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Figure 2: Kinematics of finite deformation with prestrain. The elastic tensor Fe = F · Fp is multiplicatively decomposed into a prestrain-induced
part Fp and a load-induced part F = ∇ϕ, where the latter is the gradient of the in vivo deformation map ϕ from the unloaded in vivo configuration
B0 to the loaded in vivo configuration Bt. While it is difficult to explicitly quantify the prestrain Fp, we can easily measure the inverse prestrain
Fp−1 as the membrane shrinkage upon tissue explantation.

In cylindrical structures, residual stresses have been visualized using the classical opening angle experiment both in
arteries [15, 16] and in the heart [37]. First mathematical models for residual stresses in cylindrical structures are
now on their way [10, 12, 51], and algorithmic protocols have been developed to efficiently incorporate prestrain
in finite element simulations [5, 14]. In thin biological membranes, prestrain has been recognized to play a critical
role in tissue engineered artificial heart valves [36]. Prestrain has recently been characterized experimentally [4] and
has been identified as an important mechanism in mitral valve mechanics [45]. However, the effects of prestrain and
residual stress in thin biological membranes have never been quantified systematically to date. This is the goal of the
present manuscript.
The remainder of this manuscript is organized as follows. In Section ??, we summarize the general kinematics and
the constitutive equations for prestrained biological tissues. In Section ??, we specify the prestrain and the free energy
function for the particular model problem of thin biological membranes. In Section 4, we illustrate the creation of the
finite element model based on in vivo acquired kinematics and pressure measurements, summarize its computational
solution, and discuss the algorithm for the parameter identification. In Section 5, we summarize the results of the
parameter identification and simulate a biaxial tension test using these parameter values for different prestrain levels.
In Section 6, we discuss our results and compare them to existing studies in the literature, before we conclude by
reiterating the role of prestrain and residual stress in thin biological membranes in Section 7.

2. KINEMATICS OF PRESTRAIN

We adopt a formulation of finite strain kinematics characterized through the deformation map ϕ, which maps material
points from the unloaded in vivo configuration B0 to the loaded in vivo configuration Bt. Its spatial gradient, the
deformation gradient

F = ∇ϕ : TB0 → TBt (1)

maps elements from tangent space of the unloaded in vivo configuration TB0 to the tangent space of the loaded in
vivo configuration TBt. We assume that the unloaded in vivo configuration B0 is neither stress- nor strain-free. We
interpret prestrain as the strain required to bring the membrane from the unloaded ex vivo configuration Be to the in
unloaded vivo configuration B0 and denote the associated tangent map with Fp : TBe → TB0. While it is difficult to
measure Fp directly, we can experimentally measure the inverse prestrain Fp−1 : TB0 → TBe as the kinematic change
upon tissue explantation [4]. After characterizing the deformation gradient F and the prestrain Fp, we can determine
the second order elastic tensor

Fe = F · Fp : TBe → TBt , (2)
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