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a b s t r a c t

The goal of this manuscript is to establish a novel computational model for stretch-induced

skin growth during tissue expansion. Tissue expansion is a common surgical procedure to

grow extra skin for reconstructing birth defects, burn injuries, or cancerous breasts.

To model skin growth within the framework of nonlinear continuum mechanics, we adopt

the multiplicative decomposition of the deformation gradient into an elastic and a growth

part. Within this concept, we characterize growth as an irreversible, stretch-driven,

transversely isotropic process parameterized in terms of a single scalar-valued growth

multiplier, the in-plane area growth. To discretize its evolution in time, we apply an

unconditionally stable, implicit Euler backward scheme. To discretize it in space, we utilize

the finite element method. For maximum algorithmic efficiency and optimal convergence,

we suggest an inner Newton iteration to locally update the growth multiplier at each

integration point. This iteration is embedded within an outer Newton iteration to globally

update the deformation at each finite element node. To demonstrate the characteristic

features of skin growth, we simulate the process of gradual tissue expander inflation.

To visualize growth-induced residual stresses, we simulate a subsequent tissue expander

deflation. In particular, we compare the spatio-temporal evolution of area growth,

elastic strains, and residual stresses for four commonly available tissue expander

geometries. We believe that predictive computational modeling can open new avenues

in reconstructive surgery to rationalize and standardize clinical process parameters such as

expander geometry, expander size, expander placement, and inflation timing.

& 2011 Elsevier Ltd. All rights reserved.

1. Motivation

Tissue expansion has revolutionized reconstructive surgery in the last three decades. It was first proposed more than
half a century ago to reconstruct a traumatic ear defect using a temporarily implanted rubber balloon (Neumann, 1959).
However, the technique was rarely used in clinical practice until it was rediscovered over 20 years later as an option for
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skin expansion in post-mastectomy breast reconstruction (Radovan, 1982). Since then, application of tissue expansion for
breast reconstruction has gained widespread use. The technique has since advanced as one of the key surgical procedures
to create skin flaps for the resurfacing of large congenital defects of the skin including giant nevi and vascular anomalies
(Arneja and Gosain, 2007, 2009; Gosain et al., 2001). It is also widely used for the correction of skin deformity following
burn injuries and other forms of traumatic skin loss (Argenta et al., 1983; Das and Gosain, 2009). Skin expansion is an ideal
way to grow skin that matches the color, texture, and hair bearance of the surrounding healthy skin, while minimizing
scars and risk of rejection (Rivera et al., 2005). Fig. 1 illustrates an example of tissue expansion in pediatric forehead
reconstruction (Gosain et al., 2009). The patient, a one-year old girl, presented with a giant congenital nevus involving
almost 50% of the forehead, affecting the hairline and the left eyebrow. Three forehead and scalp expanders were used
simultaneously for in situ forehead flap growth. For complete resurfacing of the region, serial tissue expansion was then
performed, successively stretching the previously expanded tissues until the entire nevus could be excised and resurfaced.
In skin resurfacing, tissue expanders are typically placed in subcutaneous pockets adjacent to the skin defect, while their
ports to regulate expander filling are either buried in a remote location away from the defect, or left outside the skin for
ease of injection. The amount of filling is controlled by visual inspection of skin color, capillary refill, and simple palpation
of the skin over the expander (Rivera et al., 2005). Multiple subsequent serial inflations stretch the skin and stimulate
tissue growth. Once new skin is produced, the device is removed, and the new skin is used to repair the adjacent defect
zone. The follow-up photograph in Fig. 1, right, shows the patient at age three after the initial defect was excised and
resurfaced with expanded forehead and scalp flaps. Similar expansion techniques have successfully been used to grow skin
in the trunk (Arneja and Gosain, 2005), and in the upper and lower extremities (Gosain et al., 2001).

Fig. 2 shows a schematic sequence of the mechanical processes that occur during tissue expansion. Initially, at
biological equilibrium, the skin is in a natural state of resting tension (Silver et al., 2003). Skin is a composite material
consisting of two layers: the epidermis, a 0.06–1.0 mm thick waterproof, protective outer layer and the dermis, a
1.0–4.0 mm thick load bearing inner layer (Silver et al., 2003). When used for skin resurfacing, tissue expanders are
implanted in the subcutaneous tissue beneath these two skin layers. When the expander is inflated, the epidermis and the
dermis are loaded in tension. Dermal stretches beyond a critical level trigger a series of stretch-induced signaling

Fig. 1. Tissue expansion for pediatric forehead reconstruction. The patient, a one-year old girl, presented with a giant congenital nevus involving almost

50% of the forehead, affecting the hairline and the left eyebrow. Three forehead and scalp expanders were implanted simultaneously for in situ forehead

flap growth. For complete resurfacing of the region, serial tissue expansion was performed to successively stretch the previously expanded tissues until

the entire nevus could be excised and resurfaced. This technique allows to resurface large anatomical areas with skin of similar color, quality, and texture.

The follow-up photograph shows the patient at age three; the initial defect was excised and resurfaced with expanded forehead and scalp flaps.

reference configuration

epidermis and dermis

hypodermis expander inflation stretch-induced growth expander deflation

loaded configuration grown configuration unloaded configuration

Fig. 2. Schematic sequence of tissue expander inflation and deflation. At biological equilibrium, the skin is in a physiological state of resting tension, left.

A tissue expander is implanted subcutaneously between the skin, consisting of the epidermis and dermis, and the hypodermis. When the expander is

inflated, the skin is loaded in tension, middle left. Mechanical stretch induces cell proliferation causing the skin to grow. Growth restores the state of

resting tension, middle right. Expander deflation reveals the irreversible nature of skin growth associated with growth-induced residual stresses in the

skin layer, right.
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pathways (Takei et al., 1998). Mechanotransduction affects a network of integrated cascades including cellular
architecture and function such as cytoskeletal structure, extracellular matrix, enzyme activity, second messenger systems,
and ion channel activity (De Filippo and Atala, 2002). As a consequence, the skin grows and restores the state of resting
tension. This cycle of expander inflation and growth is repeated multiple times, typically on a weekly basis. Remarkably, as
demonstrated by immunocytochemical analyses, the expanded tissue undergoes normal cell differentiation and maintains
its characteristic phenotype (Wollina et al., 1992). When the expander is removed, the skin retracts and reveals the
irreversible nature of skin growth. This is associated with growth-induced residual stresses in the skin layer (Goriely and
BenAmar, 2005). Although the tissue initially displays epidermal thickening and dermal thinning upon expansion, both
thickness changes are reversible under expander removal (van der Kolk et al., 1987).

