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ABSTRACT 

The aim of the present paper is a systematic elaboration of a three dimensional finite element analysis tool 
for discontinuous fracture in brittle solids. Brittle or quasi-brittle fracture usually occurs when a material 
reaches the limit of its strength and no plastic deformation has been observed prior to failure. In this novel 
approach, this kind of failure is characterized by three sets of governing equations: (i) the elastic bulk 
problem and (ii) the cohesive interface problem regarding the solid deformation field and (iii) the crack 
tracking problem concerning the crack kinematics. This manuscript describes a unique modular tool  for 
the coupled set of nonlinear equations. We focus in particular on the boundary conditions for the crack 
tracking problem. Finally, the capability of the method to simulate brittle fracture is demonstrated by 
qualitative and quantitative comparisons with experiments from the literature as well as by common 
benchmark problems. 

keywords: discontinuities failure, brittle fracture, interface, cohesive crack concept, 
concrete modeling, crack tracking  
 
INTRODUCTION 
 
Brittle or quasi-brittle fracture is characterized by an abrupt collapse of the considered 
material or structure. This characteristic behavior takes place when a material reaches the 
limit of its strength and no plastic deformation can be observed prior to failure. This kind 
of failure ranges from materials like shattered glasses or ceramics over concrete to faults 
formed in the crust of the earth. It has recently drawn increasing attention in the context 
of safety and reliability of concrete buildings, bridges, storage containers, and other 
engineering structures subjected to high impact loading or explosion. Especially the 
numerical treatment of tensile dominated brittle fracture of concrete has been under 
extensive research interest in the past decade, see e.g., [1-11]. Here, tensile dominated 
failure refers to degradation phenomena in which the tensile failure patterns can be 
regarded as dominant over to shear failure which, in turn, is common in metallic 
materials. As a first approximation to mixed mode failure, fracture parameters for the 
opening mode I can be used if the shear to tension ratio is moderately small. If shear 
stress becomes dominant, shear friction and aggregate interlocking can no longer be 
neglected. Tensile failure of concrete involves progressive microscopic cracking, 
debonding and other complex irreversible processes of internal damage. The associoated 
softening can coalesce into a discontinuity that separates the material. The discrete crack 
concept is the approach that reflects these phenomena closest.  
Considering this brief description of brittle fracture, it is evident that at least three main 
building blocks are needed for the phenomenological numerical modeling of brittle 
fracture in a truly three dimensional setting. The first building block regards the 
description of propagating discontinuities in a continuum mechanics finite element 
setting. The second building block takes into account the softening material response 
whereas the third building block includes the computation of the fracture propagation 
direction associated with the geometrical description of the failure surface.     
In recent years many promising techniques have been developed to handle the first 
building block. For the sake of clarity, we would like to classify the following most 
prominent approaches. The easiest strategies which takes into account real physical crack 
kinematics, are interface elements, see e.g., [12-15]. It is evident that this approach is 



appropriate for situations where the crack path is known a priori whereas for situations 
where the crack path has to be predicted this approach will obviously produce mesh 
dependend solutions. An alternative approach which seems to be the most common in 
industrial applications, is the remeshing technique, see e.g. [16-17]. The first approach to 
truly simulate arbitrary discrete failure surfaces in finite element meshes was the 
embedded discontinuity technique, see e.g., [18-24]. Motivated by the assumed enhanced 
strain concept, additional degrees of freedom were introduced locally on the element 
level to characterize the failure plane. The embedded discontinuity technique convinced 
through its computational efficiency because the size of the global system of equations 
was not affected by the new local enhancement. However, an obvious drawback of this 
local representation was the resulting discontinuous nature of the failure surface which 
can lead to over-estimations of the structural stiffness. 
To overcome this deficiency, Belytschko and co-workers introduced the extended finite 
element method XFEM to capture smooth failure surfaces, see e.g. [25-26]. At the 
additional cost of successively introduced global degrees freedom, smooth discrete cracks 
could finally be modeled anywhere in the domain, see also [27-30] for two dimensional 
computations, as well as [31-36] for three dimensional computations. 
While the XFEM uses the displacement jump as additional global unknown, the method 
proposed by Hansbo & Hansbo [37-39] works exclusively with deformation degrees of 
freedom, see also [40-43]. In this manuscript we focus on the latter approach which 
basically belongs to the category of discontinuous Galerkin methods. However, to round 
off the approaches valid for the first building block we should mention meshless methods 
which have also been successfully applied to model arbitrary crack propagation, see e.g. 
[44-45].  
It should be noted, that all these mentioned approaches are discrete in nature: The 
dissipative softening behavior caused by the fracture process is characterized in terms of 
surface tractions depending on displacements jumps along the discontinuity surface 
whereas the bulk material is considered to remain purely elastic. To this end, we use 
cohesive traction separation laws that constitute the second mentioned building block. 
The cohesive crack concept has originally been proposed by Dugdale [46] and 
Barrenblatt [47]. It was further elaborated for concrete materials by Hillerborg [48-49]. 
The key assumption of the cohesive crack concept is that the introduced crack surfaces 
are able to transfer stresses within the process zone of the propagating crack. Since the 
cohesive concept is a very elegant tool to merge all irreversible failure mechanisms into 
an arbitrary traction separation relation, it has been adopted for the modeling of brittle 
failure by several authors, see e.g. [50-55].   
Finally we point our attention to the last building block. In a two dimensional setting, the 
geometrical description of a crack surface is a line and the tracking of a crack becomes 
unique and straight forward. Once an element is identified to fail, in the case of brittle 
fracture typically decided based on a maximum principal stress criterion, the crack 
extends from a neighboring crack point on the element edge in the direction normal to the 
principal stress. Hence, this stress based crack propagation criterion always renders a 
unique and smooth 0C continuous failure zone in two-dimensional analyses. However, in 
a three-dimensional setting, the stress based criterion can generate non-smooth failure 
surfaces. First attempts have been made to model three-dimensional crack propagation 
and a number of different approaches have been proposed, see e.g., [7, 31-33, 35-36]. In 



