(𝑿) at time 𝑡 ∈ T ⊂ R+. The deformation
gradient

𝑭 ∶ 𝑇𝑋B0 → 𝑇𝑥B; 𝑭 ∶=
𝜕𝝋𝑡(𝑿)
𝜕𝑿

(1)

maps a unit tangent vector of the reference configuration onto its counterpart in the current configuration, where 𝑇𝑋B0 and
𝑇𝑥B denote the tangent spaces in the reference and current configurations, respectively. Additionally, the co-tangent spaces in
the reference and current manifolds are represented as 𝑇 ∗

𝑋B0 and 𝑇 ∗
𝑥 B, respectively. The locally furnished coordinate systems for

he reference and spatial configurations are generally non-orthogonal but equipped with the covariant reference metric 𝑮 and the
spatial metric 𝒈, required for the mapping between the co- and contra-variant objects in the Lagrangian and Eulerian manifolds.
n the Cartesian basis system, the metric tensors 𝑮 = 𝛿𝐴𝐵 , 𝒈 = 𝛿𝑎𝑏 simply reduce to Kronecker delta and are merely used for index
aising and lowering procedures. The normal map between the unit normals in the reference and current configurations is defined as

𝑭 −𝑇 ∶ 𝑇 ∗
𝑋B0 → 𝑇 ∗

𝑥 B. (2)

In this sequence, let line, area, and volume elements in the Lagrangian configurations are denoted as 𝑑𝑿, 𝑑𝑨, and 𝑑𝑉 ,
espectively. The Eulerian counterparts of these elements are obtained through the deformation gradient 𝑭 , its cofactor cof[𝑭 ] =
et[𝑭 ]𝑭 −𝑇 and its Jacobian det[𝑭 ]

𝑑𝒙 = 𝑭𝑑𝑿 , 𝑑𝒂 = cof[𝑭 ]𝑑𝑨 , 𝑑𝑣 = det[𝑭 ] 𝑑𝑉 , (3)

ee also Fig. 1. 𝐽 = det 𝑭 > 0 guarantees non-penetrable deformations 𝝋𝑡(𝑿).

.2. Deformation measures

The right Cauchy–Green tensor is defined as

𝑪 = 𝑭 𝑇 𝒈𝑭 with 𝐶𝐴𝐵 = 𝐹 𝑎𝐴𝑔𝑎𝑏𝐹
𝑏
𝐵 (4)

he pull-back of the current metric 𝒈 to the reference configuration. In this context, it is common practice to split the deformation
radient 𝑭 into dilatational and volume-preserving parts

𝑭 = 𝑭 vol𝑭̄ with 𝑭 vol ∶= 𝐽 1∕3𝟏. (5)

The corresponding deformation measure reads

𝑪 = 𝐽 2∕3𝑪̄ with 𝑪̄ = 𝑭̄ 𝑇 𝒈𝑭̄ . (6)
3
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Fig. 2. (a) The unit micro-sphere and the orientation vector, (b) mean fiber directions of two families of fiber lie on 𝒆1 − 𝒆2 plane.

Two isotropic invariants of the right Cauchy–Green tensor are

𝐼1 ∶= tr𝑮−1 [𝑪̄] = 𝑪̄ ∶ 𝑮−1, and 𝐼3 ∶= 𝐽 2 = det[𝑪]. (7)

For an infinitesimal cubic element, the three isotropic invariants of the right Cauchy–Green stretch tensor are associated with linear,
areal, and volumetric stretches in the principal directions.

Here we define the derivatives of the invariants with respect to the right Cauchy–Green tensor 𝑪 and its volume-conserving
counterpart 𝑪̄ , as they appear in the calculation of stress tensors,

𝜕𝑪̄𝐼1 = 𝑮−1 𝜕𝑪𝐽 = 1
2 𝐽𝑪

−1. (8)

2.3. Dispersion-type anisotropy: Generalized structure tensor

In dispersion-type anisotropic formulation, biological tissue is considered a fiber-reinforced composite with the fibers distributed
in an isotropic matrix. Models developed within this framework are capable of accurately describing the effect of the structural
arrangement of the fibers on the mechanical response. Dispersion-type anisotropic approaches utilize density distribution functions
to represent the distributed fiber architecture of tissues. Let unit fiber direction 𝒓 on a unit-sphere be given in the undeformed
configuration. The fiber density in direction 𝒓 is expressed with 𝜌(𝒓). The generalized structure tensor is defined as

𝑯 = 1
∣ S ∣ ∫S

𝜌(𝒓)𝒓⊗ 𝒓 𝑑𝐴 with tr𝑮−1𝑯 = 1, (9)

where S represents the surface of a unit sphere and S = 4𝜋 for a unit sphere. It is possible to assume a distribution profile as
an ansatz for 𝜌(𝑟) and find parameters of this ansatz function by fitting to the histologic observation of the fibrous tissue. Here we
consider two different generalized structure tensor representations using planar and bi-variate von Mises distribution assumptions.

Planar von Mises distribution: Formulation of the generalized structure tensor employing a von Mises distribution function was
proposed in Gasser et al. (2006) for arterial tissue. Here, a rotationally symmetric distribution is assumed around the mean fiber
direction, which is then chosen to coincide with 𝒆3, without loss of generality. It follows that the distribution 𝜌(𝒓) becomes a function
of 𝜃 only (see Fig. 2a). This model was later employed to model dispersion in myocardial tissue (Eriksson et al., 2013; Gültekin
et al., 2016; Sommer et al., 2015). Two dispersion parameters 𝜅𝑓 , 𝜅𝑠 arise for two fiber families that we index with 𝑓 and 𝑠 standing
for fiber and sheet directions. Evaluating the Eq. (9) for this specific choice of distribution profile, the generalized structure tensor
attains the form

𝑯𝑓 = 𝜅𝑓 𝟏 + (1 − 3𝜅𝑓 )𝒇 0 ⊗ 𝒇 0 and 𝑯𝑠 = 𝜅𝑠𝟏 + (1 − 3𝜅𝑠)𝒔0 ⊗ 𝒔0 , (10)

for two fiber families that have the mean fiber directions 𝒇 0 and 𝒔0 in the reference configuration. Some constitutive models for
myocardium account for anisotropic shear stress contribution through the shearing between two fiber families using an additional
structural tensor

𝑯𝑓𝑠 = (𝒇 0 ⊗ 𝒔0)sym . (11)

Resulting anisotropic invariants accounting for fiber dispersion and its derivative are,

𝐸𝑖 ∶= 𝑯 𝑖 ∶ 𝑪̄ and 𝜕𝑪̄𝐸𝑖 = 𝑯 𝑖 , for 𝑖 = {𝑓, 𝑠, 𝑓𝑠} . (12)

The Eulerian counterparts of the generalized structure tensors read

𝒉 = 𝜅 𝒃 + (1 − 3𝜅 )𝒇 ⊗ 𝒇 , 𝒉 = 𝜅 𝒃 + (1 − 3𝜅 )𝒔⊗ 𝒔, and 𝒉 = (𝒇 ⊗ 𝒔)sym . (13)
4
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The Eulerian description of (12)1 and its derivative can be expressed as

𝐸𝑖 ∶= 𝒉𝑖 ∶ 𝒈 and 𝜕𝒈𝐸𝑖 = 𝒉𝑖 , for 𝑖 = {𝑓, 𝑠, 𝑓𝑠} . (14)

Bivariate von Mises distribution: Holzapfel et al. (2015) proposed a bivariate von Mises distribution function as an ansatz for 𝜌(𝒓) in
Eq. (9), as a generalization of the planar Von Mises distribution to a three-dimensional distribution that takes into account in- and
out-of-plane dispersion of collagen fibers. The bivariate dispersion model is motivated by the histology data collected from intima,
media, and adventitia of human non-atherosclerotic thoracic abdominal aortas and common iliac arteries (Schriefl et al., 2012c).
As the data suggests, this model assumes in-plane and out-of-plane symmetries such that 𝜌(𝜃, 𝜙) = 𝜌(𝜃 + 𝜋, 𝜙) and 𝜌(𝜃, 𝜙) = 𝜌(𝜃,−𝜙).
In addition, mean fiber directions of two fiber families are assumed to lie in the 𝒆1 − 𝒆2 plane, symmetric around the 𝒆2 direction,
eparated with an angle of 2𝜗 (see, Fig. 2b).