Several studies have focused on understanding this adaptation process from a biomechanical point of view. In this
endeavor, two parameters have received special attention: the rate of expansion and the expander geometry. A series of
in vivo experiments has demonstrated that the rate of expansion, every day over a period of two weeks versus weekly over
a period of six weeks, had no significant impact on area gain and biomechanical tissue properties (Zeng et al., 2003). The
expander geometry, however, seems to play a more crucial role (Brobmann and Huber, 1985). Fig. 3 displays four
commonly used tissue expander geometries, circular, square, rectangular, and crescent-shaped. For regular circular and
rectangular expanders, simple mathematical models have been proposed to kinematically correlate expander volume and
surface area (Duits et al., 1989; Shively, 1986). However, it was soon recognized that purely kinematic models severely
overestimate the net gain in surface area (van Rappard et al., 1988). The observed difference of up to a factor four seems
obvious, since these models assume that the entire deformation can be attributed to irreversible growth, completely
neglecting the reversible elastic deformation that manifests itself in skin retraction upon expander removal (LoGiudice and
Gosain, 2003), see Fig. 2, right. To correct for this error, empirical correction factors of 6.0, 3.75, and 4.5 have been
proposed for the circular, rectangular, and crescent-shaped expanders (van Rappard et al., 1988). Despite these efforts, the
choice of the appropriate expander geometry and size is still almost exclusively based on the surgeon’s personal
preference, and the discrepancy between recommended shapes, sizes, and volumes remains enormous (LoGiudice and
Gosain, 2003). This demonstrates the ongoing need to rationalize criteria for a standardized device selection.

In this paper, we propose a rigorous, mechanistic approach to systematically compare different tissue expander
geometries in terms of stress, strain, and area gain. To model skin growth in response to tissue expansion, we adopt the
framework of finite growth. Finite growth theories have experienced a breakthrough in continuum thermodynamics with
the introduction of an incompatible growth configuration, along with the corresponding multiplicative decomposition of
the deformation gradient into an elastic and a growth part (Rodriguez et al., 1994). This idea is not new. Its basic concept
was originally developed in the context of finite strain plasticity (Lee, 1969), and was then adopted for biological growth
(Taber, 1995). Today, there seems to be a general agreement that the incompatible growth configuration is a suitable and
effective approach towards finite growth, and a tremendous amount of research has been devoted to establish continuum
theories of finite growth within the last decade (Dunlop et al., 2010; Epstein and Maugin, 2000; Goriely and BenAmar,
2007; Lubarda and Hoger, 2002). These theories have been applied successfully to characterize growing tumors (Ambrosi
and Mollica, 2002; Dervaux and Ben Amar, 2011), tendons (Garikipati et al., 2004), mucous membranes (Moulton and
Goriely, 2011; Li et al., 2011), vascular tissues (Humphrey, 2002; Kuhl et al., 2007; Taber and Humphrey, 2001), and
cardiac tissues (Göktepe et al., 2010a; Kroon et al., 2009; Rausch et al., in press). While earlier studies were primarily of
theoretical and analytical nature (Ben Amar and Goriely, 2005; Ganghoffer, 2010; Garikipati, 2009), we can now observe a
clear trend towards the computational modeling of volumetric growth, typically by introducing the growth tensor as an
internal variable within a finite element framework (Göktepe et al., 2010b; Himpel et al., 2005; Schmid et al., in press).
A recent monograph summarizes the essential findings, trends, and open questions in this progressively evolving new field
(Ambrosi et al., 2011).

Despite ongoing research in growing biological systems, the growth of thin biological membranes remains severely
understudied. Only recently, first attempts have been presented to mathematically characterize growth-induced

Fig. 3. Tissue expanders to grow skin flaps for defect correction in reconstructive surgery. Typical applications are birth defect correction, scar revision in

burn injuries, and breast reconstruction after tumor removal. Devices are available in different shapes and sizes, circular, square, rectangular, and

crescent-shaped. They consist of a silicone elastomer inflatable expander with a reinforced base for directional expansion, and a remote silicone

elastomer injection dome. Reprinted with permission, Mentor Worldwide LLC.
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instabilities and residual stresses in thin elastic membranes (Dervaux et al., 2009; Goriely and BenAmar, 2005; McMahon
and Goriely, 2010). However, despite a few exceptions (Li et al., 2011), most of these attempts remain restricted to an
axisymmetric response. Unfortunately, the same is true for the only computational model for skin growth proposed to date
(Socci et al., 2007), which is unsuitable to model arbitrary tissue expander geometries. It is of axisymmetric nature and can
therefore only be applied to model skin growth using a circular tissue expander. The promising first results of this study
have motivated our attempts to create a fully three-dimensional computational model for tissue expansion that allows us
to precisely quantify stress, strain, and area gain in response to different, arbitrarily shaped tissue expander geometries.

To document our efforts, this paper is organized as follows. In Section 2, we give a brief overview of the continuum
equations for finite growth including the kinematic equations, the balance equations, and the constitutive equations.
In particular, we introduce the growth tensor for transversely isotropic growth and the strain-driven evolution equation
for its key kinematic variable, the area growth. In Section 3, we illustrate the temporal and spatial discretizations of the
biological and mechanical equilibrium equations, along with their consistent algorithmic linearization. We then
demonstrate the features of our model in Section 4, focussing on the two load cases of tissue expander inflation and
deflation. After pointing out the limitations of our model, we close with some concluding remarks in Section 5.

2. Continuum modeling of area growth

In this section, we introduce the governing equations of area growth within the framework of open system
thermodynamics. We briefly summarize the kinematic equations, the balance equations, and the constitutive equations.

