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A B S T R A C T

The stiffness of soft biological tissues not only depends on the applied deformation, but also on the deformation
rate. To model this type of behavior, traditional approaches select a specific time-dependent constitutive
model and fit its parameters to experimental data. Instead, a new trend now suggests a machine-learning
based approach that simultaneously discovers both the best model and best parameters to explain given data.
Recent studies have shown that feed-forward constitutive neural networks can robustly discover constitutive
models and parameters for hyperelastic materials. However, feed-forward architectures fail to capture the
history dependence of viscoelastic soft tissues. Here we combine a feed-forward constitutive neural network
for the hyperelastic response and a recurrent neural network for the viscous response inspired by the theory
of quasi-linear viscoelasticity. Our novel rheologically-informed network architecture discovers the time-
independent initial stress using the feed-forward network and the time-dependent relaxation using the recurrent
network. We train and test our combined network using unconfined compression relaxation experiments of
passive skeletal muscle and compare our discovered model to a neo Hookean standard linear solid, to an
advanced mechanics-based model, and to a vanilla recurrent neural network with no mechanics knowledge.
We demonstrate that, for limited experimental data, our new constitutive recurrent neural network discovers
models and parameters that satisfy basic physical principles and generalize well to unseen data. We discover
a Mooney–Rivlin type two-term initial stored energy function that is linear in the first invariant 𝐼1 and
quadratic in the second invariant 𝐼2 with stiffness parameters of 0.60 kPa and 0.55 kPa. We also discover
a Prony-series type relaxation function with time constants of 0.362s, 2.54s, and 52.0s with coefficients of
0.89, 0.05, and 0.03. Our newly discovered model outperforms both the neo Hookean standard linear solid
and the vanilla recurrent neural network in terms of prediction accuracy on unseen data. Our results suggest
that constitutive recurrent neural networks can autonomously discover both model and parameters that best
explain experimental data of soft viscoelastic tissues. Our source code, data, and examples are available at
https://github.com/LivingMatterLab.
1. Introduction

The mechanical behavior of biological tissues exhibits many com-
plexities that need to be taken into consideration in constitutive mod-
eling (Holzapfel and Ogden, 2006). For example, we can observe
nonlinearity (Nicolle et al., 2010), heterogeneity (Budday et al., 2017),
anisotropy (Liu et al., 2020b), and viscoelasticity (Dehoff, 1978) in a
variety of tissues ranging from tendon (Maganaris and Paul, 1999) to
liver (Nicolle et al., 2010). As an alternative to traditional constitutive
modeling, researchers are now exploring the ability of neural networks
to capture the intricate mechanical response of various biological tis-
sues (Liu et al., 2020a) including skin (Linka et al., 2023b; Tac et al.,
2023a), arteries (Holzapfel et al., 2021), the brain (St. Pierre et al.,
2023; Linka et al., 2023a, 2021b), and artificial meat (St. Pierre et al.,
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2023). Traditional constitutive modeling assumes a certain functional
form, and fits the parameters to the measured data. This may introduce
significant modeling errors if the assumed functional form does not rep-
resent the material behavior well. In contrast, neural networks have the
potential to learn both the functional form and its parameters (Kalina
et al., 2022; As’ad et al., 2022; Shen et al., 2004), creating a more
accurate representation of the material behavior.

A classical feed-forward neural network can capture traits such as
nonlinearity (Linka et al., 2021b, 2023a), heterogeneity (St. Pierre
et al., 2023), and anisotropy (Holzapfel et al., 2021; Linka et al.,
2023b), but these architectures are not well suited for modeling vis-
coelasticity. Instead, recurrent neural network architectures can model
history-dependent behaviors such as viscoelasticity, where informa-
tion from previous time steps informs the material response at the
vailable online 11 July 2023
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current time point (Bonatti and Mohr, 2021). In the classical deep
learning realm, recurrent neural networks are successfully applied to
sequence problems (Medsker and Jain, 1999) like natural language
processing (Goldberg, 2016), signal processing (Übeyli, 2009), and
robot control (Zhang and Chu, 2012). In constitutive modeling, re-
searchers are now beginning to evaluate the potential of recurrent
neural networks to model plasticity (Borkowski et al., 2022; Tancogne-
Dejean et al., 2021), viscoelasticity (Abdolazizi et al., 2023; Chen,
2021; Oeser and Freitag, 2016), and fatigue damage (Yang et al., 2021).
These recurrent neural networks also include various approaches such
as directly predicting stress from strain input (Chen, 2021) and incor-
porating the recurrent neural network as a surrogate for micro level
response in multiscale simulations (Ghavamian and Simone, 2019).

In the early applications of recurrent neural networks to constitutive
modeling, researchers directly adopted recurrent network architectures
from the classical deep learning field (Zhu et al., 2011; Chen, 2021;
Gorji et al., 2020; Tancogne-Dejean et al., 2021). While these classical
recurrent network architectures reproduce history-dependent material
behaviors, they typically involve hundreds to thousands of parameters,
if not more. As a result, classical recurrent networks require large
amounts of training data which may not be practical when building a
constitutive model based on limited experimental measurements (Alber
et al., 2019). Furthermore, the parameters in these classical networks
have no clear physical interpretation, and their predictions may violate
physical laws and constraints (Linka and Kuhl, 2023).

To address these concerns, researchers have proposed physics-
informed neural networks that incorporate physics knowledge into
neural network design (Danoun et al., 2022; Zhang et al., 2020).
Integrating our prior physics knowledge reduces the amount of re-
quired training data and constrains solutions to a physically admissible
subspace. Two conceptually different approaches have emerged to
incorporate physics knowledge: The first approach adds physical con-
straints to the loss function to enforce thermodynamic principles (Raissi
et al., 2019; Borkowski et al., 2022; Linka et al., 2022); the second
approach hardwires physical constraints into the network input, ar-
chitecture, and output to learn stored energy functions and evolution
laws for internal state variables (Linka et al., 2021a; He and Chen,
2022; Masi et al., 2021; Linka and Kuhl, 2023). The stress then follows
from these intermediate functions by direct calculation of mechanics
equations.

Here we propose a new physics-informed approach that combines
a feed-forward hyperelastic neural network (St. Pierre et al., 2023;
Linka and Kuhl, 2023) with a recurrent linear viscous neural network to
model the viscoelastic behavior of soft biological tissues. To motivate
our new network architecture, we briefly revisit the theory of quasi-
linear viscoelasticity (Fung et al., 1970) in Section 2, and illustrate how
it decomposes the total stress response into a time-independent initial
elastic stress and a time-dependent viscous overstress. In Section 3,
we map this theory onto a new network architecture that integrates
a feed-forward hyperelastic network and a recurrent viscous network.
We illustrate the modular nature of this approach by probing two alter-
native hyperelastic networks: principal-stretch-based (St. Pierre et al.,
2023) and invariant-based (Linka and Kuhl, 2023). In Section 4, we
test and train both networks on five unconfined compression relaxation
tests of passive skeletal muscle (Van Loocke et al., 2008), and compare
both against an overly constrained model, the neo Hookean standard
linear solid, a traditional phenomenological model, the Van Loocke
Lyons Simms model, and an overly flexible model, a vanilla recurrent
neural network. We perform two separate tasks, train on one and test
on four versus train on four and test on one, and demonstrate that our
new networks can uniquely discover model and parameters that best
explain the experimental data. We close with some limitations of our
2

study in Section 5 and with a brief conclusion in Section 6.
2. Theory of quasi-linear viscoelasticity

We begin by revisiting the theory of quasi-linear viscoelasticity, first
in three dimensions, and then for the special case of uniaxial tension
and compression. To characterize the deformation of the sample we
want to test, we introduce the deformation map 𝝋 that maps mate-
rial particles 𝑿 from the undeformed configuration to particles, 𝒙 =
𝝋(𝑿), in the deformed configuration. We describe relative deformations
within the sample using the deformation gradient 𝑭 , the gradient of the
deformation map 𝝋 with respect to the undeformed coordinates 𝑿 and
ts Jacobian 𝐽 ,

= ∇𝑿𝝋 =
∑3
𝑖=1 𝜆𝑖 𝒏𝑖 ⊗𝑵 𝑖 with 𝐽 = det(𝑭 ) > 0 . (1)

The spectral representation introduces the principal stretches 𝜆𝑖 and
the principal directions 𝑵 𝑖 and 𝒏𝑖 in the undeformed and deformed
configurations, where 𝑭 ⋅ 𝑵 𝑖 = 𝜆𝑖𝒏𝑖. We further introduce the left
Cauchy Green deformation tensor,

𝒃 = 𝑭 ⋅ 𝑭 t =
∑3
𝑖=1 𝜆

2
𝑖 𝒏𝑖 ⊗ 𝒏𝑖 . (2)

o characterize the isotropic material behavior, we introduce the three
rincipal invariants, 𝐼1, 𝐼2, 𝐼3, either in terms of the principal stretches
1, 𝜆2, 𝜆3,

1 = 𝜆21 + 𝜆
2
2 + 𝜆

2
3 𝐼2 = 𝜆21𝜆

2
2 + 𝜆

2
2𝜆

2
3 + 𝜆

2
1𝜆

2
3 𝐼3 = 𝜆21𝜆

2
2𝜆

2
3, (3)

or in terms of the deformation gradient 𝑭 , with derivatives, 𝜕𝑭 𝐼1, 𝜕𝑭 𝐼2,
𝜕𝑭 𝐼3,

𝐼1 = 𝑭 ∶ 𝑭 𝜕𝑭 𝐼1 = 2𝑭
𝐼2 = 1

2 [𝐼21 − [𝑭 t ⋅ 𝑭 ] ∶ [𝑭 t ⋅ 𝑭 ]] 𝜕𝑭 𝐼2 = 2 [𝐼1𝑭 − 𝑭 ⋅ 𝑭 t ⋅ 𝑭 ]

3 = det (𝑭 t ⋅ 𝑭 ) = 𝐽 2 𝜕𝑭 𝐼3 = 2 𝐼3 𝑭 −t .
(4)

or isotropic, perfectly incompressible materials, the third invariant
lways remains identical to one, 𝐼3 = 𝜆21𝜆