The bi-variate dispersion model was fitted to the experimental data collected from abdominal aorta tissue samples in Niestrawska
t al. (2016), in order to compare dispersion characteristics between healthy and aneurismatic tissues. Generalized structure tensors
or fiber families 4 and 6 read

𝑯 𝑖 = 𝐴𝟏 + 𝐵𝑴 𝑖 ⊗𝑴 𝑖 + (1 − 3𝐴 − 𝐵)𝑴𝑛 ⊗𝑴𝑛 , for 𝑖 = {4, 6} , (15)

where 𝑴 𝑖, 𝑖 = {4, 6} are the mean fiber directions shown in Fig. 2b and 𝑴𝑛 is the out-of-plane vector that coincides with 𝒆3 in local
material coordinate system. 𝐴 = 2𝜅𝑖𝑝𝜅𝑜𝑝 and 𝐵 = 2𝜅𝑜𝑝(1 − 2𝜅𝑖𝑝) are found from the experimental data of tissue histology. Herein, the

ean fiber stretch and its derivative can be described as

𝐸𝑖 ∶= 𝑯 𝑖 ∶ 𝑪̄ and 𝜕𝑪̄𝐸𝑖 = 𝑯 𝑖 for 𝑖 = {4, 6} . (16)

.4. Free-energy function and the Lagrangian/Eulerian stress expressions

Hyperelastic mechanical behavior can be described using the Helmholtz free-energy function that represents the stored energy
esulting from mechanical deformation. Polymeric materials and soft biological tissues exhibit a distinct response to bulk deformation
nd shear-type deformations. Based on Eqs. (5) and (6), the Lagrangian and Eulerian representations of the free-energy function can
xpressed as

𝛹 (𝑪 ,𝑯 𝑖) = 𝑈 (𝐽 ) + 𝛹̄ (𝑪̄ ,𝑯 𝑖) and 𝛹 (𝒈;𝑭 ,𝑯 𝑖) = 𝑈 (𝐽 ) + 𝛹̄ (𝒈,𝒉𝑖), (17)

here 𝑈 and 𝛹̄ represent the volumetric and isochoric response of the material, respectively. A canonical relation between the
agrangian stresses, moduli, and the free-energy function can be established as

𝑺 = 2𝜕𝑪𝛹 (𝑪 ,𝑯 𝑖) and C = 2𝜕𝑪𝑺 = 4𝜕2𝑪𝑪𝛹 (𝑪 ,𝑯 𝑖), (18)

here 𝑺 is the second Piola–Kirchhoff tensor and C is the Lagrangian moduli. The volumetric and isochoric parts of the second
iola–Kirchhoff stress read

𝑺 = 𝑺vol + 𝑺 iso with 𝑺vol ∶= 2𝜕𝑪𝑈 (𝐽 ) and 𝑺 iso ∶= 2𝜕𝑪 𝛹̄ (𝑪̄ ,𝑯 𝑖). (19)

imilarly, a canonical relation between the Helmholtz free-energy function, the Kirchhoff stresses, and the Eulerian moduli can be
stablished as

𝝉 = 2𝜕𝒈𝛹 (𝒈;𝒉𝑖) and C = 2𝜕𝒈𝝉 = 4𝜕2𝒈𝒈𝛹 (𝒈;𝑭 ,𝒉𝑖). (20)

he Kirchhoff stresses can as well be decomposed as

𝝉 = 𝝉vol + 𝝉 iso with 𝝉vol ∶= 2𝜕𝒈𝑈 (𝐽 ) and 𝝉 iso ∶= 2𝜕𝒈𝛹̄ (𝒈,𝒉𝑖). (21)

erein, the volumetric part of the Lagrangian/Eulerian stresses read

𝑺vol = 𝑝𝑪−1 and 𝝉vol = 𝑝𝒈−1 where 𝑝 = 𝐽𝑈 ′(𝐽 ) (22)

represents the hydrostatic negative pressure. The isochoric part of the second Piola Kirchhoff stress can be obtained by applying the
chain rule

𝑺 iso = 2
⌊
𝜕𝛹̄
𝜕𝐼1

𝜕𝐼1
𝜕𝑪̄

+
𝑛𝑓
𝑖
𝜕𝛹̄
𝜕𝐸𝑖

𝜕𝐸𝑖
𝜕𝑪̄

⌋
∶ 𝜕𝑪̄
𝜕𝑪

. (23)

Substituting the Eqs. (8) and (12) into Eq. (23) and by rearranging the terms, finally gives the generalized structure tensor-based
representation of stresses for an anisotropic hyperelastic solid

𝑺 iso = 𝑺̄ ∶Q 𝝉 iso = 𝝉̄ ∶ P

𝑺 iso =
⌊
2𝜓1𝑮−1 + 2

𝑛𝑓
𝑖
𝜓𝑖𝑯 𝑖

⌋
∶Q

push-forward
⇝ 𝝉 iso =

⌊
2𝜓1𝒃̄ + 2

𝑛𝑓
𝑖
𝜓𝑖𝒉𝑖

⌋
∶ P

(24)

with

𝜓 = 𝜕 𝛹̄ and 𝜓 = 𝜕 𝛹̄ . (25)
5
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A

In the above, the Lagrangian deviatoric projection tensor is defined as

Q = 𝜕𝑪 𝑪̄ = 𝐽−2∕3
(
I − 1

3 𝑪 ⊗ 𝑪−1
)

where I𝐴𝐵
𝐶𝐷 = 1

2
(𝛿𝐴𝐶𝛿𝐵𝐷 + 𝛿𝐴𝐷𝛿𝐵𝐶 ) (26)

is the fourth order symmetric identity tensor. Moreover, we define the Eulerian fourth-order symmetric identity and deviatoric
projection tensors as follows

I𝒈−1
𝑎𝑏𝑐𝑑 = 1

2
(𝛿𝑎𝑐𝛿𝑏𝑑 + 𝛿𝑎𝑑𝛿𝑏𝑐 ) and P𝑎𝑏

𝑐𝑑 = 1
2
(𝛿𝑎𝑐𝛿𝑏𝑑 + 𝛿𝑎𝑑𝛿𝑏𝑐 ) −

1
3
(𝛿𝑎𝑏𝛿𝑐𝑑 ). (27)

n the proposed data-driven constitutive framework, the derivative expressions 𝜓1 and 𝜓𝑖 in Eq. (25) are estimated by B-spline
interpolations where the control points that a priori satisfy the normalization and polyconvexity constraints, are trained via
experimental data such as uniaxial tension, biaxial tension and shear experiments. The assembly procedure of a 𝑛th degree B-splines
via Cox-de Boor recursion formula are briefly explained in Section 3.