2.1. Kinematics of area growth

We adopt the kinematics of finite deformations and introduce the deformation map u, which, at any given time t, maps
the material placement X of a physical particle in the material configuration to its spatial placement x in the spatial
configuration:

x¼uðX,tÞ ð1Þ

In what follows, we apply a formulation which is entirely related to the material frame of reference. Accordingly,
rf3g ¼ @Xf3gjt and Divf3g ¼ @Xf3gjt : I denote the gradient and the divergence of any field f3gðX,tÞwith respect to the material
placement X at fixed time t. Herein I is the material identity tensor. To characterize finite growth, we adopt the
multiplicative decomposition of deformation gradient

F ¼ Fe
� Fg with F ¼rXu ð2Þ

into an elastic part Fe and a growth part Fg (Rodriguez et al., 1994). This implies that the total Jacobian

J¼ JeJg with J¼ detðFÞ40 ð3Þ

obeys a similar multiplicative decomposition into an elastic part Je ¼ detðFe
Þ and a growth part Jg ¼ detðFg

Þ. We idealize
skin as a thin layer characterized through the unit normal n0 in the undeformed reference configuration. The length of the
deformed skin normal n¼ cofðFÞ � n0 ¼ J F�t

� n0 introduces the area stretch

W¼ WeWg with W¼ JcofðFÞ � n0J¼ J½n0 � C
�1
� n0�

1=2 ð4Þ

which we can again decompose into an elastic area stretch We
¼ JcofðFe

Þ � ngJ and a growth area stretch Wg
¼ JcofðFg

Þ � n0J.
Here, cofð3Þ ¼ detð3Þð3Þ�t denotes the cofactor of the second order tensor ð3Þ. As characteristic deformation measures, we
introduce the right Cauchy Green tensor C in the undeformed reference configuration and its elastic counterpart Ce in the
intermediate configuration,

C ¼ Ft
� F and Ce

¼ Fet
� Fe

ð5Þ

where both are related through the following identity, Ce
¼ Fg�t

� C � Fg�1. Finally, we introduce the pull back of the spatial
velocity gradient l to the intermediate configuration,

Fe�1
� l � Fe

¼ Le
þLg with l¼ _F � F�1

ð6Þ

which obeys the additive split into the elastic velocity gradient Le
¼ Fe�1

� _F
e

and the growth velocity gradient
Lg
¼ _F

g
� Fg�1. Here, we have applied the notation f_3g ¼ @tf3gjX to denote the material time derivative of any field f3gðX,tÞ

at fixed material placement X.

2.2. Balance equations of area growth

We characterize growing tissue using the framework of open system thermodynamics in which the material density r0

is allowed to change as a consequence of growth (Kuhl and Steinmann, 2003a,b). The balance of mass for open
systems balances its rate of change _r0 with a possible in- or outflux of mass R and mass source R0 (Pang et al., in press;

A.B. Tepole et al. / J. Mech. Phys. Solids 59 (2011) 2177–21902180
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Taylor et al., 2009):

_r0 ¼DivðRÞþR0 ð7Þ

Similarly, the balance of linear momentum balances the density-weighted rate of change of the momentum _v , where v¼ _u
is nothing but the spatial velocity, with the momentum flux P ¼ F � S and the momentum source r0b.

r0
_v ¼DivðF � SÞþr0b ð8Þ

Herein, P and S are the first and second Piola–Kirchhoff stress tensors, respectively. Last, we would like to point out that
the dissipation inequality of open systems

r0D¼ S : 1
2
_C�r0

_c�r0SZ0 ð9Þ

typically contains an extra entropy source r0S to account for the growing nature of living biological systems (Kuhl and
Steinmann, 2003a; Menzel, 2005). Eqs. (8) and (9) represent the mass-specific versions of the balance of momentum and
of the dissipation inequality which are particularly useful in the context of growth since they contain no explicit
dependencies on the changes in mass (Kuhl and Steinmann, 2003b).

2.3. Constitutive equations of area growth

To close the set of equations, we introduce the constitutive equations for the mass flux R, for the mass sourceR0, for the
momentum flux S, for the momentum source b, and for the growth tensor Fg. For the mass flux R, we adopt a definition in
analogy to Fick’s law,

R¼D � rr0 ð10Þ

and relate it directly to the density gradient rr0 through the conductivity tensor D (Kuhl et al., 2003). In the case of
transversely isotropic in-plane mass conduction, the conductivity tensor D¼ d0½I�n0 � n0� reduces to the second order
tensor for transverse isotropy ½I�n0 � n0� scaled by the mass conduction coefficient d0, which has the unit of length
squared divided by the time. Immunocytochemistry has shown that expanded tissue undergoes normal epidermal cell
differentiation (Wollina et al., 1992). Accordingly, we assume that the newly grown skin has the same density as the initial
tissue. This implies that the mass source

R0 ¼ r0 trðLg
Þ ð11Þ

can be expressed as the density-weighted trace of the growth velocity gradient trðLg
Þ ¼ _F

g
: Fg�t (Himpel et al., 2005). For

the sake of transparency, we model skin as an elastic material that can be characterized exclusively in terms of the
Helmholtz free energy c¼ ĉðC,Fg

Þ, which we can use to evaluate the dissipation inequality (9).

r0D¼ S�r0

@c
@C

� �
:

1

2
_CþMe : Lg

�r0

@c
@r0

R0�r0S0Z0 ð12Þ

Similar to finite strain plasticity (Lee, 1969), we observe that the Mandel stress of the intermediate configuration Me
¼ Ce

�

Se is energetically conjugate to the growth velocity gradient Lg
¼ _F

g
� Fg�1. From the dissipation inequality (12), we obtain

the definition of the second Piola Kirchhoff stress S as thermodynamically conjugate quantity to the right Cauchy Green
deformation tensor C:

S ¼ 2r0

@c
@C
¼ 2

@c
@Ce :

@Ce

@C
¼ Fg�1

� Se
� Fg�t with Se :¼ 2r0

@c
@Ce ð13Þ

As a side remark, the elastic constitutive moduli Le can be obtained by taking the second derivative of the Helmholtz free
energy c with respect to the elastic part of the deformation gradient Fe:

Le
¼ 2

@Se

@Ce ¼ 4r0

@2c
@Ce
� @Ce ð14Þ

Motivated by clinical observations (Rivera et al., 2005), we represent growth as a strain-driven, transversely isotropic,
irreversible process. It is characterized through one single growth multiplier Wg that reflects the irreversible area increase
perpendicular to the skin normal n0:

Fg
¼

ffiffiffiffiffiffi
Wg

p
Iþ½1�

ffiffiffiffiffiffi
Wg

p
�n0 � n0 ð15Þ

For this particular transversely isotropic definition of the growth tensor, for which the material is not allowed to grow in
the thickness direction (van der Kolk et al., 1987), the area growth is identical to the volume growth, i.e., Wg

¼ detðFg
Þ ¼ Jg.