the present framework we use the so-called global tracking algorithm to track the crack 
path first introduced by Oliver [56] and elaborated by Literature [57-62]. In this 
approach, a single level set function is used to describe the failure surface and the scalar 
values of this level set function are introduced as additional global unknowns which have 
to be coupled to the fracture problem. In detail, the gradient of the newly introduced 
scalar-valued field is coupled to the principal stress directions and an additional boundary 
value problem is solved on the global level. Hence, arbitrary kinds of failure surfaces can 
be described in a stable and robust manner.  
With this paper, we would like to share our experiences modeling three-dimensional 
crack propagation, especially focusing on the appropriate choice of boundary conditions 
for the above-mentioned global tracking problem. The structure of the paper is as 
follows: Section 1 briefly summarizes the governing equations of the elastic bulk 
problem, the cohesive interface problem and crack tracking problem including the 
staggered coupling of these governing equations. In the sequel, section 2 introduces the 
finite element formulation of the governing equations within a complete nonlinear finite 
element setting. Additionally some important recommendations and comments about the 
implementation details are made including the definition and description of different 
kinds of boundary conditions for the crack tracking problem. In section 3 we present 
three numerical examples displaying the results which can be obtained with the proposed 
theoretical and numerical framework. Finally, we conclude the manuscript with a 
discussion and a brief outlook. 
 

 
Figure 1: Elastic bulk problem: Independent mappings +ϕ  and −ϕ  on both sides +B and 

−B  of the discontinuity Γ  inherently introduce a jump [[ ]]ϕ  in the deformation field. 
 
GOVERNING EQUATIONS  
 
The mechanical problem we will describe in this section is essentially governed by three 
sets of equations: (i) the elastic bulk problem, (ii) the cohesive interface problem, and (iii) 
the crack tracking problem. The elastic bulk problem and the crack tracking problem are 
valid in the entire domain B whereas the cohesive interface problem is valid only on the 
discontinuityΓ . For the sake of transparency, we restrict the description to one single 
discontinuity while the extension to multiple discontinuities is straightforward. In this 
section, we will briefly summarize the corresponding continuous field equations for each 
of the three building blocks. 
 
 



The elastic bulk problem 
 
Let us first characterize the elastic bulk behavior in the body B  which we assume to be 
crossed by a discontinuityΓ . On each side of this discontinuity, i.e. on +B and −B , we 
introduce an independent set of deformation mapsϕ which maps particles from their 
original position X in the reference configuration B  to their current position x  in the 
deformed configurationS as illustrated in Figure 1. 
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Accordingly, we can introduce independent deformation gradients +F and −F and their 
corresponding Jacobians detJ + += F and detJ − −= F on either side of the discontinuity. 
In the absence of body forces and inertia terms, the equilibrium equation reduces to the 
vanishing divergence of the Piola stress P  which can be stated independently in both 
subdomains +B and −B . 
 