2
2𝜆

2
3 = 𝐽 2 = 1, and the

et of invariants reduces to 𝐼1 and 𝐼2. Following standard arguments
f thermodynamics, we introduce an instantaneous elastic free energy
unction 𝜓0(𝑭 ) from which we derive the instantaneous elastic Cauchy
tress 𝝈0,

0 =
1
𝐽
𝜕𝜓0
𝜕𝑭

⋅ 𝑭 t − 𝑝 𝑰 , (5)

where 𝑝 is the hydrostatic pressure that we determine from the bound-
ary conditions and 𝑰 is the second-order unit tensor. For an initial free
energy expressed in terms of the principal stretches, 𝜓0(𝜆1, 𝜆2, 𝜆3), the
initial Cauchy stress takes the following explicit representation,

𝝈0 =
1
𝐽
𝜕𝜓0
𝜕𝑭

⋅ 𝑭 t − 𝑝 𝑰 = 1
𝐽

3
∑

𝑖=1
𝜆𝑖
𝜕𝜓0
𝜕𝜆𝑖

𝒏𝑖 ⋅ 𝒏𝑖 − 𝑝 𝑰 , (6)

whereas for an energy function in terms of the invariants 𝜓0(𝐼1, 𝐼2), the
nitial Cauchy stress takes the following form,

0 = 2
[

𝜕𝜓0
𝜕𝐼1

+ 𝐼1
𝜕𝜓0
𝜕𝐼2

]

𝒃 − 2
𝜕𝜓0
𝜕𝐼2

𝒃2 − 𝑝 𝑰 . (7)

We pull the Cauchy stress back onto the undeformed reference config-
uration to obtain the initial Piola Kirchhoff stress,

𝑺0 = 𝐽 𝑭 −1 ⋅ 𝝈0 ⋅ 𝑭 −t . (8)

ollowing the quasi-linear viscoelastic theory (Fung et al., 1970), we
ntroduce the viscoelastic Piola Kirchhoff stress through the following
onvolution integral (Pascalis et al., 2014),

𝑡 = ∫

𝑡

−∞
G(𝑡 − 𝑠) ∶ d

d𝑠𝑺0 d𝑠 (9)

where G(𝑡) is the time-dependent fourth-order viscous relaxation tensor
and d𝑺0∕d𝑠 is the material time derivative of the instantaneous elastic
Piola Kirchhoff stress according to Eq. (8). We assume that the relax-
ation is isotropic, and express it in terms of a discrete Prony series,

G(𝑡) = 𝐺(𝑡) I with 𝐺(𝑡) = 𝛾∞ +
𝑛prn
∑

𝛾𝑖 exp (−𝑡∕𝜏𝑖) , (10)

𝑖=1
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where 𝐺(𝑡) is the time-dependent viscous relaxation function, I is the
ourth-order unit tensor, 𝛾∞ and 𝛾𝑖 are the long-term modulus and the
iscous relaxation coefficients with 𝛾∞+

∑

𝑖=1 𝛾𝑖 = 1 and 0 ≤ 𝛾∞, 𝛾𝑖 ≤ 1, 𝜏𝑖
re the viscous relaxation times of the 𝑖 = 1,… , 𝑛prn Maxwell elements,
ith 𝜏𝑖 > 0. We substitute the relaxation function (10) into the total

tress expression (9), and push it forward into the deformed current
onfiguration to obtain the total Cauchy stress,

(𝑡) = 𝛾∞ 𝝈0(𝑡) +
𝑛prn
∑

𝑖=1
𝛾𝑖𝒉𝑖(𝑡) . (11)

ere we have introduced a set of stress-like variables, the tensor-valued
patial overstresses 𝒉𝑖 for each Maxwell element 𝑖, as a push-forward
f their material counterparts,

𝑖(𝑡) =
1
𝐽
𝑭 ⋅ ∫

𝑡

0
exp

(

− 𝑡 − 𝑠
𝜏𝑖

)

d
d𝑠𝑺0 d𝑠 ⋅ 𝑭 t . (12)

ince the exponential function gradually decays to zero, the viscous
verstresses in Eq. (12) gradually decay in time, 𝒉𝑖(𝑡 → ∞) = 𝟎. The
otal stress, 𝝈, in Eq. (11) converges towards the long-term equilibrium
tress, 𝝈(𝑡→ ∞) = 𝛾∞ 𝝈0.

niaxial tension and compression. For the special case of uniaxial
ension and compression, we deform the specimen in one direction,
11 = 𝜆1 = 𝜆, where the stretch 𝜆 = 𝑙∕𝐿 denotes the relative
hange in length. For an isotropic, perfectly incompressible material
ith 𝐼3 = 𝜆21𝜆

2
2𝜆

2
3 = 1, the stretches orthogonal to the loading direction

re identical and equal to the inverse of the square root of the stretch,
22 = 𝜆2 = 𝜆−1∕2 and 𝐹33 = 𝜆3 = 𝜆−1∕2. From the resulting deformation
radient,

= diag {𝜆, 𝜆−1∕2, 𝜆−1∕2} with 𝐽 = 1 , (13)

nd left Cauchy Green deformation tensor,

= diag {𝜆2, 𝜆−1, 𝜆−1} , (14)

e calculate the first and second invariants and their derivatives,

1 = 𝜆2 + 2∕𝜆 𝜕𝜆𝐼1 = 2 [𝜆 − 1∕𝜆2]
2 = 2𝜆 + 1∕𝜆2 𝜕𝜆𝐼2 = 2 [1 − 1∕𝜆3] .

(15)

e derive the instantaneous elastic Cauchy stress 𝜎0 = 𝜎11 in the load-
ng direction in terms of the instantaneous elastic free energy function
0 for perfectly incompressible materials using standard arguments of

hermodynamics,

𝑖 𝑖 =
𝜕𝜓
𝜕𝐼1

𝜕𝐼1
𝜕𝜆𝑖

𝜆𝑖 +
𝜕𝜓
𝜕𝐼2

𝜕𝐼2
𝜕𝜆𝑖

𝜆𝑖 − 𝑝 , (16)

for 𝑖 = 1, 2, 3. Here, 𝑝 denotes the hydrostatic pressure that we deter-
mine from the zero stress condition in the transverse directions, 𝜎22 = 0
and 𝜎33 = 0, using Eq. (16) as 𝑝 = [2∕𝜆] 𝜕𝜓∕𝜕𝐼1 + [2𝜆 + 2∕𝜆2] 𝜕𝜓∕𝜕𝐼2.
This results in the following instantaneous elastic uniaxial stress–stretch
relation for perfectly incompressible, isotropic materials,

𝜎0 = 2
[

𝜕𝜓
𝜕𝐼1

+ 1
𝜆
𝜕𝜓
𝜕𝐼2

]

[

𝜆2 − 1
𝜆

]

. (17)

The underlying assumption of the theory of quasi-linear viscoelasticity
is that we can multiplicatively decompose the total viscoelastic stress
𝜎(𝑡) into the strain-dependent function 𝜎0 from Eq. (17) and a dimen-
sionless time-dependent function 𝑔(𝑡) (Fung et al., 1970). We can then
represent the total viscoelastic Cauchy stress through the convolution
integral,

𝜎(𝑡) = ∫

𝑡

−∞
𝑔(𝑡 − 𝑠) d

d𝑠 𝜎0 d𝑠 , (18)

where 𝑔(𝑡) is the time-dependent viscous relaxation function and d𝜎0∕d𝑠
s the material time derivative of the instantaneous elastic uniaxial
auchy stress according to Eq. (17). According to the theory of quasi-

inear viscoelasticity and motivated by the generalized Maxwell model,
e choose a discrete Prony series for the relaxation function,

(𝑡) = 𝛾∞ +
𝑛prn
∑

𝛾𝑖 exp (−𝑡∕𝜏𝑖), (19)
3

𝑖=1
here 𝛾∞ and 𝛾𝑖 are the long-term modulus and the viscous relaxation
coefficients with 𝛾∞ +

∑

𝑖 𝛾𝑖 = 1 and 0 ≤ 𝛾∞, 𝛾𝑖 ≤ 1, 𝜏𝑖 are the viscous
relaxation times of the 𝑖 = 1,… , 𝑛prn Maxwell elements, with 𝜏𝑖 > 0. By
substituting Eq. (19) into Eq. (18) we obtain a convenient expression
for the total Cauchy stress,

𝜎(𝑡) = 𝛾∞ 𝜎0(𝑡) +
𝑛prn
∑

𝑖=1
𝛾𝑖ℎ𝑖(𝑡) , (20)

where we have introduced a set of new stress-like variables, the scalar-
valued overstresses, ℎ𝑖(𝑡), for each Maxwell element 𝑖,

𝑖(𝑡) = ∫

𝑡

0
exp

(

− (𝑡 − 𝑠)∕𝜏𝑖
) d

d𝑠 𝜎0(𝑠)d𝑠 . (21)

n general, the above convolution integral does not have a closed form
olution, and we solve it numerically using an explicit Euler forward
ime integration scheme (Taylor et al., 1970). We discretize the time
nterval of interest and march forward from the previous time point
𝑛 to the current time point 𝑡𝑛+1 with the discrete time step size, 𝛥𝑡 =
𝑛+1− 𝑡𝑛, using the following update equations for the total stress (Simo
nd Hughes, 2000; Holzapfel, 2002),

𝑛+1 = 𝛾∞ 𝜎0,𝑛+1 +
𝑛prn
∑

𝑖=1
𝛾𝑖 ℎ𝑖,𝑛+1, (22)

in terms of the 𝑖 = 1,… , 𝑛prn overstresses,

ℎ𝑖,𝑛+1 = exp(−𝛥𝑡∕𝜏𝑖)ℎ𝑖,𝑛 + exp(−𝛥𝑡∕2𝜏𝑖)[𝜎0,𝑛+1 − 𝜎0,𝑛]. (23)

Before we move on to the next time step, we need to store both the
total stress 𝜎𝑛+1 and the overstresses ℎ𝑖,𝑛+1 of the current time step.
Motivated by the considerations in this section, we will now introduce
four different approaches to model the viscoelastic behavior of passive
skeletal muscle.