Because of the simple rank-one update structure, we can apply the Sherman–Morrison formula to invert the growth tensor
in explicit form:

Fg�1
¼

1ffiffiffiffiffiffi
Wg
p Iþ 1�

1ffiffiffiffiffiffi
Wg
p

� �
n0 � n0 ð16Þ

A.B. Tepole et al. / J. Mech. Phys. Solids 59 (2011) 2177–2190 2181
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It introduces the following simple expression for the growth velocity gradient:

Lg
¼

ffiffiffiffiffiffi
_W

g
p
ffiffiffi
W
p g Iþ 1�

ffiffiffiffiffiffi
_W

g
p
ffiffiffi
W
p g

" #
n0 � n0 ð17Þ

which proves convenient to explicitly evaluate the mass source as R0 ¼ r0½1þþ2
ffiffiffiffi
_W

p g
=
ffiffiffi
W
p g
�. Motivated by physiological

observations of stretch-induced skin expansion (Gosain et al., 2009), we adopt the following evolution equation for the
growth multiplier:

_W
g
¼ kgðWg

Þfg
ðWe
Þ ð18Þ

which follows a well-established functional form (Lubarda and Hoger, 2002), but is now rephrased in a strain-driven
format (Göktepe et al., 2010a, 2010b). To control unbounded growth, we introduce the weighting function

kg ¼
1

t
Wmax
�Wg

Wmax
�1

� �g
with

@kg

@Wg ¼�
g

Wmax
�Wg kg ð19Þ

where t denotes the adaptation speed, g calibrates the shape of the adaptation curve, and Wmax41 denotes the maximum
area growth (Himpel et al., 2005; Lubarda and Hoger, 2002). The growth criterion

fg
¼ We
�Wcrit

¼
W
Wg�W

crit with
@fg

@Wg ¼�
1

Wg2
W ð20Þ

is driven by the elastic area stretch We
¼ W=Wg, such that growth is activated only if the elastic area stretch exceeds a critical

physiological threshold value Wcrit (Göktepe et al., 2010a). For displacement-driven skin expansion, the model displays a
characteristic relaxation-type response, while for force-driven skin expansion, it shows a creep-type behavior (Buganza
Tepole et al., submitted for publication).

3. Computational modeling of area growth

The governing equations for finite growth introduced in the previous section are complex and highly nonlinear. In this
section, we illustrate their computational solution within an incremental iterative nonlinear finite element framework. To
characterize the growth process at each instant in time, we introduce the growth multiplier Wg as an internal variable, and
solve its evolution equation (18) locally at each integration point using the finite difference method. To explore the
interplay between growth and mechanics, we discretize the governing equations for finite growth (2), (8), and (13) in
space using the finite element method. In this section, we first derive the discrete local residual and the corresponding
tangent moduli for the local Newton iteration to iteratively determine the growth multiplier Wg. Then, we derive the
stresses S for the discrete global residual and the constitutive moduli L for the tangent moduli for the global Newton
iteration to iteratively determine the deformation u.

3.1. Local Newton iteration—growth multiplier

To discretize the biological equilibrium equation (18) in time, we partition the time interval of interest T into nstp subintervals,

T ¼ U
nstp

n ¼ 1
½tn,tnþ1� ð21Þ

and focus on the interval ½tn,tnþ1� for which Dt¼ tnþ1�tn40 denotes the current time increment. Our goal is to determine the
current growth multiplier Wg for a given deformation state F at time t, and a given growth multiplier Wg

n at the end of the previous
time step tn. For the sake of compactness, here and from now on, we omit the index ð3Þnþ1 for all quantities at the end of the
current time step tnþ1. To evaluate the material time derivative of the growth multiplier _W, we introduce the following
approximation:

_W
g
¼

1

Dt
½Wg
�Wg

n� ð22Þ

In the spirit of implicit time stepping schemes, we now reformulate the evolution equation (18) with the help of Eq. (22),
introducing the discrete residual RW in terms of the unknown growth multiplier WW:

RW
¼ Wg
�Wg

n�kgfgDt60 ð23Þ

We suggest to solve this nonlinear residual equation for the unknown growth multiplier using a local Newton iteration. Within
each iteration step, we calculate the linearization of the residual RW with respect to the growth multiplier Wg,

KW
¼
@RW

@Wg ¼ 1�
@kg

@Wg f
g
þkg @f

g

@Wg

� �
Dt ð24Þ

with the weighting function kg and the growth criterion fg introduced in Eqs. (19) and (20). Within each iteration step, we
calculate the iterative update of the unknown growth multiplier Wg

’Wg
�RW=KW until convergence is achieved, i.e., until the local
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growth update DWg
¼�RW=KW is below a user-defined threshold value. In what follows, we will assume that mass diffusion is

significantly smaller than the mass source, and therefore negligible, i.e., R¼ 0. This implies that, if necessary, the remaining

balance of mass, _r0 ¼ r0½1þ2
ffiffiffiffi
_W

p g
=
ffiffiffi
W
p g
�, can simply be evaluated locally in a post-processing step once local convergence is

achieved.