2.5. Lagrangian/Eulerian moduli expressions

In line with (17), (19), and (21) the Lagrangian and Eulerian moduli expression can be decomposed into volumetric and isochoric
parts

C = Cvol +Ciso C = Cvol +Ciso. (28)

The volumetric part of the moduli takes the following form

Cvol = 2𝜕𝑪𝑺vol = [(𝑠 + 𝑝)𝑪−1 ⊗ 𝑪−1−2𝑝I𝑪−1 ]

Cvol = 2𝜕𝒈𝝉vol = [(𝑠 + 𝑝)𝒈−1 ⊗ 𝒈−1 −2𝑝I𝒈−1 ]
(29)

where 𝑠 = 𝐽 2𝑈 ′′(𝐽 ). The isochoric part of the Lagrangian moduli expression can be written as

Ciso = 2𝜕𝑪𝑺 iso =Q𝑇 ∶ C̄ ∶Q + 2𝑺̄ ∶M (30)

with

C̄ = 2𝜕𝑪̄ 𝑺̄ and M = 𝜕𝑪Q. (31)

After some manipulations, the isochoric moduli can be reformulated as

Ciso =Q𝑇 ∶ C̄ ∶Q + 2
3
tr(𝑺̄)P𝑪−1 − 2

3
(𝑪−1 ⊗ 𝑺 iso + 𝑺 iso ⊗ 𝑪−1) (32)

with

P𝑪−1 = 𝐽−2∕3
(
I𝑪−1 − 1

3
𝑪 ⊗ 𝑪−1

)
where I𝑪−1𝐴𝐵𝐶𝐷 = 1

2
(𝐶−1

𝐴𝐶𝐶
−1
𝐵𝐷 + 𝐶−1

𝐴𝐷𝐶
−1
𝐵𝐶 ). (33)

similar treatment leads to the Eulerian elasticity moduli

Ciso = P𝑇 ∶ (C̄ + 2
3
tr(𝝉̄)I𝒈−1 ) ∶ P − 2

3
(𝒈−1 ⊗ 𝝉 iso + 𝝉 iso ⊗ 𝒈−1) (34)

for the isochoric response of the soft biological tissue. Insertion of the definition (31) into (34) leads to the Eulerian and Lagrangian
moduli expressions

C̄ = 4𝜓 ′
1𝑮

−1 ⊗𝑮−1 + 4
𝑛𝑓
𝑖
𝜓 ′
𝑖𝑯 𝑖 ⊗𝑯 𝑖

push-forward
⇝ C̄ = 4𝜓 ′

1𝒃̄⊗ 𝒃̄ + 4
𝑛𝑓
𝑖
𝜓 ′
𝑖 𝒉𝑖 ⊗ 𝒉𝑖 . (35)

For more details on the Lagrangian and Eulerian representation of isotropic and anisotropic hyperelasticity, we refer to Göktepe
(2007) and Holzapfel et al. (2015).

Remark: The stresses and moduli expressions are derived based on the premise that tissue response purely deviatoric where the
unimodular part of the deformation gradient 𝑭 governs the constitutive response. This is the generally accepted approach in the
computational mechanics of nearly incompressible materials such as rubber and soft biological tissues. However, the stresses {𝑺̄, 𝝉̄}
and the respective moduli terms {C̄, C̄} can be replaced with {𝑺 iso, 𝝉 iso} and {Ciso,Ciso} provided that appropriate normalization
conditions for the stresses are implemented.

3. Data-driven anisotropic hyperelasticity

3.1. Free-energy function

3.1.1. Principle of material objectivity
Let 𝒙+ = 𝑸(𝑡)𝒙 + 𝒄(𝑡) denote the superimposed rigid body motion along with 𝑸(𝑡) ∈ (3) belonging to the special orthogonal

group. The principle of material objectivity (PMO) or the principle of material frame indifference states that

𝜓̂(𝑭 +,𝑿) = 𝜓̂(𝑭 ,𝑿). for 𝑭 + = 𝑸𝑭 (36)
6
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Recall that, in this regard, unlike the Finger tensor 𝒃+ = 𝑸𝒃𝑸𝑇 , the right Cauchy–Green tensor 𝑪+ = 𝑪 satisfies the PMO. The PMO
is a priori satisfied if 𝜓 = 𝜓̂(𝑪). The anisotropic invariants 𝐸𝑖 = 𝑯 𝑖 ∶ 𝑪̄ satisfy the material frame indifference a priori.

3.1.2. Principle of material symmetry
Anisotropic materials possess certain symmetry properties due to their microstructure. The material symmetry is characterized in

terms of the symmetry group  ⊂ (3) which is the set of rotations that leaves the microstructure of the material unchanged with
regard to rotations superimposed to the reference configuration. The material symmetry is formulated by an invariance principle
dual to the principle of material objectivity: The constitutive equations should be invariant with respect to rotations superimposed
onto the reference configuration 𝑿⋆ = 𝑸𝑿 that belong to the symmetry group i.e.,

𝜓(𝑭⋆,𝑿) = 𝜓(𝑭 ,𝑿) ∀ 𝑸 ∈  ⊂ (3) (37)

in terms of 𝑭⋆ = 𝑭𝑸𝑇 and the proper orthogonal rotation tensor 𝑸 ∈  ⊂ (3). For an isotropic material the symmetry group 
coincides with the entire (3), i.e.  = (3). The condition (37) is a further restriction for the free-energy function 𝜓 . Recall that
𝑪⋆ = 𝑸𝑪𝑸𝑇 . Principle of material objectivity together with the notion of material symmetry postulate specific form of a free-energy
functions in the sense

𝜓(𝑭 ) = 𝜓̃(𝜆1, 𝜆2, 𝜆3) or 𝜓(𝑭 ) = 𝜓̂(𝐼1, 𝐼2, 𝐼3), (38)

where the free-energy can be described either in terms of principal invariants or principal stretches that are invariant with respect
to superimposed rigid body rotations imposed on the reference or current configuration.

Transverse isotropy: The scalar-valued isotropic function of two tensor variables of the form 𝜓 = 𝜓(𝑪 ,𝑯) must satisfy the condition

𝜓(𝑪̄⋆,𝑯⋆) = 𝜓(𝑪̄ ,𝑯) (39)

for 𝑯⋆ = 𝑸𝑯𝑸𝑇 for 𝑸(𝑡) ∈ (3), see Holzapfel (2000). The identity (39) is a priori satisfied due to the invariance of
𝐸𝑖 = 𝑪̄ ∶ 𝑯 = 𝑪̄⋆ ∶ 𝑯⋆ for transverse isotropic solids described in terms of a generalized structure tensor 𝑯 .

3.1.3. Principle of irreversibility
The dissipation inequality, or the Clausius-Duhem inequality reads 𝑙𝑜𝑐 = 𝑷 ∶ 𝑭̇ − 𝜓̇ ≥ 0. For an elastic, reversible process, and for

𝜓 = 𝜓(𝑭 ), the dissipation inequality reduces to

𝑙𝑜𝑐 = 𝑷 ∶ 𝑭̇ − 𝜕𝑭𝜓(𝑭 ) ∶ 𝑭̇ = 0 ⇝ 𝑷 = 𝜕𝑭𝜓(𝑭 ). (40)

In line with Eq. (40), similar derivations can be made for

𝑺 = 2𝜕𝑪𝜓(𝑪) and 𝝉 = 2𝜕𝒈𝜓(𝒈;𝑭 ). (41)

Herein, the first Piola–Kirchhoff 𝑷 , the second Piola–Kirchhoff 𝑺 and Kirchhoff 𝝉 stress tensors are related to one another through
appropriate pull-back and push-forward relations

𝑷 = 𝑭𝑺 and 𝝉 = 𝑭𝑺𝑭 𝑇 . (42)

The existence of a relation between the stress tensor and the potential 𝜓 in the sense of Eq. (40), (41) is the basic postulate of
hyperelasticity.

3.1.4. Normalization and growth conditions
The free-energy function is subjected to the following physical normalization conditions

𝜓(𝟏) = 0 and 𝜕𝑭𝜓(𝟏) = 𝟎. (43)

The first proposition corresponds to the minimum free-energy at undeformed ground-state. The second proposition results from the
stationarity condition of the free-energy at ground state,

𝜕𝑭𝜓𝑭=𝟏 ∶ 𝛿𝑭 = 0 ⇝ 𝜕𝑭𝜓(𝟏) = 𝟎 (44)

and refers to the stress-free reference configuration. The growth conditions

𝜓 → ∞ for 𝐽 → 0+ and 𝜓 → ∞ for 𝐽 → ∞, (45)

are natural requirements that ensure non-penetrable physical deformations and monotonicity of the free-energy function, respec-
tively. The growth condition (45) is a priori eliminated since the (large) deviations of det 𝑭 from 1 are penalized. Similar natural
conditions can as well be imposed for

𝜓 → ∞ for 𝑭 → ∞ (46)

where (∙) = [(∙) ⋅ (∙)]1∕2 is the norm operator. Eq. (46) can equivalently be replaced by

𝜓 → ∞ for 𝐼 → ∞ where 𝜓 → ∞ for 𝐼 → 0+ (47)
7
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is a priori eliminated as 𝐼1 → 0+ would imply 𝜆𝑖 → 0+, which violate the incompressibility assumption 𝜆1𝜆2𝜆3 = 1.