3. Constitutive recurrent neural networks

In this section, we propose two constitutive recurrent neural net-
works inspired and informed by the quasi-linear viscoelastic theory
in Section 2: one principal-stretch-based and one invariant-based. For
comparison, we also introduce a neo Hookean standard linear solid,
a Van Loocke Lyons Simms model, and a vanilla recurrent neural
network. Fig. 1 illustrates our constitutive recurrent neural network
that combines a feed-forward network, top left and right, to discover
the initial elastic stress and its parameters with a recurrent neural
network, bottom, to discover the viscous overstress with its viscous
parameters. We demonstrate both a principal-stretch-based network,
top left, and a feed-forward invariant-based network, top right, for the
initial elastic stress.

Principal-stretch-based elastic stress. The principal-stretch-based
network in Fig. 1, top left, is parameterized in terms of the principal
stretches, 𝜆1, 𝜆2, 𝜆3, that act as input to a single dense layer (St. Pierre
et al., 2023). Its initial stored energy function is inspired by the classical
Ogden model (Ogden, 1972) with 𝑛ogd terms with fixed exponents,

𝜓0 =
𝑛ogd∕2
∑

𝑗=1
𝑤1,𝑗 (𝜆

−𝑗
1 + 𝜆−𝑗2 + 𝜆−𝑗3 − 3) +𝑤1,2𝑗 (𝜆

𝑗
1 + 𝜆

𝑗
2 + 𝜆

𝑗
3 − 3), (24)

where 𝑤1,𝑗 and 𝑤1,2𝑗 are the weights learned by the network during
training that we constrain to be positive, and (𝜆−𝑗1 + 𝜆−𝑗2 + 𝜆−𝑗3 − 3) and
(𝜆𝑗1 + 𝜆

𝑗
2 + 𝜆

𝑗
3 − 3), are the activation functions that raise the principal

stretches to fixed powers 𝑗 = − 1
2 𝑛ogd,… ,+ 1

2 𝑛ogd. Unlike classical neural
network architectures, the activation functions are applied first and
the weights second. We can then derive the initial Cauchy stress as
illustrated in Section 2 using Eq. (6) for the full stress tensor,

𝝈0 =
3
∑

𝜆𝑖
𝜕𝜓 𝒏𝑖 ⊗ 𝒏𝑖 − 𝑝 𝑰 , (25)
𝑖=1 𝜕𝜆𝑖
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Fig. 1. Principal-stretch-based and invariant-based recurrent neural network. The network takes the deformation gradient 𝑭 𝑛+1 and time step size 𝛥𝑡𝑛+1 as input and outputs
the total Cauchy stress 𝝈𝑛+1. The network architecture combines a feed-forward constitutive neural network block to discover the time-independent initial stress function 𝝈0,𝑛+1
and its elastic parameters, followed by a recurrent neural network block to discover the time-dependent relaxation function and its Prony parameters. The network has a modular
architecture and can seamlessly integrate different building blocks, for example, a principal-stretch or invariant-based neural network for the initial stress.
where 𝒏𝑖 are the principal directions, or Eq. (16) for the initial uniaxial
stress in the loading direction,

𝜎0 = 𝜆1
𝜕𝜓
𝜕𝜆1

− 𝑝 . (26)

The hydrostatic pressure 𝑝 follows from the zero-normal-stress condi-
tion as described in Section 2.

Invariant-based elastic stress. In contrast to the principal-stretch-
based network, the invariant-based network in Fig. 1, top right, is
parameterized in terms of the first and second invariants, 𝐼1, 𝐼2, Linka
et al. (2023a). The network calculates both invariants using Eq. (4),
and feeds them into two hidden layers with linear (◦) and quadratic
(◦)2 activation functions in the first layer and linear (◦), exponential
(exp((◦)−1)), and natural logarithmic (− ln(1− (◦))) activation functions
in the second layer. The resulting initial stored energy function has a
total of 𝑛inv = 12 terms,

𝜓0 = 𝑤1,1 𝑤0,1[𝐼1 − 3] + 𝑤1,2 exp(𝑤0,2[𝐼1 − 3] − 1)
− 𝑤1,3 ln(1 −𝑤0,3[𝐼1 − 3]) + 𝑤1,4 𝑤0,4[𝐼1 − 3]2

+ 𝑤1,5 exp(𝑤0,5[𝐼1 − 3]2 − 1) − 𝑤1,6 ln(1 −𝑤0,6[𝐼1 − 3]2)
+ 𝑤1,7 𝑤0,7[𝐼2 − 3] + 𝑤1,8 exp(𝑤0,8[𝐼2 − 3] − 1)
− 𝑤1,9 ln(1 −𝑤0,9[𝐼2 − 3]) + 𝑤1,10 𝑤0,10[𝐼2 − 3]2

+ 𝑤1,11 exp(𝑤0,11[𝐼2 − 3]2 − 1) − 𝑤1,12 ln(1 −𝑤0,12[𝐼2 − 3]2),

(27)

where 𝑤0,1−12 and 𝑤1,1−12 are the weights of the first and second layers,
and are constrained to be positive. We note that the four logarithmic
terms, (− ln(1 − (◦))), are only physically meaningful for positive argu-
ments, (1 −𝑤 (◦)), which might require special attention in the case of
extreme tension with large 𝐼1 and 𝐼2. We can then derive the initial
Cauchy stress as illustrated in Section 2 using Eq. (7) for the full stress
tensor,

𝝈0 = 2
[

𝜕𝜓0 + 𝐼1
𝜕𝜓0

]

𝒃 − 2
𝜕𝜓0 𝒃2 − 𝑝 𝑰 , (28)
4

𝜕𝐼1 𝜕𝐼2 𝜕𝐼2
where the hydrostatic pressure 𝑝 follows from the zero-normal-stress
condition, or using Eq. (17) for the initial uniaxial stress in the loading
direction,

𝜎0 = 2
[

𝜕𝜓
𝜕𝐼1

+ 1
𝜆
𝜕𝜓
𝜕𝐼2

]

[

𝜆2 − 1
𝜆

]

. (29)

Time-dependent viscous overstress. Fig. 1, bottom, shows the recur-
rent neural network inspired by the relaxation function of the Prony
series of Eq. (19),

𝑔(𝑡) = 𝛾∞ +
𝑛prn
∑

𝑖=1
𝛾𝑖 exp (−𝑡∕𝜏𝑖) , (30)

from which we derive the scalar-valued overstresses ℎ𝑖,𝑛+1 according
to Eq. (21),

ℎ𝑖(𝑡) = ∫

𝑡

0
exp

(

− (𝑡 − 𝑠)∕𝜏𝑖
) d

d𝑠 𝜎0(𝑠)d𝑠 . (31)

Time-discrete update equations. Following Section 2, we obtain the
time-discrete updates of the total stress according to Eq. (22),

𝜎𝑛+1 = 𝛾∞ 𝜎0,𝑛+1 +
𝑛prn
∑

𝑖=1
𝛾𝑖 ℎ𝑖,𝑛+1 , (32)

and of the overstresses according to Eq. (23),

ℎ𝑖,𝑛+1 = exp(−𝛥𝑡∕𝜏𝑖)ℎ𝑖,𝑛 + exp(−𝛥𝑡∕2𝜏𝑖)[𝜎0,𝑛+1 − 𝜎0,𝑛]. (33)

The architecture of our custom recurrent neural network in Fig. 1, bot-
tom, is inspired by these two update formulas. Its inputs are the initial
stress 𝜎0, either from Eq. (26) for the principal-stretch-based neural
network, or from Eq. (29) for the invariant-based neural network, and
the time step size 𝛥𝑡. The recurrent neural network first calculates two
sets of intermediate terms, 𝑎𝑖 and 𝑏𝑖, from the time step size, 𝛥𝑡𝑛+1,

𝑎 = exp(𝑤 𝛥𝑡 ) and 𝑏 = exp(𝑤 𝛥𝑡 ∕2), (34)
𝑖 1,𝑖 𝑛+1 𝑖 1,𝑖 𝑛+1
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where 𝑤1,𝑖 are the 𝑖 = 1,… , 𝑛prn weights that the network learns during
raining. Upon comparison with Eq. (33), we see that the network
eights are equal to the negative inverse relaxation times, 𝑤1,𝑖 = −1∕𝜏𝑖.
o ensure that the time constants are always positive, we calculate 𝜏𝑖
rom the network weights 𝑤1,𝑖 and then apply a ReLU function to the
alculated 𝜏𝑖 values. After this initial layer, the network updates the
verstresses ℎ𝑖 using Eq. (33),

𝑖,𝑛+1 = 𝑎𝑖ℎ𝑖,𝑛 + 𝑏𝑖(𝜎0,𝑛+1 − 𝜎0,𝑛), (35)

here 𝑎𝑖 and 𝑏𝑖 are the intermediate terms from Eqs. (34), 𝜎0,𝑛+1 is
he initial stress output from the principal-stretch-based or invariant-
ased neural network, and 𝜎0,𝑛 and ℎ𝑖,𝑛 are passed forward from the
revious time step 𝑡𝑛. The final layer is a dense layer that updates the
otal Cauchy stress according to Eq. (32),

𝑛+1 = 𝑤2,0 𝜎0,𝑛+1 +
𝑛prn
∑

𝑖=1
𝑤2,𝑖 ℎ𝑖,𝑛+1, (36)

here 𝑤2,0 and 𝑤2,𝑖 are the weights learned by the model during
raining. Upon comparison to Eq. (32), we see that the weights are
qual to the long-term modulus, 𝑤2,0 = 𝛾∞, and the viscous relaxation
oefficients, 𝑤2,𝑖 = 𝛾𝑖. We constrain the weights to be positive and to
um to one in accordance with 𝛾∞ +

∑

𝑖 𝛾𝑖 = 1.

oss function. We select a principal-stretch-based network with 𝑛ogd =
0 Ogden terms in Eq. (24) and 𝑛prn = 10 Prony series terms in Eq. (36).
or these values, the principal-stretch-based network has a total of
1 trainable parameters or weights, 20 for the principal stretch terms
𝜆𝑗1+𝜆