3.2. Global Newton iteration—growing skin

With the simplifying assumptions of a vanishing momentum source, b¼ 0, and negligible inertia effects, _v ¼ 0, the
mechanical equilibrium equation (8) reduces to the internal force balance, DivðF � SÞ60. We cast it into its weak form,R
B0
rdu : ½F � S� dV60, through the multiplication with the test function du and the integration over the domain of interest

B0, to solve it globally on the node point level. To discretize it in space, we partition the domain of interest B0 into nel finite
elements Be

0.

B0 ¼ U
e ¼ 1

nel

Be
0 ð25Þ

Our goal is to determine the deformation state u for a given loading at time t. To approximate the test function du, the
unknown deformation u, and their gradients rdu and ru, we apply an isoparametric Bubnov–Galerkin based finite
element interpolation,

du¼
Xnen

i ¼ 1

Nidui, rdu¼
Xnen

i ¼ 1

dui �rNi, u¼
Xnen

j ¼ 1

Njuj, ru¼
Xnen

j ¼ 1

uj �rNj ð26Þ

where Ni, Nj are the element shape functions and i,j¼ 1,: :,nen are the element nodes. We now reformulate the weak form of
the balance of linear momentum (8) with the help of these finite element approximations, introducing the discrete
residual Rj

I in terms of the unknown nodal deformation uJ:

R
j
I ¼ A

e ¼ 1

nel
Z
Be

rNi
j � ½F � S� dVe60 ð27Þ

Herein, the operator A symbolizes the assembly of all element residuals at the j¼ 1,: :,nen element nodes to the global
residual at the global node points J¼ 1,: :,nel. We can evaluate the global discrete residual (27), once we have iteratively
determined the growth multiplier Wg for the given deformation state F and the given history Wg

n as described in Section 3.1.
Then we can successively determine the growth tensor Fg from Eq. (15), the elastic tensor Fe

¼ F � Fg�1 from Eq. (2), the
elastic stress Se from Eq. (13), and lastly, the second Piola Kirchhoff stress S:

S ¼ 2
@c
@C
¼ 2

@c
@Ce :

@C

@C

e

¼ Fg�1
� Se
� Fg�t

ð28Þ

Again, we suggest an incremental iterative Newton algorithm to solve the nonlinear residual equation for the unknown
deformation (27). The consistent linearization of the residual R

j
I with respect to the nodal vector of unknowns uJ

introduces the global stiffness matrix:

K
j
IJ ¼

@Rj
I

@uJ

¼ A
e ¼ 1

nel
Z
Be

½rNi
j � F�

sym � L � ½Ft
� rNj

j�
sym dVeþ

Z
Be

rNi
j � S � rNj

jI dVe ð29Þ

The fourth order tensor L denotes the Lagrangian constitutive moduli which we can determine directly from the
linearization of the Piola Kirchhoff stress S with respect to the total right Cauchy Green tensor C:

L¼ 2
dS

dC
¼ 2

@S

@C

����
Fg

þ2
@S

@Fg :
@Fg

@Wg

� �
�
@Wg

@C

����
F

ð30Þ

The first term

2
@S

@C
¼ 2

@½Fg�1
� Se
� Fg�t

�

@C
¼ ½Fg�1

�Fg�1
� : Le : ½Fg�t

�Fg�t
� ð31Þ

represents the pull back of the elastic moduli Le onto the reference configuration, where Le
¼ 2@Se=@Ce are the constitutive

moduli of the elastic material model as introduced in Eq. (14). The second term

@S

@Fg ¼
@½Fg�1

� Se
� Fg�t

�

@Fg ¼�½Fg�1
�SþS�Fg�1

��½Fg�1
�Fg�1

� :
1

2
Le : ½Fg�t

�Ce
þCe
�Fg�t

� ð32Þ

consists of two contributions that resemble a geometric and a material stiffness contribution known from nonlinear
continuum mechanics. The third term

@Fg

@Wg ¼
1

2
ffiffiffiffiffiffi
Wg
p ½I�n0 � n0� ð33Þ
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and the fourth term

@W
@C

g

¼
1

t
1

Wg

Wmax
�Wg

Wmax
�1

� �g
1

Kg Dt

" #
1

2
WC�1

�
1

2

J2

W
½C�1
� n0� � ½C

�1
� n0�

� �
ð34Þ

depend on the particular choice for the growth tensor Fg in Eq. (15) and on the evolution equation for the growth
multiplier Wg in Eq. (18), respectively. For each global Newton iteration step, we iteratively update the current deformation
state u’u�Kj�1

IJ � R
j
I until we achieve algorithmic convergence. Upon convergence, we store the corresponding growth

multipliers Wg at the integration point level. To solve these nonlinear finite element equations, we implement the growth
model in a custom-designed version of the multipurpose nonlinear finite element program FEAP (Taylor, 2008).

4. Example of skin expansion and growth

In this section, we specify the constitutive equations, the material parameters, the geometry, and the finite element
discretization to model skin growth induced through tissue expansion. We focus on two different load cases, tissue
expander inflation to simulate skin growth, and tissue expander deflation to simulate residual stresses.

4.1. Model problem of tissue expander inflation and deflation

To focus on the impact of growth, we assume a generic isotropic Neo-Hookean baseline elasticity and specify the free
energy in the following form:

r0c¼ 1
2 l ln2

ðJeÞþ1
2m½C

e : I�3�2lnðJeÞ�

According to Eqs. (13) and (14), we can then express the elastic second Piola Kirchhoff stress Se
¼ 2@c=@Ce as

Se
¼ ½llnðJeÞ�m�Ce�1

þmI

and the elastic constitutive moduli Le
¼ 2@Se=@Ce as

Le
¼ lCe�1

� Ce�1
þ½m�llnðJeÞ�½Ce

�Ce
þCe
�Ce
�

Here we have used the common abbreviations, f��3gijkl ¼ f�gik f3gjl and f��3gijkl ¼ f�gil f3gjk, for the non-standard fourth
order products. For the elastic model, we assume Lamé constants of l¼ 0:577 and m¼ 0:0385 and an initial density of
rinit

0 ¼ 1:0 (Himpel et al., 2005). For the growth model, we assume that growth takes place above the critical threshold of
Wcrit
¼ 1:01, we restrict the maximum area growth to Wmax