𝜓 → ∞ for 𝐸𝑖 → ∞ where 𝜓 → ∞ for 𝐸𝑖 → 0+ (48)

is a priori eliminated due to the tension-only condition. In our proposed model we determine numerically the derivative of the
free energy function that governs the mechanical response of the tissue. To do so, the derivatives of the free energy function are
approximated by B-spline interpolations as described in what follows.

3.2. Computational geometry: Concept of B-splines

B-splines are essentially Bézier curves that are added end-to-end. In this way, more control points are added to increase the fitting
capabilities of the resulting B-spline without having to increase the polynomial order of the curve. B-spline 𝐶(𝜉) and its derivative
an be written in summation form

𝐶(𝜉) = 𝑛
𝑘=1

 𝑝
𝑘 (𝜉)𝑘 and 𝐶 ′(𝜉) = 𝑛

𝑘=1
 𝑝
𝑘

′(𝜉)𝑘, (49)

where  𝑝
𝑘 (𝜉) and  𝑝

𝑘
′(𝜉) are Bernstein basis functions and their derivatives; with 𝑝 being the polynomial degree of the basis function

and 𝑘 are the control points, or vertices, associated with the basis functions. The number of control points is 𝑛 which results in
a B-spline that consists of 𝑛 − 𝑝 number of Bézier curves or elements.  𝑝

𝑘 (𝜉) and  𝑝 ′

𝑘 (𝜉) in Eq. (49) are obtained from the Cox-de
oor recursion formula

 0
𝑘 (𝜉) =

⏐⏐⏐⏐⏐ 0, if 𝜉𝑘 ≤ 𝜉 < 𝜉𝑘+1
1, otherwise

(50)

long the given knot span. Basis functions  𝑝
𝑘 and their derivatives  𝑝 ′

𝑘 for 𝑝 > 0 are computed through

 𝑝
𝑘 (𝜉) =

𝜉 − 𝜉𝑘
𝜉𝑘+𝑝 − 𝜉𝑘

 𝑝−1
𝑘 (𝜉) +

𝜉𝑘+𝑝+1 − 𝜉
𝜉𝑘+𝑝+1 − 𝜉𝑘+1

 𝑝−1
𝑘+1 (𝜉), (51)

 𝑝 ′

𝑘 (𝜉) = 𝑝
𝜉𝑘+𝑝 − 𝜉𝑘

 𝑝−1
𝑘 (𝜉) + 𝑝

𝜉𝑘+𝑝+1 − 𝜉𝑘+1
 𝑝−1
𝑘+1 (𝜉), (52)

where 𝜉𝑘̂ with 𝑘̂ = {1, 2,… , 𝑚} are the so-called knots with a total number of 𝑚 knots. Obvious from the Cox-de Boor formula in
Eq. (50), support of every basis function  𝑝

𝑘 (𝑡) is 𝑝+1 knot spans. Given the polynomial degree 𝑝 and the number of control points
𝑛 of the B-spline, the number of knots is found as 𝑚 = 𝑝+𝑛+1. By definition of the Cox-de Boor formula, B-splines are not defined in
the first and last 𝑝 intervals between knots. To circumvent this issue and have a defined spline between the first and the last knots
we use the so-called open-knot vectors where the first and the last knots are repeated 𝑝 + 1 times in the knot vector. At the knots,
basis functions of degree 𝑝 have 𝑝 − 𝑟 continuous derivatives where 𝑟 is the number of times a knot is repeated. In this study, we
do not repeat intermediate knots, whereas only the start and end nodes are repeated 𝑝+ 1 times as per open knot definition. Fig. 3
shows examples of different B-splines with various degrees and control points.

3.3. Data-driven constitutive functions

In the invariant-based data-driven formulation of hyperelasticity, the partial derivatives 𝜓1 and 𝜓𝑖 can be interpolated as

𝜓1 =
𝑛
𝑘=1

 𝑝
𝑘 (𝐼1)

1
𝑘 and 𝜓𝑖 =

𝑛
𝑘=1

 𝑝
𝑘 (𝐸𝑖)

𝑖
𝑘. with 𝑖 = {𝑓, 𝑠, 𝑓𝑠} or 𝑖 = {4, 6} (53)

where  𝑝
𝑖 are the basis functions of order 𝑝 and 1

𝑘 ,  𝑖
𝑘 are the control points replacing the material parameters in the constitutive

equations.

3.4. Polyconvexity

The constitutive model of physical material is bound to satisfy certain mathematical constraints, which are material frame
indifference, (quasi-)convexity, and growth conditions. Material frame indifference, or known as the objectivity condition, is satisfied
a priori thanks to the use of the right Cauchy–Green tensor and its invariants in the constitutive model. In addition, growth conditions
are satisfied by a proper choice of volumetric strain energy function 𝑈 (𝐽 ). On the other hand, the convexity condition needs special
treatment. The elasticity problem can be formulated as a minimization problem,

inf
𝝋∈1,𝑝()

⏐⏐⏐⏐𝐼(𝝋) = ∫
𝛹 (∇𝝋) 𝑑𝑉 ∣ 𝝋 = 𝝋̄ on𝜕

 (54)

where the deformation map 𝝋 is the minimizer of the functional 𝐼(𝝋) and belongs to the Sobolev space 𝝋 ∈ 1,𝑝(). There exists a
solution to the minimization problem given in Eq. (54), if the free energy function 𝛹 is convex (Ciarlet, 1988). However, convexity
condition is a too strong requirement and in some cases unphysical. The notion of polyconvexity was proposed by Ball (1976)
which is a weaker convexity condition and does not violate any physical phenomena. Polyconvexity requires 𝛹̃ (𝑭 , cof[𝑭 ], det[𝑭 ])
8
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Fig. 3. (a) Linear, (b) quadratic, and (c) cubic B-spline interpolations with (d) linear, (e) quadratic, and (f) cubic basis functions.

unction 𝛹̂ (𝐼1, 𝐽 , 𝐸𝑖,…) is ensured given that it is convex with respect to the invariants {𝐼1, 𝐽 , 𝐸𝑖,…} as discussed in Schröder and
eff (2003). Gasser et al. (2006) has proven that for

𝜓𝑖(𝐸𝑖) > 0 and 𝜓𝑖𝑖(𝐸𝑖) > 0 (55)

he anisotropic part of the free-energy function is polyconvex. For the growth and polyconvexity requirements for 𝜓1, we refer
o the part I (Dal et al., 2023a). Its implication on our model is that the B-splines representing the first derivatives of the free
nergy function, i.e. 𝜓1(𝐼1) and 𝜓𝑖(𝐸𝑖), need to be non-decreasing so that the free energy function is polyconvex. This is achieved
y enforcing a simple relation

𝑎
𝑖+1 − 𝑎

𝑖 ≥ 0 𝑎 = {𝑓, 𝑠, 𝑓𝑠} or 𝑎 = {4, 6} (56)

or the control points that ensure monotonic Bèzier curves. Similarly, they are convex function of 𝐸𝑖 given that the control
polygon is convex (Davis, 1975). B-splines can be represented as Bèzier curves joined end-to-end. Therefore B-splines inherit the
convexity properties from the Bèzier curves. These properties of B-splines imply that, control points 𝑎

𝑖 belonging to each free-
energy contribution need to be in increasing order, in order to ensure the polyconvexity of the free energy function. We impose this
condition at the data-training phase as an inequality constraint, which is handled by Matlab’s optimization function Fmincon.