𝑗
2+𝜆

𝑗
3−3), ten for the negative inverse relaxation times −1∕𝜏𝑖, one

for the initial stress 𝜎0,𝑛+1, and ten for the overstresses ℎ𝑖,𝑛+1. We select
an invariant-based network with 𝑛inv = 12 invariant terms in Eq. (27)
and 𝑛prn = 10 Prony series terms in Eq. (30). For these values, the
invariant-based network has a total of 45 trainable parameters or
weights, two times twelve for the invariant terms, ten for the negative
inverse relaxation times −1∕𝜏𝑖, one for the initial stress 𝜎0,𝑛+1, and ten
or the overstresses ℎ𝑖,𝑛+1. We learn these network weights 𝜽 = {𝒘}
y minimizing a loss function parameterized in terms of the stretch 𝜆
nd time 𝑡. To select the type of loss function, we compare the mean
bsolute error, the mean squared error, and the logarithmic hyperbolic
osine functions. We choose the loss function of mean squared error
ype,

(𝜽; 𝜆, 𝑡) = 1
𝑛train

1
𝑛time

𝑛train
∑

𝑖=1
𝜔𝑖

𝑛time
∑

𝑗=1
(𝜎(𝜆𝑖𝑗 , 𝑡𝑖𝑗 ) − 𝜎̂𝑖𝑗 )2 → min , (37)

for which the error is smallest. Here 𝑖 = 1,… , 𝑛train denotes the number
of training sets, 𝑗 = 1,… , 𝑛time denotes the number of data points
n the time series, and (𝜎(𝜆𝑖𝑗 , 𝑡𝑖𝑗 ) − 𝜎̂𝑖𝑗 ) is the difference between the

model stress 𝜎(𝜆𝑖𝑗 , 𝑡𝑖𝑗 ) at stretch 𝜆𝑖𝑗 and time 𝑡𝑖𝑗 and the experimental
stress 𝜎̂𝑖𝑗 . We weight the loss associated with each training set with the
coefficient, 𝜔𝑖 = 𝜎𝑖−1∕

∑𝑛train
𝑗=1 𝜎𝑗−1 to normalize the contributions from

ach of the training sets since they have different mean stress values
̄𝑖. We train both networks by minimizing the loss function for 5000
pochs using the Adam optimizer, with a learning rate 𝛼 = 0.001 and

parameters 𝛽1 = 0.9 and 𝛽2 = 0.999.

Regularization. To investigate the effect of regularization on model
discovery, we add a penalty term to the loss function in Eq. (37) to
penalize network weights with large magnitudes. After preliminary
analysis of both L1 and L2 regularization, we choose to further in-
vestigate the L2 regularization, which delivered a better performance.
We assess the effect of L2 regularization in both the feed-forward
network and the recurrent neural network. With regularization in the
feed-forward network, the loss function becomes

𝐿(𝜽; 𝜆, 𝑡) = 1
𝑛train

1
𝑛time

𝑛train
∑

𝑖=1
𝜔𝑖

𝑛time
∑

𝑗=1
(𝜎(𝜆𝑖𝑗 , 𝑡𝑖𝑗 ) − 𝜎̂𝑖𝑗 )2 + 𝛼

𝑛node
∑

𝑘=1
𝑤2

1,𝑘 . (38)

Here, 𝛼 is the regularization parameter and 𝑤1,𝑘 are the weights of the
last hidden layer of the feed-forward network with either 𝑛 = 𝑛 =
5

node ogd f
20 or 𝑛node = 𝑛inv = 12. We compare the effect of varying regularization
parameters, 𝛼, ranging from 10−7 to 10−1 on the invariant-based net-
work. With regularization in the recurrent network, the loss function
becomes

𝐿(𝜽; 𝜆, 𝑡) = 1
𝑛train

1
𝑛time

𝑛train
∑

𝑖=1
𝜔𝑖

𝑛time
∑

𝑗=1
(𝜎(𝜆𝑖𝑗 , 𝑡𝑖𝑗 ) − 𝜎̂𝑖𝑗 )2

+𝛽

[

𝑤2
2,𝜎 +

𝑛prn
∑

𝑘=1
(𝑤2

1,𝑘 +𝑤
2
2,𝑘)

]

. (39)

Here, 𝛽 is the regularization parameter and 𝑤2,𝜎 , 𝑤1,𝑘, and 𝑤2,𝑘 are
the weights of the recurrent neural network. We compare the effect
of varying 𝛽 from 10−4 to 10−1.

Special case: Neo Hookean standard linear solid. A special case
of both the principal-stretch and invariant-based recurrent neural net-
works is the neo Hookean standard linear solid. It is the simplest of all
physics-informed models, and also the most frequently used. We use
this model as an overly-constrained, low-end comparison and expect
that it will have difficulties fitting the nonlinear elastic behavior, but
will not display non-physical responses for small data. The initial stored
energy function of the neo Hookean standard linear solid is linear in
the sum of the three principal stretches, 𝜆1, 𝜆2, 𝜆3, squared, or in other
words, linear in the first invariant 𝐼1,

𝜓0 =
1
2
𝜇 [𝜆21 + 𝜆

2
2 + 𝜆

2
3 − 3] = 1

2
𝜇 [𝐼1 − 3] . (40)

he shear modulus 𝜇 follows from the weights of the principal-stretch-
ased network as 𝜇 = 2𝑤1,12 and from the weights of the invariant-
ased network as 𝜇 = 2𝑤0,1𝑤1,1 with all other weights identical to
ero. For the special case of uniaxial tension and compression, the
nstantaneous elastic uniaxial stress–stretch relation for a perfectly
ncompressible, isotropic material of Eq. (17) becomes

0 = 𝜇 [𝜆2 − 1∕𝜆] . (41)

or the neo Hookean standard linear solid, the Prony series only has
single one term, 𝑛𝑝𝑟𝑛 = 1. To numerically solve for its total stress,
e discretize the time interval of interest and adopt an explicit Euler

orward scheme to march from time 𝑡𝑛 to 𝑡𝑛+1 in increments of 𝛥𝑡 =
𝑛+1− 𝑡𝑛 using the update rules according to Eq. (22) for the total stress,

𝑛+1 = 𝛾∞ 𝜎0,𝑛+1 + 𝛾 ℎ𝑛+1 , (42)

nd Eq. (23) for the viscous overstress,

𝑛+1 = exp(−𝛥𝑡∕𝜏)ℎ𝑛 + exp(−𝛥𝑡∕2𝜏)(𝜎0,𝑛+1 − 𝜎0,𝑛) . (43)

he classical neo Hookean standard linear solid has four parameters
hat we need to fit to the data: the shear modulus 𝜇 to characterize
he instantaneous elastic behavior, and the long-term modulus 𝛾∞, the
elaxation coefficient 𝛾, and the relaxation time 𝜏 to characterize the
ime-dependent viscous behavior.

enchmark case: Van Loocke Lyons Simms model. As a benchmark
omparison, we adopt a constitutive model inspired by the initial model
or the muscle data of our current study (Van Loocke et al., 2008). This
odel follows the quasi-linear viscoelasticity theory of Section 2. Its

nitial stored energy is a cubic polynomial function,

0 =
1
2
𝜇1 [𝐼1 − 3] + 1

2
𝜇2 [𝐼1 − 3]2 + 1

2
𝜇3 [𝐼1 − 3]3, (44)

here 𝜇1, 𝜇2, and 𝜇3 are stiffness-like material parameters. The instan-
aneous elastic stress follows from this initial stored energy function
sing Eq. (17),

0 = [𝜇1 + 2𝜇2 [𝐼1 − 3] + 3𝜇3 [𝐼1 − 3]2][𝜆2 − 1∕𝜆] . (45)

he relaxation function is a Prony series similar to Eq. (19), 𝑔(𝑡) =
∞ +

∑𝑛prn
𝑖=1 𝛾𝑖 exp (−𝑡∕𝜏𝑖), with five terms, 𝑛prn = 5. To numerically solve
or the total stress, we discretize the time interval of interest and adopt
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Table 1
Unconfined compression relaxation data of passive skeletal muscle. Compression of gluteus muscle samples at fixed stretch rate of 𝜆̇med = 0.01/s and varying stretches of 𝜆low = 0.9,
med = 0.8, and 𝜆high = 0.7, and at fixed stretch 𝜆high = 0.7 and varying stretch rates of 𝜆̇slow = 0.005/s, 𝜆̇med = 0.010/s, and 𝜆̇fast = 0.050/s. Cauchy stresses are reported as means from
= 6 samples (Van Loocke et al., 2008).
𝜆low = 0.9 𝜆med = 0.8 𝜆high = 0.7 𝜆high = 0.7 𝜆high = 0.7
𝜆̇med = 0.010/s 𝜆̇med = 0.010/s 𝜆̇med = 0.010/s 𝜆̇slow = 0.005/s 𝜆̇fast = 0.050/s

𝑡 𝜆 𝜎 𝑡 𝜆 𝜎 𝑡 𝜆 𝜎 𝑡 𝜆 𝜎 𝑡 𝜆 𝜎
[s] [–] [kPa] [s] [–] [kPa] [s] [–] [kPa] [s] [–] [kPa] [s] [–] [kPa]