¼ 2:4, we assume an adaptation speed of t¼ 1:0, and a growth
exponent of g¼ 2:0. Sensitivity analyses demonstrate that the material parameters t and g influence the adaptation time
and the shape of the adaptation curve (Himpel et al., 2005), but not the final state of biological equilibrium (Rausch et al.,
in press; Schmid et al., in press). We model the skin area under consideration as a 0.2 cm thin 12�12 cm2 square sheet,
discretized with 3�24�24¼1728 trilinear brick elements, with 4�25�25¼2500 nodes and 7500 degrees of freedom.
To explore the impact of different tissue expander geometries, we model a circular, a square, a rectangular, and a crescent-
shaped expander. For the sake of comparison, the base surface areaof all four expanders is scaled to a size of A0¼37 cm2.
As illustrated in Fig. 4, we can then model tissue expansion by pressuring the corresponding 148 light red elements from
underneath while fixing the bottom nodes of all remaining white elements.

The pressure is increased linearly in 40 steps of Dt¼ 0:1 to a maximum pressure of p¼0.002 at t¼4. We then keep the
pressure constant and watch the skin grow. In Section 4.2, we explore skin growth upon tissue expander inflation. To allow
the skin to gradually grow towards its biological equilibrium state, we keep the pressure constant for another 460 steps
until t¼50. In Section 4.3, we explore the growth-induced residual stresses upon tissue expander deflation. We keep the
pressure constant for another 80 steps until t¼12, and then gradually decrease the pressure back to zero throughout
another 30 time steps until t¼15.

Fig. 4. Tissue expander inflation and deflation. Skin is modeled as a 0.2 cm thin 12�12 cm2 square sheet, discretized with 3�24�24¼1728 trilinear

brick elements, with 4�25�25¼2500 nodes and 7500 degrees of freedom. We explore the impact of different tissue expander geometries, circular,

square, rectangular, and crescent-shaped. The base surface area of all expanders is scaled to 148 elements corresponding to 37 cm2. This area, here shown

in light red, is gradually pressurized from underneath while the bottom nodes of all remaining elements, shown in white, are fixed. (For interpretation of

the references to color in this figure legend, the reader is referred to the web version of this article.)
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4.2. Tissue expander inflation—skin growth

Fig. 5 displays the fractional area gain and the increasing expander volume in response to tissue expander inflation.
We model expander inflation through gradually increasing the pressure from time t¼0 to 4, and then hold it constant from
time t¼4 to 50. Under the same pressure, we observe that the circular expander triggers the largest fractional area gain,
followed by the square, the rectangular, and the crescent-shaped expanders, Fig. 5, left. Since the base surface area is the
same for all four expanders, this implies that the expander volume is largest for the circular expander, followed by the
square, the rectangular, and the crescent-shaped expanders, Fig. 5, right. Both graphs demonstrate the characteristic creep-
type growth under constant pressure with a gradual convergence towards the biological equilibrium state.

Table 1 displays a quantitative comparison of the four different tissue expander geometries. Following a linearly
increasing and then constant pressure, at t¼50, the maximum growth multiplier is largest for the circular expander, with
Wg
¼ 2:364, followed by Wg

¼ 2:349 for the square expander, Wg
¼ 2:257 for the rectangular expander, and Wg

¼ 2:247 for the
crescent-shaped expander. While the maximum area growth Wg is nothing but a local measure of growth, the global
absolute area gain DA characterizes the total amount of skin growth. Skin growth is again largest for the circular expander
with DA¼ 58:738 cm2, followed by the square expander with 50.627 cm2, the rectangular expander with 44.398 cm2, and
the crescent-shaped expander with 41.186 cm2, meaning that the total area of A0¼37 cm2 has more than doubled in all
four cases. This implies that the fractional area gain ranges from 1.588 for the circular expander to 1.368, 1.200, and 1.113
for the square, the rectangular, and the crescent-shaped expanders, Fig. 5, left. To obtain these area gains, the required
expander volumes are 257.451 cm3 for the circular expander, 186.771 cm3 for the square expander, 122.063 cm3 for the
rectangular expander, and 108.416 cm3 for the crescent-shaped expander. These values agree nicely with the rectangular
expander volumes of 100–200 cm3 typically used in the forehead and are slightly lower than the expander volumes of
140–600 cm3 used in the scalp during pediatric forehead reconstruction (Gosain et al., 2009).

Fig. 6 summarizes the spatio-temporal evolution of area growth for all four expander types. Snapshots correspond to
t¼4, 12, 24, and 48, from left to right, corresponding to the labels and dashed vertical lines in Fig. 5. The color code
illustrates the evolution of the growth multiplier Wg ranging from Wg

¼ 1:0 for the initially ungrown skin, shown in blue, to
Wg
¼ Wmax

¼ 2:4 for the fully grown state, shown in red. Fig. 6 confirms that the circular expander induces the largest
amount of growth followed by the square, the rectangular, and the crescent-shaped expanders. Remarkably, despite the
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Fig. 5. Tissue expander inflation. Temporal evolution of fractional area gain and increasing expander volume. Expanders are inflated gradually between

t¼0 and 4 by linearly increasing the pressure. The pressure is then held constant from t¼4 to 50 to allow the skin to grow. Under the same pressure

applied to the same base surface area, the circular expander displays the largest fractional area gain, followed by the square, the rectangular, and the

crescent-shaped expanders, left. Growth causes the tissue to relax and the expander volume to increase. The expander volume is largest for the circular

expander, followed by the square, the rectangular, and the crescent-shaped expanders, right. Both graphs demonstrate the characteristic creep-type

growth under constant pressure with a gradual convergence towards the biological equilibrium state.

Table 1
Tissue expander inflation and deflation. Maximum growth multiplier, absolute area gain, fractional area gain, and expander volume under constant

pressure loading at time t¼50 are largest for the circular expander, followed by the square, the rectangular, and the crescent shape expanders. Maximum

principal residual stresses upon unloading after a constant pressure growth until t¼12 are largest for the circular expander, followed by the square, the

rectangular, and the crescent-shaped expanders.