. Model predictions for soft biological tissues under homogeneous deformations

In this section, we validate the data-driven modeling approach that was outlined in Section 3. In doing so, we obtain optimized
ontrol point values by fitting them to experimental data, assuming the number of control points and B-spline degree are known. We
how the capability of the model to predict varying hyperelastic mechanical behavior, observed in experimental characterizations of
arious types of biological soft tissues. In particular, we calibrate the model using triaxial shear data for myocardium tissue (Sommer
t al., 2015), equibiaxial tension data for abdominal aneurysmic aorta (AAA) tissue (Niestrawska et al., 2016), uniaxial tension data
or linea alba tissue (Cooney et al., 2016), and uniaxial tension data for rectus sheath tissue (Martins et al., 2012). We used various
umbers of control points and basis function degrees in fitting the data The optimized control points and sensitivity analysis can
e found in the Appendix. The quality of fit metric 𝜒2 for different loading conditions is computed using predicted stresses 𝑃𝛼𝛽 , 𝜎𝛼𝛽
nd experimental counterparts 𝑃 exp

𝛼𝛽 , 𝜎exp
𝛼𝛽 as follows

𝜒2 =
𝑁exp
𝛼𝛽

(
𝑃𝛼𝛽 (𝜆𝑖) − 𝑃

exp
𝛼𝛽 (𝜆𝑖)

)2

exp (57)
9
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Fig. 4. Predictions for triaxial shear dataset for myocardium tissue (Niestrawska et al., 2016) with the 5 (column #1), 8 (column #2), 10 (column #3) of
control points and with (a) quadratic, (b) cubic, (c) quartic basis functions.

where 𝒎exp represents the set of deformation modes performed in the equibiaxial, uniaxial, and triaxial experiments (𝛼𝛽), specifically
𝒎et = {(11), (22)} and 𝒎ut = {(11), (22)}, while 𝒎shear denotes the set of shear modes performed in these experiments, which includes
{(12), (21), (13), (31), (23), (32)}. Additionally, 𝑁exp

𝛼𝛽 represents the number of data points collected in a given experiment. During the
optimization phase, the structural features of the tissues remained constant while the control points were optimized. In fitting the
material model, stresses are calculated at a single material point assuming homogeneous deformation states. The volumetric part of
the free energy function 𝑈 (𝐽 ) in (17) was excluded and the pressure term was obtained from boundary conditions enforcing exactly
the incompressible deformation state under uniaxial and biaxial deformations.

4.1. Predictions of the data-driven model for myocardium dataset

In the first example, we fit the data-driven model to the triaxial shear dataset for myocardium (Sommer et al., 2015). Myocardial
tissue shows highly nonlinear orthotropic material behavior which can be characterized by three orthonormal basis vectors: fiber 𝒇 ,
sheet 𝒔, and normal 𝒏 (Dokos et al., 2002; Sommer et al., 2015), which coincide with 𝒆1, 𝒆2 and 𝒆3 directions. Sommer et al.
(2015) investigated the mechanical behavior and the microstructure of the myocardium. They observed that myocardial tissue
has dispersed fiber structure in both fiber and sheet directions. Accordingly, we use the Planar von Mises fiber dispersion model
that we explained in Section 2.3 together with the dispersion parameters 𝜅𝑓 = 0.08 and 𝜅𝑠 = 0.09 identified in Sommer et al.
(2015). In Fig. 6, the polar plots of the density distribution function that correspond to the dispersion of fibers in myocardium
tissue are given. In fitting the triaxial shear data, we employ four invariants of deformation, 𝐼1, 𝐸𝑓 , 𝐸𝑠, 𝐸𝑓𝑠; therefore four B-
plines 𝜓1(𝐼1), 𝜓𝑓 (𝐸𝑓 ), 𝜓𝑠(𝐸𝑠), 𝜓𝑓𝑠(𝐸𝑓𝑠) in representing the derivatives of the strain energy function. The deformation gradient 𝑭 𝛼𝛽
or the shear mode 𝛼𝛽 is

𝑭 = 1 + 𝛾𝒆 ⊗ 𝒆 with 𝛼, 𝛽 = {1, 2, 3}, 𝛼 ≠ 𝛽 , (58)
10
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Fig. 5. Predictions for ET dataset for AAA tissue (Niestrawska et al., 2016) with the 5 (column #1), 8 (column #2), 10 (column #3) of control points and with
a) quadratic, (b) cubic, (c) quartic basis functions.

here 𝛾 is the amount of shear. Fitting results of 6 different shear modes with different numbers of control points and degrees can
e seen in Fig. 4. Optimized control point values for four B-spline functions can be found in the Appendix. The best prediction has
een obtained via PO4/CP10.2

4.2. Predictions of the data-driven model for abdominal aneurysmic aorta (AAA) dataset

In the second example, we fit the data-driven model to equibiaxial tension dataset for AAA tissue (Niestrawska et al., 2016).
AAA tissue has two families of fibers symmetric around the circumferential direction of the aorta. Schriefl et al. (2012a,b, 2013,
2012c) showed that aorta has both in-plane and out-of-plane dispersion of fibers. Following this observation, Holzapfel et al. (2015)
proposed using a bivariate von Mises density distribution function to model the dispersed fiber orientation of the tissue. In this
particular instance, we followed experimental observations and utilized two types of fiber families that follow a bivariate von Mises
density function. The angle between the average fiber directions and the circumferential direction is 𝛼 = 26◦, while the dispersion
parameters are 𝜅𝑖𝑝 = 0.29 and 𝜅𝑜𝑝 = 0.397 (Niestrawska et al., 2016). The polar plots of the density distribution function that
correspond to the in-plane and out-of-plane dispersion of fibers are given in Fig. 6a. In fitting the equibiaxial stretch data, we employ
three invariants of deformation, 𝐼1, 𝐸4, 𝐸6; therefore three B-splines 𝜓1(𝐼1), 𝜓4(𝐸4), and𝜓6(𝐸6) in representing the derivatives of
the strain energy function. The deformation gradient 𝑭 for equibiaxial stretching assuming incompressibility is

𝑭 = 𝜆 (𝒆1 ⊗ 𝒆1 + 𝒆2 ⊗ 𝒆2) +
1
𝜆2

𝒆3 ⊗ 𝒆3 , (59)

2 POX/CPY : B-spline curve of polynomial order X consisting of Y control (vertex) points.
11
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Fig. 6. The polar plots of in-plane and out-of-plane density distributions for myocardium, abdominal aortic aneurysm (AAA), linea alba and rectus sheath.

where 𝜆 is the amount of stretch. Fitting results of equibiaxial tension dataset with different numbers of control points and degrees
can be seen in Fig. 5 and in Appendix. The best fit to experimental data is achieved by PO2/CP10. Moreover, utilizing 6 control
points results in a reasonably accurate prediction for the three distinct basis functions.

4.3. Predictions of the data-driven model for linea alba dataset

As the third example, we applied the data-driven model to the uniaxial tension dataset for linea alba (Cooney et al., 2016). Linea
alba is an anisotropic tissue with a single family of fibers. Cooney et al. (2016) did not report any observation about fiber dispersion,
therefore previously fitted parameters (Dal et al., 2023a) of 𝜅𝑖𝑝 = 0.645 and 𝜅𝑜𝑝 = 0.499 were used, along with a mean fiber direction
that coincided with the direction of 𝒆2 = 𝑴4. The polar plots of the density distribution function that corresponds to the dispersion
of fibers embedded in linea alba tissue are given in Fig. 6. Cooney et al. (2016) conducted uniaxial tension experiments with samples
cut in both longitudinal and transverse directions, referring to their respective anatomical axes. In fitting the uniaxial stretch data,
we employ two invariants of deformation, 𝐼1, 𝐸4; therefore two B-splines 𝜓1(𝐼1), 𝜓4(𝐸4) in representing the derivatives of the strain
energy function. The deformation gradient 𝑭 𝛼𝛼 for the stretch mode 𝛼𝛼 assuming incompressibility is

𝑭 𝛼𝛼 = 𝜆(𝒆𝛼 ⊗ 𝒆𝛼) +
1√
𝜆
(𝒆𝛽 ⊗ 𝒆𝛽 + 𝒆3 ⊗ 𝒆3) with 𝛼, 𝛽 = {1, 2}, 𝛼 ≠ 𝛽 , (60)

here 𝜆 is the amount of stretch. Fitting results of the uniaxial tension dataset with varying numbers of control points and degrees
an be seen in Fig. 7 and in Appendix. PO4/CP10 provided the best predictions over the linea alba dataset. It has been observed
hat when using quadratic, cubic, and quartic basis functions, the quality of fit remains almost unaffected by the number of control
oints used beyond 8.