0.0 1.00 0.000 0.0 1.00 0.000 0.0 1.00 0.000 0.0 1.00 0.000 0.0 1.00 0.000
2.0 0.98 −0.060 4.0 0.96 −0.119 6.0 0.94 −0.167 12.0 0.94 −0.077 1.2 0.94 −0.223
4.0 0.96 −0.101 8.0 0.92 −0.209 12.0 0.88 −0.343 24.0 0.88 −0.193 2.4 0.88 −0.427
6.0 0.94 −0.148 12.0 0.88 −0.342 18.0 0.82 −0.602 36.0 0.82 −0.355 3.6 0.82 −0.664
8.0 0.92 −0.205 16.0 0.84 −0.511 24.0 0.76 −1.058 48.0 0.76 −0.702 4.8 0.76 −1.518
10.0 0.90 −0.266 20.0 0.80 −0.711 30.0 0.70 −1.844 60.0 0.70 −1.424 6.0 0.70 −2.315
12.0 0.90 −0.240 22.0 0.80 −0.616 32.0 0.70 −1.593 62.0 0.70 −1.235 8.0 0.70 −1.694
15.0 0.90 −0.212 25.0 0.80 −0.569 35.0 0.70 −1.473 65.0 0.70 −1.120 10.0 0.70 −1.454
20.0 0.90 −0.192 30.0 0.80 −0.529 40.0 0.70 −1.376 70.0 0.70 −1.025 15.0 0.70 −1.267
30.0 0.90 −0.174 40.0 0.80 −0.487 50.0 0.70 −1.273 80.0 0.70 −0.917 20.0 0.70 −1.161
40.0 0.90 −0.160 50.0 0.80 −0.465 60.0 0.70 −1.212 90.0 0.70 −0.861 30.0 0.70 −1.058
60.0 0.90 −0.147 70.0 0.80 −0.433 80.0 0.70 −1.139 110.0 0.70 −0.782 40.0 0.70 −0.992
80.0 0.90 −0.138 90.0 0.80 −0.411 100.0 0.70 −1.090 130.0 0.70 −0.734 60.0 0.70 −0.904
100.0 0.90 −0.130 110.0 0.80 −0.395 120.0 0.70 −1.057 150.0 0.70 −0.695 80.0 0.70 −0.844
130.0 0.90 −0.125 140.0 0.80 −0.377 150.0 0.70 −1.014 180.0 0.70 −0.654 120.0 0.70 −0.774
170.0 0.90 −0.113 180.0 0.80 −0.357 190.0 0.70 −0.970 220.0 0.70 −0.610 180.0 0.70 −0.708
220.0 0.90 −0.106 230.0 0.80 −0.339 240.0 0.70 −0.932 270.0 0.70 −0.578 240.0 0.70 −0.658
300.0 0.90 −0.097 310.0 0.80 −0.322 320.0 0.70 −0.881 350.0 0.70 −0.531 300.0 0.70 −0.625
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an explicit Euler forward scheme to march from time 𝑡𝑛 to 𝑡𝑛+1 in
ncrements of 𝛥𝑡 = 𝑡𝑛+1− 𝑡𝑛 using the update rules according to Eq. (22)

for the total stress,

𝜎𝑛+1 = 𝛾∞ 𝜎0,𝑛+1 +
5
∑

𝑖=1
𝛾𝑖 ℎ𝑖,𝑛+1, (46)

nd Eq. (23) for the viscous overstress,

𝑖,𝑛+1 = exp(−𝛥𝑡∕𝜏𝑖)ℎ𝑖,𝑛 + exp(−𝛥𝑡∕2𝜏𝑖)[𝜎0,𝑛+1 − 𝜎0,𝑛]. (47)

his benchmark model has a total of 14 parameters that we fit to the
ata, eleven for the relaxation function and three for the initial stored
nergy function.

eneral case: Vanilla recurrent neural network. Recurrent neural
etworks have a built-in memory structure and learn functions that, at
ny given time point, depend on all past inputs. Here we adopt a vanilla
ecurrent neural network as an overly-flexible, high-end comparison
nd expect that it will not have difficulties fitting the nonlinear elastic
ehavior, but might display overfitting and non-physical responses for
mall data. For this vanilla type recurrent neural network, the new
tress state 𝜎𝑛+1 at time 𝑡𝑛+1 not only depends on the stretch and the
ew time point {𝜆𝑛+1, 𝑡𝑛+1}, but also on a history vector ℎ𝑛 from the
revious time point 𝑡𝑛 (Goodfellow et al., 2016). At each new time
oint, the network updates the history vector,

𝑛+1 = 𝑔ℎ(𝑤ℎℎ ℎ𝑛 +𝑤ℎ𝜆 {𝜆𝑛+1, 𝑡𝑛+1} + 𝑏ℎ) . (48)

nd calculates the new stress state using an additional feed-forward
ayer,

𝑛+1 = 𝑔𝜎 (𝑤𝜎ℎ ℎ𝑛+1 + 𝑏𝜎 ) . (49)

mportantly, a recurrent neural network learns the same weights 𝑤ℎℎ,
ℎ𝜆, 𝑤𝜎ℎ and biases 𝑏ℎ, 𝑏𝜎 for all time steps, so Eqs. (48) and (49) closely
irror the update rules for the viscous overstress (23) and the elastic

tress (22) of the theory of quasi-linear viscoelasticity in Section 2. Here
e choose a hyperbolic tangent activation function 𝑔ℎ(◦) for the history
ector (48), a linear activation function 𝑔𝜎 (◦) for the stress (49). Our
etwork input {𝜆, 𝑡} is a two-unit vector of stretch and time and our
etwork output 𝜎 is a scalar. For the history vector ℎ, we select an 8-
nit vector, such that 𝑤ℎ𝜆 is an 8 × 2 matrix, 𝑤ℎℎ is an 8 × 8 matrix, 𝑤𝜎ℎ
s a 1 × 8 vector, 𝑏ℎ is an 8 × 1 vector, and 𝑏𝜎 is a scalar. This results
n 16 + 64 + 8 + 8 + 1 = 97 total trainable parameters, 𝜽 = {𝒘, 𝒃}.
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e choose this architecture for the vanilla recurrent neural network
ecause it is the smallest and simplest architecture that could fit our
raining data almost perfectly. The network learns its parameters by
inimizing the loss function that penalizes the error between model

nd data. Similar to the constitutive recurrent neural network, we
elect a loss function by comparing the mean absolute error, mean
quared error, and logarithmic hyperbolic cosine loss functions. For
he vanilla recurrent neural network, we find the lowest errors using
loss function of logarithmic hyperbolic cosine type. The loss function

s parameterized in terms of the stretch 𝜆 and time 𝑡,

(𝜽; 𝜆, 𝑡) =
𝑛train
∑

𝑖=1
𝜔𝑖

𝑛time
∑

𝑗=1
log(cosh(𝜎(𝜆𝑖𝑗 , 𝑡𝑖𝑗 ) − 𝜎̂𝑖𝑗 )) → min (50)

here 𝑖 = 1,… , 𝑛train denotes the number of training sets, 𝑗 = 1,… , 𝑛time
enotes the number of data points in the time series, and (𝜎(𝜆𝑖𝑗 , 𝑡𝑖𝑗 )−𝜎̂𝑖𝑗 )
s the difference between the model stress 𝜎(𝜆𝑖𝑗 , 𝑡𝑖𝑗 ) at time 𝑡𝑖𝑗 and the
xperimental stress 𝜎̂𝑖𝑗 . We normalize the loss associated with each
raining set with the weight, 𝜔𝑖 = 𝜎𝑖−1∕

∑𝑛train
𝑗=1 𝜎𝑗−1 since each training

set has a different mean stress values 𝜎𝑖. We train the model for 5000
epochs using the Adam optimizer, with a learning rate 𝛼 = 0.1 and
parameters 𝛽1 = 0.9 and 𝛽2 = 0.999.

.1. Data

We train and test all models on unconfined compression relaxation
ests of passive skeletal muscle collected from porcine gluteus muscle
issue (Van Loocke et al., 2008). The data consist of recordings from
ive different experiments in which the muscle is compressed to three
ifferent stretch levels at three different stretch rates. After an initial
amp loading, the final stretch level is held constant for 300 s. For
hree experiments, the stretch rate is fixed at 𝜆̇med = 0.01/s, and the
inimum compressive stretch is varied as 𝜆low = 0.9, 𝜆med = 0.8, and
high = 0.7. For three experiments, the minimum compressive stretch
s fixed at 𝜆high = 0.7, and the stretch rate is varied as 𝜆̇slow = 0.005/s,
̇med = 0.010/s, and 𝜆̇fast = 0.050/s. As the 𝜆high = 0.7, 𝜆̇med = 0.010/s

case is repeated, this results in a total of five data sets. To minimize
the effects of tissue anisotropy, all experiment are performed with
compression in the muscle fiber direction under the assumption that
the compressed fibers do not carry any load. Table 1 summarizes the
five data sets, reported as means over 𝑛 = 6 tests per data set.
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Fig. 2. Representative evolution of training and test losses during model training.
Columns display the three networks, the vanilla, principal-stretch-based, and invariant-
based recurrent neural networks; rows represent the two tasks, train on one and test
on the remaining four, and train on four and test on the remaining one.

3.2. Statistical analysis

We use two error measures to quantify the model performance
during testing and training. The first error measure is the normalized
root mean squared error, 𝑁𝑅𝑀𝑆𝐸,

𝑁𝑅𝑀𝑆𝐸 = 1
|𝜎̄|

√

1
𝑛time

∑ 𝑛time
𝑗=1 (𝜎(𝜆𝑗 , 𝑡𝑗 ) − 𝜎̂𝑗 )2 , (51)

where (𝜎(𝜆𝑗 , 𝑡𝑗 ) − 𝜎̂𝑗 ) is the difference between the model stress 𝜎(𝜆𝑗 , 𝑡𝑗 )
and the experimental stress 𝜎̂𝑗 , and 𝑗 = 1,… , 𝑛time denotes the number
of data points in the time series. We normalize the error by the
mean stress, |𝜎̄| = 1

𝑛time

∑𝑛time
𝑗=1 |𝜎̂𝑗 | of each time series since the mean

stress values of the five data curves in Section 3.1 vary by over an
order of magnitude. The second error measure is the coefficient of
determination, 𝑅2,

𝑅2 = 1 −
𝑛time
∑

𝑗=1
(𝜎(𝜆𝑗 , 𝑡𝑗 ) − 𝜎̂𝑗 )2∕

𝑛time
∑

𝑗=1
(𝜎̄ − 𝜎̂𝑗 )2 , (52)

where (𝜎(𝜆𝑗 , 𝑡𝑗 ) − 𝜎̂𝑗 ) is the difference between the model stress 𝜎(𝜆𝑗 , 𝑡𝑗 )
and the experimental stress 𝜎̂𝑗 , and 𝜎̄ =

∑𝑛time
𝑗=1 𝜎̂𝑗∕𝑛time is the mean

stress of the time series. In the discussion, we use the normalized root
mean squared error to compare the different models because it provides
more insight into the magnitude of the prediction errors compared
to the magnitude of the data themselves. However, we also include
the coefficient of determination to aid comparison to other studies.
We performed all statistical analyses using the SciPy 1.7.3 Python
library (Virtanen et al., 2020).