Maximum

growth Wg (–)

Initial area

A0 (cm2)

absolute area gain

DA ðcm2Þ

Fractional area gain

DA=A0 (–)

Expander

volume V (cm3)

Expander

pressure p/E (–)

Maximum residual

stress smax=E (–)

Circular 2.364 37.000 58.738 1.588 257.451 0.002 0.419

square 2.349 37.000 50.627 1.368 186.771 0.002 0.410

Rectangular 2.257 37.000 44.398 1.200 122.063 0.002 0.335

Crescent 2.247 37.000 41.186 1.113 108.416 0.002 0.328
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Fig. 6. Tissue expander inflation. Spatio-temporal evolution of growth area stretch Wg for circular, square, rectangular, and crescent-shaped expanders.

Under the same pressure applied to the same base surface area, the circular expander induces the largest amount of growth followed by the square, the

rectangular, and the crescent-shaped expanders. The color code illustrates the evolution of the growth multiplier Wg, ranging from Wg
¼ 1:0 for the

initially ungrown skin, shown in blue, to Wg
¼ Wmax

¼ 2:4 for the fully grown state, shown in red. Snapshots correspond to t¼4, 12, 24, and 48, from left to

right, corresponding to the labels in Fig. 5. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article.)

Fig. 7. Tissue expander deflation. Spatio-temporal evolution of elastic area stretch We for circular, square, rectangular, and crescent-shaped expanders. As

the expander pressure is gradually removed, from left to right, the grown skin layer collapses. Deviations from a flat surface after total unloading, right,

demonstrate the irreversibility of the growth process. Growth induces compression at the edges of the original base surface area, and tension in the

center region. The color code illustrates the evolution of the elastic area stretch We, ranging from We
¼ 0:9 corresponding to 10% of area compression,

shown in blue, to We
¼ 1:1 corresponding to 10% of area tension, shown in red. Snapshots correspond to t¼12, 13, 14, and 15, from left to right.

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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large deformations of the thin skin layer, the algorithm always converges quadratically and displays no instabilities,
maintaining robustness throughout the entire simulation.

4.3. Tissue expander deflation—residual stress

Fig. 7 documents the spatio-temporal evolution of the elastic area stretch in response to tissue expander deflation. We
model expander deflation after gradual inflation from time t¼0 to 4 and a constant expander pressure from time t¼4 to 12
through a gradual decrease of the expander pressure back to zero at time t¼15. Snapshots correspond to t¼12, 13, 14, and
15, from left to right. Fig. 7 confirms the irreversible nature of skin growth. As the expander pressure is gradually removed,
from left to right, the grown skin layer collapses. Deviations from a flat surface after total unloading, right, confirm the
irreversibility of the growth process. The color code illustrates the evolution of the elastic area stretch We, ranging from
We
¼ 0:9 corresponding to 10% of area compression, shown in blue, to We

¼ 1:1 corresponding to 10% of area tension, shown
in red. Growth induces compressive strains at the edges of the original base surface area, and tensile strains in the center
region.

Fig. 8 documents the spatio-temporal evolution of the maximum principal stress in response to tissue expander
deflation. The four sets of snapshots at t¼12, 13, 14, and 15 correspond to the same time points shown in the elastic area
strain plot of Fig. 7. The color code corresponds to the maximum principal stress smax, ranging from smax ¼ 0:0, shown in
blue, to smax ¼ 0:40, shown in red. The remaining stresses in the unloaded state, shown in red on the right, correspond to
growth-induced residual stresses. While the existence of residual stresses in growing biological tissues has been intensely
discussed in the literature (Rodriguez et al., 1994; Taber and Humphrey, 2001; Vandiver and Goriely, 2009), this is one of
the first attempts to visually illustrate their existence upon complete unloading. Although the algorithm is capable of
robustly simulating total pressure removal after time step t¼12, we would like to point out that the algorithm struggled to
fully unload the biological equilibrium state after t¼50 discussed in Section 4.2. However, the observed loss of algorithmic
convergence upon unloading a severely grown skin sheet is mainly a problem of skin collapse and self-contact rather than
that of the conceptual nature of our model.

Finally, to quantify the residual stresses in the unloaded sheet, the last column in Table 1 compares the maximum
principal residual stresses for all four expander geometries. In agreement with the other results of this study, residual
stresses are largest when using a circular expander with smax ¼ 0:419, followed by the square expander with smax ¼ 0:410,
the rectangular expander with smax ¼ 0:335, and the crescent-shaped expander with smax ¼ 0:328.

Fig. 8. Tissue expander deflation. Spatio-temporal evolution of maximum principal stress smax for circular, square, rectangular, and crescent-shaped

expanders. As the expander pressure is gradually removed, from left to right, the grown skin layer collapses. Deviations from a flat surface after total

unloading, right, demonstrate the irreversibility of the growth process. Remaining stresses at the unloaded state, right, are growth-induced residual

stresses. The color code illustrates the evolution of the maximum principal stress smax, ranging from smax ¼ 0:0, shown in blue, to smax ¼ 0:40, shown in

red. Snapshots correspond to t¼12, 13, 14, and 15, from left to right. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)
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4.4. Limitations