 Div = 0 + −∀ ∈ ∪P X B B  (2) 
 
On the external boundary ∂B  which can be subdivided into disjoint parts 

u t∂ = ∂ ∪ ∂B B� B with u t ∅∂ = ∂ ∩∂ =B B� B  either Dirichlet boundary conditions p=ϕ ϕ or 
Neumann boundary conditions p⋅ =P N T can be prescribed in terms of given 
deformations pϕ or given surface tractions pT . We assume, without loss of generality, a 
compressible elastic constitutive behavior of Neo-Hookean type inside the bulk. Thus, 
the Cauchy stressσ can be expressed in terms of the Lamé parameters λ andμ . The 
Cauchy stress σ  can be related to the Piola stress P through Nanson's formula. In 
general, these stresses can take different values on both sides of the discontinuity +B and 

−B .  
- 1 λ ln( ) μ μt tJ J

J
+ −− + ∀⎡ ⎤⋅ = ⋅ ∈ ∪⎣ ⎦σ σP = I IF F F X B B  (3) 

What remains for the elastic bulk problem is the initiation of failure. Following the 
classical principal stress based Rankine criterion, we solve the eigenvalue problem of the 
Cauchy stress tensor 3 σ σ σ

1
λi i ii=

⊗= ∑σ n n and allow for crack propagation if the largest 

eigenvalue maxσλ exceeds the rupture stress, i.e. maxσλ σcrit> .  
Furthermore the eigenvector maxσ

in , related to the maximal eigenvalue, defines the normal 
to the crack propagation direction maxσ

i=n n  in the spatial configuration. The two 
remaining eigenvectors 2σ

2 i=t n and 3σ
3 i=t n related to the second and the third 

eigenvector max 32σ σσλ λ λ> > span the crack plane in the spatial configuration. Their 
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the kinematic characterization of the discontinuity surface  
 
 
 
The cohesive interface problem 
 
In order generalize our approach, we consider all kinds of fracture accompanying 
microscopic failure mechanism in a phenomenological sense. Hence, we assume that 
material failure is exclusively attributed to the cohesive interface which is characterized 
through its own independent set of equations. The introduction of two different 
deformation fields for both sides of the discontinuity subdomains +B and −B  inherently 
introduces possible jumps in the deformation map [[ ]] = + − ∀− ∈ϕ ϕ ϕ X Γ on the 
discontinuity. 
 

 
Figure 2: Cohesive interface problem: Concept of fictitious discontinuity surface located 
between the two discontinuity surfaces γ+  and γ− . 
 
As illustrated in Figure 2, all particles initially located on the unique discontinuity surface 
Γ are mapped onto two surfaces γ+  and γ−  in the deformed configuration. To uniquely 
characterize discontinuous failure at finite deformations, we apply the concept of a 
fictitious discontinuity ϕ  which is assumed to be located between the two discontinuity 
surfaces γ+  and γ−  in the deformed configuration, see e.g. [4, 41-43, 51]. 
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Again, the corresponding deformation gradient F  and its Jacobian detJ = F  follow 
straightforwardly. The normal n  to the fictitious discontinuity which will essentially be 
needed to determine normal and shear resultants on the discontinuity γ  can then be 
expressed through the classical Nanson formula as tJ −= ⋅n F N . On the internal 
boundaryΓ , i.e. along the fictitious discontinuity, the equilibrium condition 
 
 − ∀⋅ = ⋅ = ∈+P N P N T X Γ   (5) 



 
states that the cohesive Piola tractions T  acting on the discontinuity have to be equal in 
direction and magnitude, however, taking the opposite sign, compare Figure 2. On the 
fictitious discontinuity, we apply the cohesive interface concept, for which all inelastic 
deformation around the crack tip is collectively represented through the cohesive Cauchy 
tractions t . Similar to the Cauchy stresses σ  in the bulk, the cohesive Cauchy tractions 
t  on the fictitious discontinuity can be related to the cohesive Piola tractions T  on the 
reference domain through Nanson's formula in terms of the area elements da and dA. We 
conveniently assume a decoupling of the normal and tangential constitutive behavior and 
introduce the cohesive Cauchy tractions t  in the following form, see e.g. [41-43]. 
 

 da exp( [[ ]] ) [ ] [[ ]]
dA

n
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n

ff E
G

⊗ ∀= = ⋅ + − ⋅ ∈ϕ ϕT t t n n I n n X Γ  (6) 

 
In the normal direction, nf and nG  denote the tensile strength and the fracture energy, 
respectively. In the tangential direction, tE  denotes the shear stiffness. 
 