4. Results and discussion

4.1. Recurrent neural network training

Fig. 2 shows representative plots of the training and test losses
for all three recurrent neural networks. The training loss of all three
recurrent neural networks, vanilla, principal-stretch-based, and invari-
ant based, converged within 5000 epochs. After confirming that 5000
epochs were generally sufficient for the training loss to plateau, we
performed all following network training trials using 5000 epochs. The
test loss of the principal-stretch and invariant-based networks displayed
a similar tendency and dropped visibly within the first 2000 epochs.
Notably, the test loss of the vanilla network remained unchanged across
all epochs for the train on one case, and even increased after about
2000 epochs for the train on four case. This generalization gap indicates
the poor predictive performance of the vanilla network when trained
on limited data.
7

4.2. Model performance

We evaluate all five models on two separate tasks, train on one
data set and test on the remaining four; and train on four data sets
and test on the remaining one. Figs. 3 through 12 illustrate the models’
performance for both tasks. In these figures, each column represents
one of five experiments with the corresponding column label signifying
the training curve for the train on one task or the test curve for the train
on four task. Each row represents a data curve, and the plots in that row
display the model’s performance in fitting that data curve. If the curve
was included in the training set, the annotation for the coefficient of
determination is labeled 𝑅2

train, and if it was not included in the training
set, the annotation is labeled 𝑅2

test .

Train on one, test on four. In the first evaluation task, we trained the
models on one of the five compression relaxation data sets from Table 1
and then tested the models’ predictive abilities on the remaining four
curves. Fig. 3 shows the results for the neo Hookean standard linear
solid. As expected, since the model parameters are fit to the training
curve, the errors are lowest for the training set (average NRMSE: 0.136)
and higher for the test curves (average NRMSE: 0.526). The simplicity
of the model makes it impossible to exactly match the shape of the
experimental curves. For example, the neo Hookean model assumes the
stress will change linearly during the ramp portion of the experiment,
but this is not how the tissue behaves. Therefore, the model will not fit
the experimental data well for any combination of parameter values.
This extreme case illustrates the need to select a model whose shape can
represent the data well. In contrast to the neo Hookean standard linear
solid model, the more advanced van Loocke Lyons Simms model more
closely matches the shape of the experimental data as seen in Fig. 4.
Now, with the more sophisticated model, the training (average NRMSE:
0.034) and test (average NRMSE: 0.206) errors are both reduced.

As an alternative to first assuming a functional form, vanilla recur-
rent neural networks learn both the functional form and its parameters
from the data themselves. Fig. 5 shows the performance of the vanilla
recurrent neural network. With 97 trainable parameters, the vanilla
recurrent neural network fits the training data sets almost perfectly
(average NRMSE: 0.012), but is at risk for overfitting to the training
data. Overfitting can be observed clearly in the middle column of Fig. 5
where the neural network predicts almost identical curves in the first
three rows. The average errors on the test set (average NRMSE: 1.622)
are much higher than those of the training set. Besides overfitting,
the vanilla recurrent neural network sometimes produces predictions
that violate physical principles. For example, the predicted stresses
sometimes switch between increasing and decreasing during the ramp
portion of the time history.

Figs. 6 and 7 show the results for the two constitutive recurrent
neural network models. The performance of both the principal stretch
version in Fig. 6 and the invariant version in Fig. 7 falls between that
of the neo Hookean standard linear solid and the vanilla recurrent
neural network when looking at the training sets (average NRMSE:
0.048 and 0.022). Both constitutive recurrent neural networks discover
a functional form from the data and can approximate the data more
closely compared to the restrictive neo Hookean standard linear solid
model. However, the functional forms of both constitutive networks
are more limited in scope than the vanilla network. Therefore, the
constitutive networks cannot fit the training data as perfectly as the
vanilla network. This limitation on the discovered functional forms pro-
vides a benefit, however, when looking at the test data sets. Compared
to the vanilla network, both constitutive networks exhibit less over-
fitting as evidenced by the lower test errors (average NRMSE: 0.289
and 0.243). Importantly, unlike the vanilla network, the constitutive
recurrent neural networks do not produce unphysical solutions with
spurious oscillatory stress responses. Both training and test errors for
the constitutive recurrent neural networks are comparable to those
of the van Loocke Lyons Simms model, suggesting that the models
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Fig. 3. Performance of neo Hookean standard linear solid trained on one curve. Experimental data and discovered model for the constitutive behavior of muscle tissue after
discovering the model parameters for just one of the data sets. Columns represent all five training runs with each column label signifying the training set. Rows display the model
performance for all five data sets with the training cases on the diagonal and the test cases on the off-diagonal.

Fig. 4. Performance of Van Loocke Lyons Simms model trained on one curve. Experimental data and fitted model for the constitutive behavior of muscle tissue after fitting
the model parameters to just one of the data sets. Columns represent all five training runs with each column label signifying the training set. Rows display the model performance
for all five data sets with the training cases on the diagonal and the test cases on the off-diagonal.
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Fig. 5. Performance of vanilla recurrent neural network trained on one curve. Experimental data and discovered model for the constitutive behavior of muscle tissue after
discovering the model parameters for just one of the data sets. Columns represent all five training runs with each column label signifying the training set. Rows display the model
performance for all five data sets with the training cases on the diagonal and the test cases on the off-diagonal.

Fig. 6. Performance of principal-stretch-based recurrent neural network trained on one curve. Experimental data and discovered model for the constitutive behavior of
muscle tissue after discovering the model parameters for just one of the data sets. Columns represent all five training runs with each column label signifying the training set. Rows
display the model performance for all five data sets with the training cases on the diagonal and the test cases on the off-diagonal. The contributions of the principal stretch terms
in the initial stored energy function are illustrated in colors.
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Fig. 7. Performance of invariant-based recurrent neural network trained on one curve. Experimental data and discovered model for the constitutive behavior of muscle
tissue after discovering the model parameters for just one of the data sets. Columns represent all five training runs with each column label signifying the training set. Rows display
the model performance for all five data sets with the training cases on the diagonal and the test cases on the off-diagonal. The contributions of the principal stretch terms in the
initial stored energy function are illustrated in colors.
discovered by both constitutive recurrent neural networks represent the
data as well as this hand-tailored benchmark model.

Train on four, test on one. In the second evaluation task, we trained
the five models on four out of five data curves and tested the models’
predictive abilities on the final remaining curve. Fig. 8 shows the results
for the neo Hookean standard linear solid model. Compared to the train
on one task, the errors on the training set are higher for the train
on four task, (increasing average NRMSE: from 0.136 to 0.370). The
model struggles to find a single set of parameters that can describe
four different curves simultaneously. With the increase in training data,
however, the error on the test set becomes smaller (decreasing average
NRMSE: from 0.526 to 0.462). Similar to the train on one task, the neo
Hookean standard linear solid continues to be restricted by its simple
functional form. It simply cannot fit the data well because the tissue
does not behave in accordance with the assumed functional form. As in
the train on one case, the van Loocke Lyons Simms model outperforms
the simple neo Hookean standard linear solid model because its more
complex form has been tailored to fit the shape of the data more closely.
With the more difficult task of simultaneously fitting four curves, errors
on the training sets are higher (increasing average NRMSE: from 0.034
to 0.123), but errors on the test set decrease (decreasing average
NRMSE: from 0.206 to 0.188).

Fig. 10 shows that the vanilla recurrent neural network almost
perfectly fits the training data set, similar to the train on one task but
with a slightly larger error (increasing average NRMSE: from 0.012
to 0.040). In contrast to the traditional mechanics-based models, the
vanilla recurrent neural network has the ability to learn a complex
enough functional form to simultaneously fit four different curves
using the same set of parameters. With the additional training data,
the average test error goes down (decreasing average NRMSE: from
1.622 to 0.838). However, the issue of overfitting remains apparent
in comparing the train and test errors (average NRMSE: 0.040 vs.
10
0.838). Additionally, the issue of unphysical predicted solutions re-
mains as seen clearly in the bottom left subplot of Fig. 10. The vanilla
network prediction in this test case shows the stress decreasing and
then increasing all during the hold portion of the experiment where
the stress is expected to monotonically decrease. These observations
suggest that although vanilla recurrent neural network architectures
can successfully learn history-dependent constitutive laws (Zhu et al.,
2011; Chen, 2021; Gorji et al., 2020; Tancogne-Dejean et al., 2021),
the amount of required training data may not be practical to collect in
a typical experimental setup. Importantly, in this case, increasing the
amount of data does not imply increasing the number of data points
on a curve but rather increasing the number of different curves from
varying experiments.

Figs. 11 and 12 suggest that the performance of both constitu-
tive recurrent neural network models on the training set lies, as in
the train on one task, between the performance of the neo Hookean
standard linear solid model and that of the vanilla recurrent neural
network. Similar to these two, the training error for the principal-
stretch and invariant-based networks increases for the train on four task
compared to the train on one task (increasing average NRMSE: from
0.048 to 0.208 and from 0.022 to 0.108). Looking at the test cases, the
constitutive network models exhibit less overfitting compared to the
vanilla network (decreasing average NRMSE: from 0.289 to 0.196 and
from 0.243 to 0.159). Comparison of the train and test errors for the
constitutive network models reveals that the errors are similar between
train and test sets. This provides evidence that the constitutive network
models experience less overfitting compared to the vanilla network
for which the train and test errors show a larger difference. As in
the train on one case, the performance of both constitutive recurrent
neural network models is comparable to the van Loocke Lyons Simms
benchmark model with similar average NRMSE values.
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Fig. 8. Performance of neo Hookean standard linear solid trained on four curves. Experimental data and discovered model for the constitutive behavior of muscle tissue
after discovering the model parameters for four of the data sets combined. Columns represent all five training runs with each column label signifying the test set. Rows display
the model performance for all five data sets with the training cases on the off-diagonal and the test cases on the diagonal.