Although our results hold promise to reliably predict skin growth in response to tissue expansion, we would like
to point out that this is only a preliminary study with several limitations. First, we model skin using an isotropic
Neo-Hookean baseline elasticity model as specified in Section 4.1. However, adopting a more physiological anisotropic skin
model that accounts for pronounced collagen fiber orientations parallel and perpendicular to Langer’s lines (Bischoff et al.,
2000; Kuhl et al., 2005, 2006) is conceptually straightforward and part of our current research efforts (Buganza Tepole
et al., submitted for publication). Along the same lines, it would be slightly more cumbersome, but possible, to introduce a
progressive reorientation of the collagen network in response to expansion-induced stretch (Himpel et al., 2008; Kuhl and
Holzapfel, 2007; Menzel, 2007). Second, the growth process itself may in fact be anisotropic. Given the modularity of our
model, the incorporation of different growth multipliers to characterize growth parallel and perpendicular to Langer’s lines
would require only minor adjustments (Göktepe et al., 2010b). In particular, it would affect the definition of the growth
tensor (15), its inverse (16), and its derivative (33). Third, here, we model the epidermis and the dermis as a single
homogenous material, neglecting possible internal stresses caused by the different material properties of these two layers.
It would be desirable, in the future, to model both layers individually, to explore the mechanobiology of the epidermal–
dermal interface and its functional role in internal–external load transfer (Silver et al., 2003). Especially when discretizing
the individual skin layers, it might become essential to model skin using membrane or shell elements to increase
computational efficiency, to ensure well-conditioning of the overall system matrix, and to avoid the typical locking effects
associated with thin geometries subjected to bending (Socci et al., 2007). Fourth, the calibration of the material parameters
for both the elastic model and the growth model remains a question to be addressed in the future (Mazza et al., 2005).
Here, for conceptual comparison, we have only used generic material parameter values. As a first step, we have recently
refined the constitutive model for skin (Buganza Tepole et al., submitted for publication), and calibrated its parameters
using experiments reported in the literature (Kvistedal and Nielsen, 2009; Lanir and Fung, 1974). Fifth, for the sake of
simplicity, we model the tissue expander only indirectly through controlling the applied pressure. In real tissue expansion,
the control parameter following selection and implantation of the tissue expander is the volume of the expander. This
implies that our virtual tissue expansion resembles a creep test under constant loading, while clinical tissue expansion
resembles a relaxation test under constant deformation. Last, a more realistic model should incorporate the real expander
to account for effects like interface sliding or shear (Socci et al., 2007), and, ideally, also an idealized face (Mazza et al.,
2007). In addition, the expander base which we have here modeled as fixed and undeformable, should ideally be modeled
as soft bedding. In reality, the expander base presses into the surrounding tissue. Despite tissue expander designs using a
semi-rigid base, stretching of the base still occurs and has clinical consequence. When placed on the craniofacial skeleton,
temporary but reversible bone deformations have been observed in pediatric patients (LoGiudice and Gosain, 2003).
To address these limitations, we are in the process of refining the elastic model, the growth model, and the boundary
conditions, to render our future simulations more realistic.

5. Conclusion

In this study, for the first time, we present a fully three-dimensional computational model for tissue expansion and skin
growth in reconstructive surgery. Tissue expansion is a common surgical procedure that enables the body to grow extra
skin for the resurfacing of large congenital defects of the skin including giant nevi and vascular anomalies and the
correction of skin deformity following burn injuries and other forms of traumatic skin loss. Tissue expansion is also widely
used for breast reconstruction following the removal of breast cancer. In tissue expansion, a subcutaneous inflatable
silicone expander is implanted and gradually filled with saline solution causing the skin to stretch. Increased tissue tension
triggers new cells to form and the skin to grow. Skin growth is permanent but will retract to some degree when the
expander is removed. Despite intense research in clinical and experimental skin growth, our understanding of the
mechano-biological phenomena during tissue expansion remains poor and largely qualitative.

In this paper, we propose to model tissue expansion within the concept of finite growth based on the multiplicative
decomposition of the deformation gradient into an elastic and a growth part. We assume that growth is an irreversible,
transversely isotropic process which takes place exclusively in the skin layer, while the skin thickness is assumed to
remain virtually unaffected. Accordingly, we introduce a single scalar variable, the growth multiplier, to characterize the
amount of area growth. To quantify its evolution in time, we suggest a stretch driven growth law which activates growth
once the strains exceed a critical physiological threshold level. This model is a significant advancement over existing
purely kinematic models in that expander-induced strains are not exclusively attributed to growth alone, but are a result
of both growth and elastic deformation. Accordingly, this model potentially avoids the inherent overestimation of net area
surface gain observed in existing purely kinematic models.

Since skin growth is a highly nonlinear, heterogeneous process, we propose to solve the governing equations using a
nonlinear finite element approach. For the first time, we model area growth in the form of a scalar-valued growth
multiplier which we introduce as an internal variable on the integration point level. We evaluate its temporal evolution
locally using a finite difference approach. To guarantee maximum efficiency, stability, and optimal convergence of the
algorithm, we suggest a local Newton iteration to update the growth multiplier at each integration point, embedded
within a global Newton iteration to update the deformation at each finite element node. This approach requires a
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consistent linearization of the biological equilibrium equation on the integration point level combined with a consistent
linearization of the mechanical equilibrium equation on the node point level. In contrast to existing axisymmetric models,
this novel fully 3D approach allows us to model and compare arbitrarily shaped tissue expander geometries.

To explore the features of our model, we simulate skin growth in response to four commonly available tissue expander
geometries, circular, square, rectangular, and crescent-shaped. For each geometry, we gradually increase the expander
pressure and then hold it constant to allow the skin to grow over time. We explore two scenarios, tissue expander inflation
to study skin growth, and tissue expander deflation to study residual stresses. In the first case, we allow progressive skin
growth until we reach the biological equilibrium state. For this state, we compare the maximum growth multiplier as a
local metric for growth with the fractional area gain as a global metric for growth, and quantify the corresponding
expander volumes. We observe that for the same pressure applied to the same base surface area, the circular expander
induces the largest amount of growth followed by the square, the rectangular, and the crescent-shaped expanders. In the
second case, we gradually remove the expander pressure. For the fully unloaded state, we compare the collapsed tissue
shapes in terms of tensile and compressive regions and in terms of residual stresses. This aspect of the work is novel in the
sense that the existence of residual stresses has been discussed in the literature, but rarely have they been computationally
visualized.

To our knowledge, this is the first study in which skin growth in response to tissue expansion has been addressed from
a mechanistic point of view. A comprehensive understanding of the gradually evolving stress and strain fields in growing
skin may help the surgeon to optimize clinical process parameters such as expander geometry, expander size, expander
placement, and inflation timing. Ultimately, through inverse modeling, computational tools like ours have the potential to
rationalize these parameters to obtain skin flaps of desired size and shape. Overall, we believe that predictive
computational modeling might open new avenues in reconstructive surgery and enhance treatment for patients with
birth defects, burn injuries, or breast tumor removal.
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