The crack tracking problem 
 
The characterization of smooth three dimensional failure surfaces is handeled through a 
global crack tracking algorithm which introduces an additional set of partial differential 
equations. The general idea is to represent the crack in the form of iso-surfaces 

constφ= of an additionally introduced field ( )Xφ . A particular iso-surface of constant 
value, e.g., the surface of level zero = 0φ , is the kinematic representation of the discrete 
three-dimensional failure surface, [56-62]. Conceptually speaking, the goal of the crack 
tracking problem is to find the scalar field ( )Xφ  which is the solution to the following 
field equation 
 
 Div = 0 ∀ ∈J X B  (7) 
 
where the flux vector J is a linear function of the gradient of φ . 
 
 [ + ]= ⊗ ⊗ ⋅ ∀∇ ∈X2 2 3 3J T T T T X Bφ  (8) 
 
By construction, the particular format for the anisotropic constitutive tensor 

+ = ⊗ ⊗2 2 3 3D T T T T ensures that the flux J  is always a weighted linear combination of 
the tangent vectors 2T  and 3T  which as mentioned before are the remaining two 
eigenvectors of the Rankine criterion in the reference configuration. Since the anisotropy 
tensor D is rank deficient, we apply slight perturbations ε as + +ε= ⊗ ⊗2 2 3 3 D T T T T I to 
ensure that the overall system is solvable. The problem of finding const.φ=  is obviously 
a classical boundary value problem in terms of the field ( )Xφ  characterized through an 
anisotropic Laplace equation. On the boundary ∂B  which can be subdivided into disjoint 
parts J∂ = ∂ ∪∂B B� Bφ with J ∅∂ = ∂ ∩∂ =B B� Bφ , either Dirichlet boundary conditions 



pφ= φ or Neumann boundary conditions p⋅ =J N J can be prescribed. Typically, we 
assume a flux-free boundary and apply homogeneous Neumann boundary 
conditions p 0⋅ = =J N J . 
 
FINITE ELEMENT FORMULATION 
 
In this section, we illustrate how we discretize and solve the governing equations (2),(5) 
and (7) within a nonlinear finite element setting. In addition, we provide some important 
recommendations and comments about the implementation details. As a basis for the 
finite element formulation, we reconsider the elastic bulk problem and the cohesive 
interface problem, which are inherently strongly coupled. Both, however, are only 
weakly coupled to the crack tracking problem.  
By this means, we first solve the bulk and interface equilibrium simultaneously and then 
solve the crack kinematics in a post-processing step.  
 

 
Figure 3: Left: Elastic bulk and cohesive interface problem. Right: Crack tracking 
problem. 
 
Weak form 
 
After multiplication with the corresponding test functionsδϕ , [[ ]]δϕ  and δφ , integration 
over the domain of interest and consideration of the Neumann boundary conditions 

= p⋅P N T and p=⋅J N J , the governing equations render the weak form  
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in the reference configuration which essentially represent the basis for the discretization 
to be discussed in the sequel. 
 
Discretization 
 
For the finite element formulation it proves convenient to distinguish between standard 
continuous elements and discontinuous elements which are crossed by the discontinuity 
surface. For the continuous elements we use a standard Bubnov-Galerkin scheme and 



furthermore we apply a standard isoparametric interpolation of the test functionsδϕ , the 
deformationϕ , and their gradients δF and F . For the discontinuous elements, we apply 
an independent interpolation of the deformation field +ϕ and −ϕ and its gradient +F and 

−F on the individual sides of the discontinuity +B and −B . Strictly speaking, both 
deformation fields +ϕ  and −ϕ  are interpolated independently over the element. In detail, 
we essentially double the degrees of freedom of the entire element. The interpolated 
fields are then set to zero on one side of the discontinuity, while they take their usual 
values on the other side. 
For the crack tracking problem, we again apply a standard linear interpolation of the test 
and trial functions δφ  andφ  and their gradients δ∇X φ  and∇X φ  which leads to the 
following set of approximations. 
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Here iN  and jN  are the standard shape functions for constant strain tetrahedral elements 
and , 1 eni j n= …  are the four tetrahedral nodes. To unify the notation, we have introduced 
the sets iN and jN which consist of the element shape functions N  evaluated on Γ  
multiplied by the corresponding algebraic sign. The overbars indicate the discontinuous 
elements, for which we have doubled the degrees of freedom such that 

, 1 +en eni j n n+ −= … are the doubled four, i.e. eight, tetrahedral nodes. Accordingly N∇X  
denotes the gradient of the shape functions N  evaluated on the discontinuityΓ , 
weighted by the factor 1

2
. With the help of the above mentioned discretizations, the weak 

forms can be cast into the following discrete residual statements.  
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Thereby, the operator 
1

nel

e=
A  denotes the assembly of all element contributions including the 

continuous ones e  and the discontinuous ones ,d + − respectively. Obviously, the first 

residual IRϕ  is nonlinear in the unknown deformation field ( )ϕ X  whereas the latter 
residual RI