Fig. 9. Performance of Van Loocke Lyons Simms model trained on four curves. Experimental data and fitted model for the constitutive behavior of muscle tissue after fitting
the model parameters to four of the data sets combined. Columns represent all five training runs with each column label signifying the test set. Rows display the model performance
for all five data sets with the training cases on the off-diagonal and the test cases on the diagonal.
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Fig. 10. Performance of vanilla recurrent neural network trained on four curves. Experimental data and discovered model for the constitutive behavior of muscle tissue after
discovering the model parameters for four of the data sets combined. Columns represent all five training runs with each column label signifying the test set. Rows display the
model performance for all five data sets with the training cases on the off-diagonal and the test cases on the diagonal.

Fig. 11. Performance of principal-stretch-based recurrent neural network trained on four curves. Experimental data and discovered model for the constitutive behavior of
muscle tissue after discovering the model parameters for four of the data sets combined. Columns represent all five training runs with each column label signifying the test set.
Rows display the model performance for all five data sets with the training cases on the off-diagonal and the test cases on the diagonal. The contributions of the principal stretch
terms in the initial stored energy function are illustrated in colors.
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Fig. 12. Performance of invariant-based recurrent neural network trained on four curves. Experimental data and discovered model for the constitutive behavior of muscle
tissue after discovering the model parameters for four of the data sets combined. Columns represent all five training runs with each column label signifying the test set. Rows
display the model performance for all five data sets with the training cases on the off-diagonal and the test cases on the diagonal. The contributions of the principal stretch terms
in the initial stored energy function are illustrated in colors.
4.3. Model discovery

Fig. 13 summarizes the performance of all five models on both
evaluation tasks. The left column corresponds to the first evaluation
task with training on just one curve, and the right column corresponds
to the second task with training on four of the five curves. The first
row displays the training errors and the second row the test errors. All
displayed NRMSE values are the averages per curve in the training or
test set.

The same general trend appears in all five models where the training
errors are lower than the test errors. This is expected as the models
are fit to the training data and have no prior knowledge of the test
data. Moving from the train on one task to the train on four task, the
training errors increase as the models face the more challenging task
of representing four curves using just one set of parameters. With the
additional training data, however, the test errors are generally lower
for the train on four case compared to the train on one case.

Focusing in on the performance of individual models, the vanilla
recurrent neural network clearly fits the training data the best with
errors equal to or close to zero. However, it also exhibits the largest
test errors, highlighting an issue with overfitting. Both the traditional
mechanics-based models and the constitutive recurrent neural network
models exhibit less overfitting, as their train and test errors are closer in
magnitude. Both constitutive recurrent neural networks are comparable
to the performance of the more advanced benchmark model with the
invariant-based version seemingly fitting the data slightly better than
the principal-stretch-based model.

4.4. Parameter discovery

The constitutive recurrent neural network models discover two
sets of weights: one corresponding to the parameters of the initial
13
Fig. 13. Comparison of all five models for training and testing on one and four
curves. Normalized root mean squared error (NRMSE) for the train on one and train
on four tasks for all five models, neo Hookean standard linear solid (NH-SLS), van
Loocke Lyons Simms benchmark model (BM), vanilla recurrent neural network (VRNN),
principal-stretch-based (𝜆RNN) and invariant-based (IRNN) recurrent neural networks.
The plotted values are the average NRMSE per curve in a given test or training set.
Some bars are invisible in the top row because the errors are equal or very close to
zero.

stored energy function and one corresponding to the parameters of
the Prony series relaxation function. The distribution of the discovered
parameters for the initial stored energy functions is displayed using
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Fig. 14. Comparison of Prony parameters for principal-stretch and invariant-based recurrent neural networks. Each bar corresponds to a time constant, 𝜏𝑖, and its height
represents the magnitude of the corresponding weight, 𝛾𝑖. The bars are not fully opaque to aid the visualization of multiple terms located at similar horizontal axis locations. The
long-term modulus, 𝛾∞, is represented by a single green bar to the far left; however, it is invisible in some plots where its discovered value is close to zero.
color coding in Figs. 6 and 11 for the principal-stretch-based model and
Figs. 7 and 12 for the invariant-based model. In these figures, we assign
each term in the initial stored energy function a color. The thickness of
each color band indicates the relative contribution of that term to the
final initial stored energy function.

Looking at the principal-stretch-based model in Figs. 6 and 11,
in each training scenario, the model learns different combinations of
terms. However, the parameter distributions all share some general
trends. For both the train on one and train on four tasks, the discovered
models show a preference for negative exponent terms in the initial
stored energy function. Similarly, all of the results show a preference
for terms at either extreme, large negative and large positive expo-
nents. In a study fitting a single-term Ogden model to muscle data,
the resulting exponent was 14.00 for bovine and porcine tissue and
8.97 for human tissue (Mo et al., 2020). Similarly, a study fitting a
two-term compressible Ogden model found exponents of 11.77 and
14.34 for tensile data measured on guinea pig ventricular papillary
muscle (Hassan et al., 2012). While our discovered models do not
exactly match these fitted functional forms, our discovered exponents
agree well with these large exponents reported in the literature. This
suggests that the trend of our network to discover terms at either
extreme agrees well with reported observations for muscle tissue.

The invariant-based model in Figs. 7 and 12 behaves similarly,
learning different combinations of terms for different training scenar-
ios. However, the invariant-based model does not show any strong
preference towards terms involving the first or second invariant. The
model similarly does not show any strong preference towards the lin-
ear, quadratic, exponential, or logarithmic terms. Section 4.5 discusses
the terms learned by the invariant-based model in more detail.

Fig. 14 illustrates the distributions of the Prony parameters discov-
ered by both constitutive recurrent neural networks. The constitutive
recurrent neural network with 𝑛prn = 10 in Eq. (32) discovers ten Prony
terms, each with a corresponding time constant, 𝜏𝑖, and weight, 𝛾𝑖. Each
bar in Fig. 14 represents one of these terms with its horizontal location
corresponding to 𝜏𝑖 and its height corresponding to 𝛾𝑖. The presence of
multiple bars in the same location is indicated by a darker color since
14
the bars are not fully opaque. The long-term modulus, 𝛾∞, appears as
a single green bar to the very left of each graph.

For the principal-stretch-based model, the discovered time con-
stants, 𝜏𝑖, in the train on one task range from 4.3 s to 41 s with the
majority of terms concentrated around 21 s to 30 s. In the train on four
task, the learned Prony parameters show a slightly wider spread of 𝜏𝑖
values ranging from 13 s to 161 s. In both the train on one and train on
four cases, the principal-stretch-based model shows little contribution
from the long term modulus, 𝛾∞.

For the invariant-based model, the network discovered a greater
range of 𝜏𝑖 values compared to the principal-stretch-based model. The
results for both the train on one and train on four tasks look similar with
𝜏𝑖 values ranging from 1.16 s to 1205 s and 1.77 s to 959 s, respectfully.
The discovered parameters for both tasks display large contributions
from time constants clustered around 1 s to 4 s, 8 s to 13 s, and 22 s to
40 s. These main clusters are accompanied by scattered contributions
from larger time constants in the range of 100 s to 1200 s. In contrast
to the principal-stretch-based model, the invariant-based model also
predicts a more significant contribution of the long term modulus, 𝛾∞.

In a study fitting a five-term Prony series to the same muscle
data (Van Loocke et al., 2008), the resulting 𝜏𝑖 values were 0.6 s, 6 s,
30 s, 60 s, and 300 s with the two smaller time constants weighted more
heavily than the larger three, with corresponding weights of 0.465,
0.200, 0.057, 0.066, and 0.089. Another study fitting a two-term Prony
series to guinea pig ventricular muscle data found time constants of
1.74 s and 52.16 s (Hassan et al., 2012). The general trends of these
findings match the distributions discovered in this study with heavily-
weighted contributions from time constants on the order of 1 s to 10 s
accompanied by lesser-weighted contributions from time constants on
the order of 100 s.

4.5. Regularization

Looking at the color distributions in Figs. 6, 7, 11, and 12, we
recognize that both constitutive recurrent neural networks discover a
broad spectrum of terms for the initial stored energy function, rather
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Fig. 15. Effect of L2 regularization on initial stored energy of invariant-based neural network. Displayed results from simultaneously fitting the invariant-based recurrent
neural network to all five data sets for varying regularization parameters 𝛼. Increasing the regularization parameter from zero via 10−7 to 10−1 decreases the number of discovered
terms of the initial stored energy function from six to two. At 𝛼 = 10−1, the network discovers a two-term model that is linear in the first invariant 𝐼1 and quadratic in the second
invariant 𝐼2.
than focusing on a select few. Towards the goal of preventing potential
overfitting, we investigated the ability of L2 regularization to reduce
the number of discovered terms for the invariant-based model, both
for the elastic and viscous parts.

First, we varied the regularization parameter 𝛼 in Eq. (38) from 10−7

to 10−1. For each 𝛼 value, we simultaneously trained the invariant-
based model on all five data sets. Fig. 15 displays the results for the
case with no regularization in the leftmost column and cases with a
gradually increasing regularization parameter 𝛼 from left to right. From
the color spectrum in Fig. 15, we conclude that, as the regulariza-
tion parameter 𝛼 increases from zero to 10−1, the number of terms
in the initial stored energy function decreases from six to two. This
controlled reduction of terms agrees with the results of previous studies
on the effects of regularization in constitutive neural networks for time-
independent hyperelasticity (St. Pierre et al., 2023; Linka and Kuhl,
2023). With no regularization, our invariant-based network discovers
a six-term initial stored energy function of the following form,

𝜓0 = 𝑤1,1 𝑤0,1[𝐼1 − 3] + 𝑤1,5 exp(𝑤0,5[𝐼1 − 3]2 − 1)
− 𝑤1,6 ln(1 −𝑤0,6[𝐼1 − 3]2) + 𝑤1,7 𝑤0,7[𝐼2 − 3]
+ 𝑤1,8 exp(𝑤0,8[𝐼2 − 3] − 1) − 𝑤1,9 ln(1 −𝑤0,9[𝐼2 − 3])

(53)

with the following weights, 𝑤0,4 = 0.19, 𝑤1,4 = 0.30 kPa, 𝑤0,5 = 0.12,
𝑤1,5 = 3.69 kPa, 𝑤0,6 = 0.13, 𝑤1,6 = 4.41 kPa, 𝑤0,7 = 1.71, 𝑤1,7 = 0.23 kPa,
𝑤0,8 = 0.11, 𝑤1,8 = 0.68 kPa, 𝑤0,9 = 0.10, and 𝑤1,9 = 1.07 kPa. Notably,
all other weights in Eq. (27) train to zero.