.4. Predictions of the data-driven model for rectus sheath dataset

In the last example, we used the rectus sheath testing dataset from Martins et al. (2012) to calibrate the data-driven model. Rectus
heath tissue involves a single family of fiber similar to linea alba tissue. The authors have not reported histology information of
he tissue, therefore previously fitted parameters (Dal et al., 2023a) of 𝜅𝑖𝑝 = 0.522 and 𝜅𝑜𝑝 = 0.390 were used, along with a mean

fiber direction that coincided with the direction of 𝒆1 = 𝑴4. Martins et al. (2012) conducted uniaxial stretching tests in longitudinal
direction (fiber direction 𝒆1 = 𝑴4) and in transverse-fiber direction 𝒆2. The polar plots of the density distribution function that
corresponds to the dispersion of fibers embedded in the rectus sheath are given in Fig. 6. The main goal of these test was to observe
damage and rupture of the tissue samples. However, as we are interested in hyperelastic behavior, we constricted our focus on the
region where no stress softening was observed. In fitting the uniaxial stretch data, we employ two invariants of deformation, 𝐼 , 𝐸 ;
12
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Fig. 7. Predictions for UT dataset for linea alba tissue (Cooney et al., 2016) with the 5 (column #1), 8 (column #2), 10 (column #3) of control points and
with (a) quadratic, (b) cubic, (c) quartic basis functions.

therefore two B-splines 𝜓1(𝐼1), 𝜓4(𝐸4) in representing the derivatives of the strain energy function. Assuming incompressibility, the
deformation gradient 𝑭 𝛼𝛼 for the stretch mode 𝛼𝛼 is

𝑭 𝛼𝛼 = 𝜆(𝒆𝛼 ⊗ 𝒆𝛼) +
1√
𝜆
(𝒆𝛽 ⊗ 𝒆𝛽 + 𝒆3 ⊗ 𝒆3) with 𝛼, 𝛽 = {1, 2}, 𝛼 ≠ 𝛽 (61)

here 𝜆 is the amount of stretch. Results of the model fitment to the stretch testing dataset can be seen in Fig. 8 and in Appendix, for
arying numbers of control points and polynomial degrees. Surprisingly, PO2/CP5 yielded the most accurate prediction, contrary
o our expectations. While increasing the number of control points improved the fit for other tissue datasets, this anomaly may
e attributed to the optimization algorithm employed in this study. Employing a different optimization algorithm could alter the
dentified control points and improve the quality of fit.

.5. Investigation on synthetic dataset

To assess the potential of the suggested model to discover existing models, we utilized a dataset manufactured using a previously
roposed constitutive law. We hypothesized a soft tissue featuring two families of fibers under equibiaxial loading. The synthetic
ata was generated according to the Holzapfel et al. (2015) framework, as outlined below.

𝛹 (𝑪 ,𝑯 𝑖) =
1
2
𝜇
(
𝐼1 − 3

)
+
𝑘1
2𝑘2

[exp(𝑘2𝐸2
𝑖 ) − 1], 𝑖 = 1, 2. (62)

In Fig. 9a, we demonstrated the proposed model’s efficacy in uncovering the underlying constitutive law. We also examined the
convergence of the quality of fit with the augmentation of data points. As depicted in Fig. 9c, approximately 50 data points suffice
13
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f

Fig. 8. Predictions for UT dataset for rectus sheath tissue (Martins et al., 2012) with the 5 (column #1), 8 (column #2), 10 (column #3) of control points and
with (a) quadratic, (b) cubic, (c) quartic basis functions.

to discover the latent constitutive law. It is important to note that experimental measurements typically entail a degree of inherent
noise. Hence, we extended our investigation to evaluate the model’s ability to fit such noisy data. To simulate this scenario, we
intentionally introduced Gaussian noise with a mean of zero and a standard deviation of 5% to the synthetic data obtained from the
analytical model. Fig. 9b illustrates the data-driven model’s robust capability to fit noisy data. B-spline is recognized as a valuable
tool for interpolating data. However, they are prone to error when extrapolating data. To illustrate the extrapolation behavior of our
current framework, we partitioned the synthetic dataset into training and validation sets. We calibrated the data-driven model using
the training portion of the data and subsequently extrapolated the model to evaluate agreement with the validation data. B-Splines
were extrapolated linearly into the validation data range. Stress–strain response resulting from this extrapolation behavior, is shown
in Fig. 9d.

5. Representative numerical examples

In this section, we present the algorithmic treatment of our proposed material model, and we showcase the performance of
inite element implementation. We implemented our constitutive model into the finite element software Feap (Taylor, 2014), yet

implementing it into any finite element software would be straightforward. Feap utilizes UMATIn and UMATLn subroutines for user
material implementations. In line with a deformation-driven solution procedure, the input of the user material subroutine is the
deformation gradient 𝑭 and the corresponding outputs are the Cauchy stress 𝝈 and Eulerian tangent moduli c. The algorithm of
the material subroutine is summarized in Algorithm 1, which represents a standard anisotropic hyperelastic material calculation.
At step 4 of Algorithm 1, to evaluate 𝜓𝑖 and 𝜓 ′

𝑖 , we use B-spline functions given the material parameters: control points range of
parametrization and the polynomial degree. Our B-spline implementation in Fortran language is about 110 lines long, replacing
the analytical calculations of 𝜓1, 𝜓𝑖 and 𝜓 ′

1, 𝜓
′
𝑖 in conventional models. In our implementation we prioritized flexibility of the

implementation over computational efficiency, however, it is possible to decrease the computational cost by circumventing the
14



Journal of the Mechanics and Physics of Solids 181 (2023) 105453O.Z. Tikenoğulları et al.

1
2
3

4
5
6

7
8

(

C
s

5

c
i
a
o
8

Algorithm 1 Computation of stress and tangent expressions at the integration point level.

Input : 𝑭
Output : 𝝉,c

Computation of deformation measures
Calculate: 𝑭 → 𝐼1 , 𝐽 Eq. (7)
Calculate: 𝑯 𝑖 Eqs. ((10), (11), (15))
Calculate: 𝑭 ,𝑯 𝑖 → 𝐸𝑖 Eqs. ((12), (16))

Computation of stress and tangent expressions
Calculate: 𝜓1 , 𝜓 ′

1 , 𝑈 , 𝑈
′ , 𝜓𝑖 , 𝜓 ′

𝑖 Eqs. ((17), (49))
Calculate: 𝜓1 , 𝑈 , 𝜓𝑖 → 𝑺 Eqs. ((19), (22), (24))
Calculate: 𝜓 ′

1 , 𝑈
′ , 𝜓 ′

𝑖 → C Eqs. ((28), (29), (32))

Return outputs
Push Forward: 𝑺 → 𝝉 Eqs. ((21), (22), (24))
Push Forward: C → c Eqs. ((28), (29), (32))

Fig. 9. (a) Predictions for ET dataset generated with an analytical model (Holzapfel et al., 2015), (b) predictions for the dataset polluted with Gaussian noise,
c) convergence of quality of fit as the number of training data points increases, (d) extrapolation ability of the data-driven model.

ox-de Boor recursive function calls within the material subroutine. In this case, B-spline functions can be calculated directly in a
ingle line, by writing out a closed form expression for a given polynomial degree.