φ  ( )Xφ is linear in the unknown field ( )Xφ . Hence, the nonlinear set of 
equations (11)1 is solved numerically based on an incremental iterative Newton-Raphson 
scheme with the incremental stiffness matrix IJ I J∂ ∂=K R / φϕ ϕ . The system matrix of the 
linear set of equations (11)2 follows accordingly as K RIJ I J∂ ∂= /φ φ φ . 
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The solution renders the incremental update of the deformation field J 1

d npn
IJ II =

= ∑ K Rϕ ϕ−1 ϕ  

and the crack tracking field J 1
d K Rnpn

IJ II =
= ∑ φ−1 φφ for all npn  nodes. Note that due to the 

chosen discretization scheme, the number of global node points npn  which consists of the 
standard nodes and the duplicated node points for the discontinuous elements increases 
progressively during ongoing crack propagation. The terms in brackets, i.e. the fourth, 
third and second order tensors [[ ]][ ],[ ],[ ]δ∂ ∂ ∂ ϕF FP T T and [ ]∂

∇
Jφ  depend on the choice of 

the constitutive equations for the stresses P  in the continuous body (3), for the tractions 
T  on the discontinuity surface (6) and for the flux J  in the domain (8). For the particular 
choices used in (3) and (6) these linearizations are given, e.g., by Jäger et al. [61]. Since 
the flux is constant in equation (8) with [ ]∂

∇
= DJφ , the crack tracking problem is linear 

in ( )Xφ  and can thus be solved without further iteration once the nonlinear deformation 
problem is solved. For the sake of clarity the complete flowchart of the computational 
algorithm is summarized in Figure 4.  
 
 
 



 
Figure 4: Algorithmic flowchart of finite element based failure algorithm. 



 
 

 
 
Figure 5: Local element crack tip with free crack tip face, front nodes and doubled node. 
Left: Reference configuration. Right: Deformed configuration.  
 
 
Crack extension and crack tip construction 
 
In the presented algorithm the resulting crack tracking field is represented through a 
level-set function for the description of the crack surface. Without using a detailed mesh 
independent description of the crack front and by using a linear interpolation of the crack 
tracking field, the extension of the crack is a planar segment through the entire 
considered element. It should be noted that the error introduced by using the Rankine 
failure criterion and the suggested simple cracking procedure become negligible with 
mesh refinement. To avoid  a crack extension search over the entire set of elements, 
potentially new crack elements are stored in a list of active crack tip elements. This set of 
crack tip elements is updated continuously by checking the direct neighbors of the active 
crack tip elements. Additionally, in order to ensure that the properties of a crack tip are 
given, not all nodes of the considered element are doubled. Instead, we store the nodes 
which are part of the free crack tip faces, i.e., the faces without a cracked neighboring 
element are used as crack tip front nodes. Additionally, we double only the nodes of the 
considered element which are not part of this crack tip front nodes. Clearly, this set of 
crack tip front nodes is also updated continuously during ongoing crack propagation.  The 
resulting displacement field ensures the properties of crack tip which are illustrated in 
Figure 5.  
Besides, the kinematic description of the crack surface in terms of a scalar valued 
tracking field might seem cumbersome at first, yet it has some advantages over traditional 
approaches. It inherently avoids ill-posedness of the stiffness matrix which is common to 
traditional approaches if the crack surface strikes the vicinity of a node and the resulting 
crack surface becomes very small. In the present approach based on a 0C continuous, 
scalar valued crack tracking function, however, we control the minimum edge-length of 
the support of a node, i.e., all element edges connected to the considered node and 
modify theφ value of the considered node. In detail, the nodal value is modified, if the 
minimal edge length is less than 0.5%, which has turned out to yield reasonable results. 



 

 
Figure 6: Numbering convention of local element points and edge vectors. Left: Four-
noded tetrahedral-element. Right: Six-noded wedge-element.  
 