With the maximal regularization parameter of 𝛼 = 10−1, our
invariant-based network discovers a two-term initial stored energy
function of the following form,

𝜓0 = 𝑤1,1𝑤0,1 [𝐼1 − 3] +𝑤1,10𝑤0,10 [𝐼2 − 3]2, (54)

where 𝑤0,1 = 19.97 kPa, 𝑤1,1 = 0.03, 𝑤0,10 = 18.37 kPa, and 𝑤1,10 = 0.03,
while all remaining terms train to zero. Strikingly, this final reduced
15
version of the discovered initial stored energy function in Eq. (54),
with a linear term in the first invariant 𝐼1 and a quadratic term in
the second invariant 𝐼2, belongs to the family of generalized Mooney–
Rivlin models (Mooney, 1940; Rivlin, 1948), 𝜓0 =

∑𝑛𝑖
𝑖=0

∑𝑛𝑗
𝑗=0 𝐶𝑖𝑗 [𝐼1 −

3]𝑖[𝐼2 − 3]𝑗 , and its discovered weights translate into the Mooney–
Rivlin coefficients 𝐶10 = 𝑤1,1𝑤0,1 = 0.60 kPa and 𝐶02 = 𝑤1,10𝑤0,10 =
0.55 kPa, with all other coefficients, 𝐶𝑖𝑗 , equal to zero. In a study
using the Mooney–Rivlin model with considerations for intramuscular
pressure (Wheatley et al., 2017), the resulting coefficients were 𝐶10 =
0.05 kPa and 𝐶01 = 0.50 kPa for the rabbit tibialis anterior muscle.
These values were obtained for modeling hyperelasticity rather than
for use in modeling the inital stress response of a viscoelastic model, so
direct comparison to our values is not possible. However, these values
from the literature suggest that our results are of a reasonable order of
magnitude.

Second, we investigated the ability of L2 regularization to reduce
the number of discovered terms in the Prony series relaxation function
of the invariant-based recurrent neural network. We varied the regu-
larization parameter 𝛽 in Eq. (39) from 10−4 to 10−1. For each 𝛽 value,
we simultaneously trained the invariant-based model on all five data
curves. Fig. 16 displays the results for the case with no regularization
in the leftmost column and cases with a gradually increasing regulariza-
tion parameter 𝛽 from left to right. The top row displays the distribution
of learned Prony parameters in the same format as Fig. 14, and the
remaining rows show the model predictions on the five curves. Looking
at the top row of Fig. 16, as we increase the regularization parameter 𝛽
from zero to 10−1, the number of learned Prony terms decreases from
seven to two. However, for the largest value of 𝛽 = 10−1, the errors
between the model predictions and the experimental data increase
significantly. This suggests that the optimal regularization parameter
lies below this value, 𝛽 < 10−1. With no regularization, the invariant-
based network discovers a seven-term Prony series for the relaxation
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Fig. 16. Effect of L2 regularization on Prony parameters of recurrent neural network. Displayed results from simultaneously fitting the invariant-based recurrent neural
network to all five data sets for varying regularization parameters 𝛽. Increasing the regularization parameter from zero via 10−4 to 10−1 decreases the number of discovered terms
of the Prony series from six to two. At 𝛽 = 10−2, the network discovers a three-term Prony series with time constants of 0.362 s, 2.54 s, and 52.0 s.
function:
𝑔(𝑡) = 0.08 + 0.48 exp(−𝑡∕2.59 s)

+ 0.21 exp(−𝑡∕25.9 s) + 0.04 exp(−𝑡∕254 s)
+ 0.04 exp(−𝑡∕356 s) + 0.05 exp(−𝑡∕651 s)
+ 0.05 exp(−𝑡∕793 s) + 0.05 exp(−𝑡∕877 s) .

(55)

As we increase the regularization parameter 𝛽, the model discovers
fewer terms; yet, at the same time, the prediction error increases
significantly. A value of 𝛽 = 10−2 for which the network discovers a
three-term relaxation function,
𝑔(𝑡) = 0.03 + 0.89 exp(−𝑡∕0.362 s)

+ 0.05 exp(−𝑡∕2.54 s) + 0.03 exp(−𝑡∕52.0 s) ,
(56)

seems to be a reasonable trade off between model terms and model
error. The magnitudes of the three time constants discovered by the reg-
ularized model closely match the time constants of 1.74 s and 52.16 s
reported for a two-term Prony series fitted to guinea pig ventricular
muscle data (Hassan et al., 2012). Our three discovered time constants
are also comparable to the range of time constants, from 0.6 s–300 s,
used to fit the same muscle data to a five-term Prony series (Van Loocke
et al., 2008). Our discovered time constants lie in the lower end of the
0.6–300 s range, and we note that the L2 regularization trends towards
smaller time constants for increasing 𝛽 as seen in Fig. 16.

5. Limitations and future outlook

While our two constitutive recurrent neural networks in their
principal-stretch-based and invariant-based versions show promise in
16
the discovery of constitutive models for muscle tissue, our current
model also has some limitations to address: First, as a proof of con-
cept, we have focused on a very specific case of uniaxial unconfined
compression and have developed a one-dimensional model in accor-
dance with this loading configuration. Second, for simplicity, we only
consider incompressible and isotropic materials and assume that both,
the elastic and viscous response, are incompressible and isotropic.
We plan to investigate other loading modes such as tension, and
we will expand our general framework to accommodate additional
loading scenarios by extending it to three dimensions (Calvo et al.,
2014; Linka and Kuhl, 2023). We will also incorporate considerations
for compressibility (Wheatley et al., 2017; Hassan et al., 2012) and
anisotropy (Van Loocke et al., 2006; Böl et al., 2014; Kuthe and
Uddanwadiker, 2016; Takaza et al., 2013; Kohn et al., 2021; Linka
et al., 2023b; Tac et al., 2023a). Measurements of muscle fiber volume
under tension and compression have shown evidence of muscle volume
change under compression (Böl et al., 2020). Future incorporation
of compressibility into our model will facilitate an examination of
the assumption of incompressibility applied here. A three-dimensional
formulation would allow the investigation of different loading modes
such tension, compression, and shear (Böl et al., 2020) or biaxial
stretch (Wheatley, 2020) and the investigation of tension–compression
asymmetry (Latorre et al., 2018; St. Pierre et al., 2023). For hyperelastic
materials, we have shown that including different loading modes in
the training process is critical to reproducibly discover a single unique
model (Linka and Kuhl, 2023), and we are confident that this stabilizing
effect will translate to viscoelastic model discovery (Marino et al.,
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2023). Third, our model is limited by the assumptions of the theory of
quasi-linear viscoelasticity (Fung et al., 1970). Following this theory,
our model assumes that the material response can be decomposed into
a time-independent initial stress function that depends only on the
current stretch and a time-dependent relaxation function that depends
only on time. The theory of quasi-linear viscoelasticity is widely used
to model single cells (Wang and Kuhl, 2020) and tissues, such as
tendons (Provenzano et al., 2001; Woo, 1982), skeletal muscle (Van
Loocke et al., 2008), or the heart (Tikenogullari et al., 2022). Materials
for which this assumption does not hold will require a different, fully-
nonlinear modeling approach (Latorre and Montáns, 2017; Wheatley
et al., 2015, 2016; Holthusen et al., 2023; Tac et al., 2023b; Abdolazizi
et al., 2023). However, as a reasonable first approximation, the theory
of quasi-linear viscoelasticity characterizes the behavior of muscle
tissue well (Wheatley et al., 2017; Rehorn et al., 2014; Then et al.,
2012; Hassan et al., 2012; Mo et al., 2020; Van Loocke et al., 2008)
and produces comparable results in this study. Finally, here we focus
only on the effects of L2 regularization on down-selection of terms in
our discovered models. Other regularization methods will be the focus
of future studies.

6. Conclusions

Constitutive artificial neural networks are pioneering a new ap-
proach to constitutive modeling where both model and parameters are
fit to the data themselves. In this study, we illustrate the potential of
neural networks as powerful function approximators in biomechanics.
However, their application to material modeling requires special atten-
tion: The amount of data available from mechanical testing is typically
much smaller than the data used in traditional deep learning. When
trained on these limited datasets, a vanilla recurrent neural network
with no mechanics knowledge struggles to learn a constitutive law that
generalizes well to previously unseen load cases. Worse yet, vanilla
recurrent neural networks make predictions that may violate physical
laws. This emphasizes the critical need to integrate mechanics-based
knowledge into the network design. Inspired by the theory of quasi-
linear viscoelasticity, we design a new class of constitutive recurrent
neural networks that incorporate our domain knowledge and extend
recent feed-forward networks to model the history-dependent behavior
of viscoelastic materials. Even for limited training data, our constitutive
recurrent neural networks robustly discover constitutive models that
obey physical principles, generalize well to unseen data, and match
the performance of hand-tailored models. The modular structure of our
network architecture takes advantage of past and ongoing research on
hyperelastic feed-forward networks by extending these architectures
with an additional recurrent layer. This modular design encourages the
plug-and-play of different families of hyperelastic models – principal-
stretch or invariant-based, isotropic or anisotropic, incompressible or
compressible – and provides a clear road map for automated model
discovery in computational inelasticity.
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