.1. Finite element example: Extension-inflation-torsion test of a hollow cylindrical tube

We conducted an extension-inflation-torsion simulation to demonstrate the performance of our model under extreme loading
onditions. We used B-Spline model parameters corresponding to the biaxial testing data from Gültekin et al. (2016). Our study
nvolved a hollow cylindrical tube with a geometry inspired by Gültekin et al. (2019), which represents a hypothetical tissue with

single layer containing two families of dispersed collagen fibers. These families have identical mechanical properties and are
riented at an average angle of 𝜃 = 45◦ relative to the cross-sectional plane, see Figs. 10c, 10d. The cylinder has an inner radius of
mm and a wall thickness of 2 mm. At the bottom face, the cylinder is fixed in the 𝑢̂𝑥, 𝑢̂𝑦, 𝑢̂𝑧 directions. To apply loading to the

cylinder, we twisted it by 60◦, applied a displacement of 𝑢̂𝑧 = 2 mm at the top face, and exerted a pressure of 50 mmHg at the inner
15

surface of the cylinder as shown in Fig. 10a. The displacement in the 𝑧-direction on the top face, the torsion on the top face, and the
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𝑢

Fig. 10. (a) A hypothetical tissue piece of cylindrical geometry with dimensions H = 10, T = 2 , and R = 8 mm with boundary conditions 𝑢̂𝑥 = 𝑢̂𝑦 = 𝑢̂𝑧 = 0 mm,
̃𝑧 = 2 mm, 𝛾̂ = 60◦ and 𝑝̂ = 50 mm Hg; (b) finite element mesh for the geometry; (c) visualization of mean directions of the first family of fibers 𝑴1; (d)
visualization of mean directions of the second family of fibers 𝑴2 at each node.

Table 1
Rate of convergence of the global residual for the extension-inflation-torsion
example. Convergence is attained at the third iteration in each of the given
time steps.
Time [s] 0.25 0.50 0.75 1.00

Iteration 1 6.4004e+01 5.8199e+01 5.3896e+01 5.0006e+01
Iteration 2 8.7048e−02 9.5242e−02 5.5149e−02 8.7881e−02
Iteration 3 1.6292e−07 2.0535e−07 1.2190e−07 1.2465e−07

pressure load on the inner surface were all gradually increased in a linear manner. We discretized the tube into 2000 hexahedral
elements with 5 elements in thickness, 40 elements in circumferential, and 10 elements in axial directions. Q1P0 elements are used
throughout the simulation. The proposed model is highly robust and exhibits excellent convergence behavior, as shown in Table 1.
The results of the finite element analysis are presented in Fig. 11, which displays the components of Cauchy stress in the radial,
circumferential, and axial directions.

6. Concluding remarks

In conclusion, we have presented a data-driven anisotropic hyperelastic constitutive model that can capture the behavior of
various biological tissues within the same constitutive framework. The proposed model uses B-Splines to substitute partial derivatives
of the free energy function, making it flexible and able to adapt to varying mechanical characteristics of different tissues. The
invariant-based formulation of the free energy function enables us to account for volumetric-isochoric deformation and dispersion
characteristics of fiber families using generalized structure tensors. We have demonstrated the excellent fitting performance of the
proposed model using an experimental dataset of four different biological tissues. The B-Spline-based structure of the model allows
16
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Fig. 11. Distributions of the radial 𝜎𝑟𝑟, the circumferential 𝜎𝜃𝜃 , and the axial 𝜎𝑧𝑧 Cauchy stress components at the end of the simulation.

Fig. A.12. Sensitivity of the quality of fit metric to number of control points and quadratic, cubic, and quartic basis functions for (a) AAA, (b) myocardium,
(c) linea alba, (d) rectus sheath tissues.

it to provide an accurate fit to each tissue despite their varying mechanical characteristics. Additionally, we have showcased the
implementation of the model in finite element simulations and demonstrated the convergence under extreme loading conditions. In
the proposed framework, the polyconvexity condition is applied during the training process. Polyconvexity is not a physical necessity;
instead, it serves as a mathematical requirement that is not obligatory for all materials in a constitutive sense. Its principal importance
lies in its role as a mathematical concept indicating strong ellipticity, which, in turn, assures the stability of materials. This stability
is crucial for numerical applications such as finite element analysis. From a practical perspective, integrating polyconvexity is a more
straightforward approach compared to directly implementing ellipticity. In this framework, we employ polyconvexity as a practical
means to guarantee material stability and fulfill growth conditions. We believe that this new data-driven model will be useful for
users who need good modeling capabilities without having expertise in a wide range of constitutive models and their intended
17
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Table A.2
Optimized control points found for triaxial shearing tests of myocardium tissue (Sommer et al., 2015).

Quadratic basis Cubic basis Quartic basis

𝜓1 𝜓𝑓 𝜓𝑠 𝜓𝑓𝑠 𝜓1 𝜓𝑓 𝜓𝑠 𝜓𝑓𝑠 𝜓1 𝜓𝑓 𝜓𝑠 𝜓𝑓𝑠
With 5 control points

1 0.2047 0.0000 0.0000 0.0000 0.2058 0.0000 0.0000 0.0000 0.2046 0.0000 0.0000 0.0000
2 0.2432 0.1719 0.1816 0.0342 0.2450 0.1727 0.1821 0.0323 0.2617 0.1647 0.1936 0.0326
3 0.3805 0.4169 0.2866 0.0436 0.3434 0.3331 0.2579 0.0556 0.3665 0.4119 0.2834 0.0327
4 0.6933 1.0735 0.5544 0.0876 0.6786 1.0346 0.5287 0.0572 0.4756 0.5495 0.2958 0.0328
5 1.0716 1.9602 1.0080 0.3842 1.0742 1.9671 1.0124 0.3905 1.0740 1.9689 1.0088 0.3397

With 8 control points

1 0.1994 0.0000 0.0000 0.0000 0.1981 0.0000 0.0000 0.0000 0.19753 0.0000 0.0000 0.0000
2 0.2276 0.1756 0.1853 0.0203 0.2243 0.1751 0.1839 0.1815 0.2238 0.1750 0.1833 0.0179
3 0.2757 0.2305 0.2051 0.0244 0.2569 0.2006 0.1933 0.0221 0.2529 0.1959 0.1920 0.0210
4 0.3476 0.3549 0.2613 0.0257 0.3353 0.3282 0.2498 0.0234 0.3169 0.2863 0.2324 0.0225
5 0.4556 0.5759 0.3491 0.0501 0.4623 0.5892 0.3547 0.0502 0.4690 0.6030 0.3605 0.0458
6 0.6211 0.9265 0.4989 0.1001 0.6749 1.0406 0.5466 0.1154 0.6886 1.0677 0.5556 0.1213
7 0.8738 1.4891 0.7633 0.1935 0.9107 1.5752 0.8078 0.2151 0.9201 1.5974 0.8202 0.2175
8 1.0765 1.9765 1.0184 0.4150 1.0773 1.9789 1.0196 0.4214 1.0774 1.9794 1.0197 0.4237