Splitting of elements and numerical integration 
 
The next important ingredient of the present algorithm concerns the splitting of elements 
and the numerical integration during the computation of the incremental stiffness matrix 

eIJKϕ  and the element residuals eIRϕ  for the discontinuous elements. For these 
computations it proves convenient to distinguish between the volumetric partsdV and the 
crack surface parts dA of the incremental stiffness matrix and the element residuals, 
compare equation (11) and (12) respectively. Furthermore, the geometry of the 
discontinuous elements can simply be represented by the intersection points in the 
reference configuration. Hence, the intersection points as well as the crack surface and 
the volume of the considered elements in the reference configuration do not change 
during ongoing crack propagation.  
In general, two different functions have to be evaluated on both sides of the 
discontinuous elements for the numerical integration of the volume integrals. 
The underlying split of a tetrahedral element can produce two different combinations of 
sub-elements depending on whether the crack surface forms a triangle or a quadrilateral, 
see in detail e.g. [4, 35, 42-43, 60]. In the former case, we obtain a four-noded 
tetrahedron and a six-noded wedge element, whereas in the latter case we obtain two six-
noded wedge elements. In contrast to the literature [35, 42-43], where the wedge element 
is further subdivided into tetrahedral elements, we only determine the volume of each 
tetrahedron or wedge  element in a local element coordinate system and weight the 
stiffness matrix with the corresponing volume. For the sake of clarity we express this 
integration for a general function ( )f X  which can be understood as a place holder for 
the volume parts of eIJKϕ  and eIRϕ .Thereby ξ denote the local element coordinates. 
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Due to the linear approximations of the displacement field we obtain piecewise constant 
strains and by using one-point gauss integration to determine the particular Jacobians, we 
obtain the following result. 
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Thereby V+ and V− denote the volume of the tetrahedral or wedge part on each side of the 
discontinuity surface, compare Figure 6. These volumes can be computed 
straightforwardly in terms of the intersection points with the help of the following 
equations. 
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Concluding this implementational aspect, we describe the numerical integration over the 
crack surface parts dA . As mentioned above, the crack surface forms either a triangle or a 
quadrilateral defined by the intersection points. This facilitates the numerical integration 
over the crack surface.We perform a standard two dimensional Gauss integration scheme 
with at least three integration points for triangular and four integration points for 
quadrilateral crack surfaces.  
 
Load and boundary conditions 
 
A crucial issue that has been neglected in the literature is the physical interpretation, the 
understanding, and the appropriate definition of load and boundary conditions for the 
onset of cracking. Therefore we try to give an overview of possible boundary conditions 
and recapitulate these definitions with regard to the numerical examples. It is important to 
keep in mind that the set of boundary nodes ∂B�φ for the linear crack tracking problem 
increases during ongoing crack propagation to ensure the kinematically continuity of the 
crack tracking problem. This implies that we have to update the set of boundary 
conditions continuously during runtime as mentioned in Figure 4. To this end, we add the 
actual φ values of the considered cracked elements at iteration step n to the set of fixed 
boundary conditions∂B�φ at iteration step n+1and solve the linear system of equations for 
the freeφ values, symbolized in the following static condensation scheme with index f. 
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Next, we have to define either the initial boundary conditions or the so-called root 
elements to determine the set of onset conditions during a running crack simulation. In 
the present formulation we only use a set of initial boundary conditions since we 
validated our algorithm in terms of experiments and benchmarks from the literature and 
therefore wanted to restrict the possible number of cracks. However, the incorporation of 



root elements which allow for an arbitrary number of cracks is straightforward, see, e.g., 
[3, 5, 68]. In the sequel we categorize the choice of boundary conditions first addressing 
the initial boundary conditions and focussing on the onset boundary conditions or so-
called root elements. 
 
Mesh-dependent initial boundary conditions 
 
The simplest way to define inital boundary conditions is to fix the φ values for a crack 
tip or the notch. In the case of tetrahedral elements, we thus have fixed at least three 
element nodes which are in fact enough to ensure that the linear equation system for the 
global tracking field is solvable. Note that only the slope of the chosen start values is 
important. If, e.g., the crack should start in the middle of the element, the chosen start 
values will be set to initial α= ±φφ  where α can be chosen arbitrarily. Theoretically, the 
crack surface value const.=φ that characterizes the crack surface can also be chosen 
arbitrarily, although we typically suggest const.= 0=φ . Mesh dependent boundary 
conditions are extremely useful in case of a single crack and with relatively simple 
meshes as we will illustrate in the numerical example of the L-shaped panel. The 
fundamental drawback of mesh dependent boundary conditions is that they have to be 
adapted for each discretization to ensure that crack onsets are equal for all computations.  
 
Geometry-based initial boundary conditions 
 
To avoid the modifications of the boundary conditions for each mesh, we recommend to 
define the boundary conditions based on the geometry. This then allows to pre-determine 
and fix the start values for the entire geometry. This procedure ensures that both the onset 
of crack and the boundary conditions are equal for all different meshes. The first situation 
is extremely helpful for more demanding geometries, which will be illustrated by the 
numerical simulation of a pull-out test. The latter issue is crucial to ensure symmetric 
initial boundary conditions in the case of more than one crack, which we will document 
by the numerical example of the Nooru-Mohamed test. Similar to the previous category, 
we can choose the crack surface describing const.=φ  value arbitrarily. 
 
Root-element onset boundary conditions 
 
Finally, a promising technique is the determination of crack onsets during crack 
propagation, see e.g., [3, 5]. This strategy allows to describe multiple crack propagation 
without having to pre-define boundary conditions. At detection of failure, we first check 
the minimal and maximal computed values of the crack tracking φ field for the 
considered element. Next, we check if a root element exists within this range. If so, we 
take the stored  const.=φ  value for this root element. Otherwise we introduce a new root 
element and assign the const.=φ  value to the element center point. This procedure 
uniquely ensures 0C continuity, for all possible crack surfaces and is more general than 
the one reported by [68] where root elements are predefined. Although this approach 
seems to be the most general one, an essential drawback remains: By using finite 
elements as the root of crack propagation, it is obviously that the number of cracks will 



inherently depend on the number of elements. This disadvantage, however, can only be 
avoided by describing the complete crack surface independent of the finite element mesh.   
  
NUMERICAL APPLICATIONS 
 
We present three numerical examples displaying the results which can be obtained with 
the proposed theoretical and numerical framework. Thereby we have taken especially the 
chosen examples to attach importance to the following main three points. The first point 
regards the comparison with experimental results to check whether the presented 
framework can be used to simulate real engineering applications or not.  
The second point concerns the comparison with analogue or similar numerical 
frameworks from the related literature. The remaining point is to display a particular 
example for the presented boundary conditions of the global tracking problem.   
 
L-shaped panel  
 
The first example is a concrete L-shaped panel. The geometry and the loading conditions 
can be found in Figure 7 left. This geometry was elaborated experimentally by Winkler et 
all [63-64]. Comparative discrete failure simulations of this benchmark problem can be 
found, e.g., in [59]. However, their analysis is restricted to a two-dimensional setting. The 
domain has been discretized with three different meshes. One structured mesh with 
12969 (8658 ndof) tetrahedral elements and two unstructured meshes with 25600 (18711 
ndof) and 32261 (19416 ndof) tetrahedral elements respectively. The chosen material 
parameters are E 25,850= N/mm², 0.18=ν , tf 2.7= N/mm², and fG 0.065= N/mm. The 
load is applied incrementally through displacement control, i.e., the upper left row of 
nodes is displaced by u 0.02= mm in 40 load steps each. The corresponding load 
displacement curves and the reference solution of the experimental investigation are 
displayed in Figure 7 right. For the boundary conditions of the global tracking problem 
we have chosen the mesh dependent case. That implies that we define the onset of crack 
propagation in the top element of the bottom margin for the discretization with 32261 
elements. We have chosen the boundary conditions to 100± , compare Figure 8 on the 
right hand side. Clearly we have to modify the boundary conditions for the other two 
meshes, to ensure equal initial crack onset conditions for each of the three cases. In detail 
we fix the value of 100 on the upper side of the element and compute the lower value 
with regard to the known crack starting position. 
The solution is truly mesh independent and in remarkably good agreement with the 
experimental reference curve, compare Figure 7. Figure 9 shows the stress distribution 
plotted on the deformed configuration. The displayed analysis is based on the 
discretization with 32261 linear tetrahedral elements and shows the results of load steps 
10 and 20, i.e., at an applied deformation of u=0.2 mm and u=0.4 mm, respectively.  
By means of the iso-lines on the outer boundary of the L-shaped panel, figure 8 shows 
how the crack propagates smoothly to the right edge of the specimen as the load is 
increased. Additionally Figure 8 displays the crack surface or rather the zero iso-surface 
for an imposed displacement of u 0.8= mm. 
In summary, this example of the cracked L-shaped panel shows that the numerical 
method is able to capture brittle fracture in a realistic way. Furthermore, it shows that for 



examples with less complicated or rather simple geometries the first kind of defined 
boundary conditions is extremely useful. 
 

 
Figure 7: Left: Geometrical dimensions [mm] and loading, Right: Load displacement 
relationship F[kN] versus u[mm].  
 

 
Figure 8: Left: Potential crack surface, Right: Iso-surfaces for an imposed displacement 
of u=0.8mm. 



Figure 9: Cauchy stress [N/mm²] in loading direction for imposed displacements of 
u=0.2mm and u=0.4mm scaled with factor 20. 
 