With 10 control points

1 0.1970 0.0000 0.0000 0.0000 1.1952 0.0000 0.0000 0.0000 1.1942 0.0000 0.0000 0.0000
2 0.2229 0.1752 0.1848 0.0157 0.2193 0.1733 0.1828 0.0133 0.2176 0.1722 0.1822 0.0123
3 0.2559 0.2046 0.1848 0.0201 0.2521 0.1872 0.1897 0.0193 0.2374 0.1835 0.1884 0.0713
4 0.3014 0.2737 0.2252 0.0201 0.2894 0.2524 0.2142 0.0193 0.2748 0.2271 0.2025 0.0184
5 0.3605 0.3807 0.2715 0.0273 0.3536 0.3658 0.2667 0.0242 0.3439 0.3446 0.2589 0.0211
6 0.4427 0.5499 0.3389 0.0487 0.4468 0.5584 0.3412 0.0500 0.4516 0.5685 0.3441 0.0574
7 0.5543 0.7871 0.4377 0.0777 0.5790 0.8355 0.4602 0.0847 0.6128 0.9052 0.4905 0.0946
8 0.7093 1.1209 0.5879 0.1305 0.7719 1.2591 0.6498 0.1507 0.8016 1.3268 0.6804 0.1593
9 0.9225 1.6049 0.8240 0.2363 0.9570 1.6865 0.8678 0.2674 0.9714 1.7201 0.8866 0.2841
10 1.0772 1.9785 1.0193 0.4205 1.0776 1.9799 1.0196 0.4235 1.0777 1.9805 1.0197 0.4238

applications. The model can be useful in digital twin applications and clinical patient-specific modeling studies where clinicians
need a practical and flexible constitutive model. It eliminates the need for many carefully-picked models aimed at specific tissues
appearing in simulations, making it a more efficient and practical choice. Overall, the proposed B-Spline model provides excellent
fitting performance, ease of implementation. We hope that this model will contribute to further advancements in modeling biological
tissues and aid in the development of patient-specific models for clinical applications.
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Appendix. Optimized control point values and quality of fit
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See Fig. A.12 and Tables A.2–A.5.
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Table A.3
Optimized control points found for equibiaxial stretch tests of aneurysmatic abdominal aorta tissue (Niestrawska et al., 2016).

Quadratic basis Cubic basis Quartic basis

𝜓1 𝜓4 𝜓6 𝜓1 𝜓4 𝜓6 𝜓1 𝜓4 𝜓6

With 5 control points

1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.1868 0.2107 0.2107 0.0535 0.6457 0.6457 0.0022 0.0028 0.0028
3 0.2964 1.2313 1.2313 0.0602 0.7471 0.7471 0.0034 0.0041 0.0041
4 0.3175 1.3583 1.3583 0.0640 0.7551 0.7551 0.0051 0.0055 0.0055
5 5.2909 22.424 22.424 5.8764 21.781 21.781 12.332 13.257 13.257

With 8 control points

1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.3569 0.3051 0.3051 0.3164 0.2428 0.2428 0.3199 0.2921 0.2921
3 0.5765 0.4864 0.4864 0.5098 0.3858 0.3858 0.5030 0.4615 0.4615
4 0.8131 0.6820 0.6820 0.6956 0.5427 0.5427 0.6685 0.6289 0.6289
5 1.0838 1.0234 1.0234 0.8702 0.8856 0.8856 0.8706 0.8835 0.8835
6 1.3372 2.0668 2.0668 1.0674 2.7336 2.7336 1.2582 2.9613 2.9613
7 1.5566 8.9471 8.9471 1.1582 10.749 10.749 1.8192 10.734 10.734
8 3.6824 25.502 25.502 1.6702 27.483 27.483 2.8089 26.626 26.626

With 10 control points

1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.3058 0.2094 0.2094 0.3337 0.2662 0.2662 0.2832 0.1998 0.1998
3 0.4792 0.3323 0.3323 0.5212 0.4145 0.4145 0.4474 0.3124 0.3124
4 0.6427 0.4490 0.4490 0.6893 0.5488 0.5488 0.6011 0.4165 0.4165
5 0.8213 0.5927 0.5927 0.8732 0.7123 0.7123 0.7720 0.5482 0.5482
6 0.9667 0.8642 0.8642 1.0787 0.9905 0.9905 0.9423 0.8439 0.8439
7 1.0686 1.5804 1.5804 1.3108 1.7458 1.7458 1.0747 1.8955 1.8955
8 1.1618 4.1155 4.1155 1.5924 5.3615 5.3615 1.1935 6.1095 6.1095
9 1.2431 12.453 12.453 2.2257 14.367 14.367 1.4151 16.261 16.261
10 1.6705 27.446 27.446 2.8943 26.549 26.549 1.7564 27.519 27.519

Table A.4
Optimized control points found for uniaxial stretch tests of linea alba tissue (Cooney et al., 2016).

Quartic basis Cubic basis Quadratic basis

𝜓1 𝜓𝑠 𝜓1 𝜓𝑠 𝜓1 𝜓𝑠
With 5 control points

1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.9281 0.3732 0.8743 0.3683 1.0435 0.5225
3 0.9883 2.5971 0.9869 2.6236 1.0707 2.7741
4 1.0615 4.5657 1.0800 4.6102 1.0935 4.1639
5 1.1361 5.6701 1.1987 5.7158 1.1288 5.7230

With 8 control points

1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.7668 0.2459 0.7502 0.2799 0.7235 0.2526
3 0.8804 0.8392 0.8680 0.4358 0.8495 0.3634
4 0.9486 2.1115 0.9452 2.0330 0.9394 1.8891
5 1.0053 2.9565 1.0112 3.0090 1.0070 3.1615
6 1.0482 3.9611 1.0574 4.2825 1.0606 4.3405
7 1.0918 5.1558 1.1017 5.2798 1.1137 5.3410
8 1.1485 5.5977 1.1552 5.5963 1.1766 5.5894

With 10 control points

1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.6710 0.2511 0.6147 0.2312 0.6021 0.2603
3 0.8193 0.5268 0.7840 0.3441 0.7737 0.2821
4 0.8932 1.3612 0.8752 1.0965 0.8674 0.8037
5 0.9491 2.1612 0.9411 2.1465 0.9415 2.0935
6 0.9963 2.8481 0.9946 2.8817 0.9988 2.9732
7 1.0346 3.5796 1.0385 3.7091 1.0441 3.8326
8 1.0699 4.4118 1.0805 4.8042 1.0863 5.0240
9 1.1093 5.3003 1.1269 5.3501 1.1322 5.3396
10 1.1566 5.5976 1.1817 5.6032 1.1864 5.5866
19
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Table A.5
Optimized control points found for uniaxial stretch tests of rectus sheath tissue (Martins et al., 2012).

Quadratic basis Cubic basis Quartic basis

𝜓1 𝜓𝑓 𝜓1 𝜓𝑓 𝜓1 𝜓𝑓
With 5 control points

1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.2082 0.0641 0.2154 0.0785 0.3257 0.0748
3 0.5642 0.2436 0.5603 0.2119 0.5436 0.2073
4 0.8007 1.1316 0.8256 0.9952 0.7579 0.7369
5 0.9745 1.5190 0.9386 1.7472 0.9506 1.6421

With 8 control points

1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.1496 0.0850 0.1457 0.1276 0.1090 0.0636
3 0.2803 0.1498 0.2578 0.2103 0.2201 0.1080
4 0.4573 0.2690 0.4210 0.3229 0.4336 0.1986
5 0.6046 0.5055 0.6074 0.5912 0.6359 0.5406
6 0.7505 0.8772 0.7880 0.9492 0.8415 0.9168
7 0.9299 1.1694 0.9428 0.2358 1.0175 1.1176
8 1.0159 1.8085 1.0498 1.9697 1.0828 1.7153

With 10 control points

1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.1181 0.0854 0.1168 0.0801 0.1029 0.0779
3 0.2124 0.1355 0.1992 0.1273 0.1753 0.1240
4 0.3449 0.2028 0.3121 0.1856 0.2763 0.1783
5 0.4815 0.3114 0.4633 0.2949 0.4391 0.2759
6 0.5944 0.4753 0.5918 0.4877 0.6099 0.5037
7 0.6937 0.7329 0.7238 0.7735 0.7743 0.8068
8 0.8232 1.0139 0.9022 1.0151 0.9235 1.0253
9 0.9328 1.2427 1.0032 1.2150 1.0052 1.2498
10 0.9877 2.3343 1.0600 2.3633 1.0605 2.4047
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