Pull-out test 
 
The second examples treats the pull-out of a steel anchor embedded in a cylindrical 
concrete block. The geometrical dimensions of the problem with its loading and 
boundary conditions are displayed in Figure 10 for one quarter of the block. The 
geometry as well as the following material parameters E 30,000= N/mm², 0.2=ν , 

tf 3= N/mm², fG 0.106= N/mm are chosen similar to those in [4, 35, 60]. Here, the steel 
anchor is not explicitly modeled. Instead an incremental vertical displacement of 
u 0.01= mm is imposed in 60 loadsteps, until the final displacement of u 0.4= mm is 
reached. Note that for a regular mesh, the considered problem is axisymmetric and can as 
well treated with a computation especially for axissymmetric conditions, compare e.g. 
[65-66]. Since the focus of this work is the investigation of our three-dimensional 
algorithm, we explore the pull out test in a fully three dimensional setting. Because of the 
rather complicated geometry, we apply the second category of defined boundary 
conditions. Accordingly, we predefine the initial boundary conditions for the entire area 
which is in contact with the surface of the steel disc. In detail we set the nodal values of 
the upper edge of this part to 20 whereas the bottom nodal values of the bottom are set 
to 30− . Additionally we compute all nodal values of the intermediate nodes keeping in 
mind the favoured crack onset. Hence, we can ensure that the crack onset as well as the 
boundary conditions, are equal for various different meshes. 
To explore mesh-independency of our algorithm, we use two unstructured meshes 
containing of 14281(9525 ndof) and 44976 (28458 ndof) elements, respectively.  
The corresponding load displacement curves are shown in Figure 10, where the two 
computations are compared with the results from the literature, see e.g. [4]. The reaction 
force is linear until the maxim load is reached. Afterwards, we observe a short decrease 
of the load for both meshes until a re-increase can be noticed for the finer mesh. This is 
due to the fact, that the crack starts from the onset at the steel disc and propagates further 
to the inside egde of the counterpressure ring, compare Figure 11, where the iso-lines and 



the detailed zero iso-surface are depicted. Because of the tensile failure criterion, the 
maximal reaction force prior the crack runs below the counterpressure ring. 
The mentioned re-increase is due to the fact that the failure behavior switches from 
tensile/shear to compression/shear behavior which cannot yet be captured with the 
presented numerical framework. It is obvious that the first mesh is to coarse to capture 
the failure behavior precisely: The peak load is over-estimated and accordingly, the re-
increasing of the load occurs later. The reaction force of the finer mesh, however, shows 
the same linear slope as in the comparison literature and the load exhibits the 
characteristic re-increase reported in [4]. Finally, Figure 12 shows the stress distribution 
plotted on the deformed configuration. The displayed analysis is based on the 
discretization with 44976 linear tetrahedral elements and shows the results of load steps 
25 and 60, i.e., at an applied deformation of u=0.25 mm and u=0.6 mm, respectively.  
Summarizing this example of the pull-out-test, we have shown that the presented 
framework is able to capture brittle failure in more complicated geometries. Additionally 
we have documented that for these kind of geometries the second case of boundary 
conditions seems ideally suited to capture the failure behavior appropriately. 
 
 

 
Figure 10: Left: geometrical dimensions [mm] and loading, Right: load displacement 
relationship F[kN] versus u[mm]   
 

 



Figure 11: Left: potential crack surface, Right: iso-surfaces for an imposed displacement 
u=0.6mm 
 

 
Figure 12: Cauchy stress [N/mm²] in loading direction for imposed displacements 
u=0.25mm and u=0.6mm scaled with factor 100.  
 
Nooru-Mohamed test 
 
The third example is a tension-shear test which has been experimentally performed by 
Nooru-Mohamed [67]. From the documented experiments we choose the specimen with 
size 200x200x50mm and loading protocol 4b as illustrated in Figure 13. In this test, a 
double notched specimen is first loaded by a shear force sF 10= kN on the upper left 
frame b, whereas frame a is fixed in loading direction. The applied shear force leads to a 
relative shear displacement sδ . Afterwards, the specimen is loaded by an imposed tensile 
displacement tu  on the upper left frame while keeping the shear force constant at 

sF 10= kN. The imposed tensile displacement induces a tensile load tF whereas, for the 
results, this tensile load is plotted versus the depicted relative displacement tδ , see Figure 
13. It is obvious, that keeping the shear load sF constant leads to a further increase in 
shear displacement during tensile loading. Due to this loading protocol, the principal 
stresses rotate during loading and result in two curvilinear cracks starting from the 
opposite notches. This example is thus an excellent test platform for our algorithm to 
simulate more than one crack. 
For the presented simulations we use two unstructured meshes consisting of 14681(9303 
ndof) and 35176 (21021 ndof) elements, respectively. The material parameters are chosen 
as follows E 30,000= N/mm², 0.2=ν , tf 3= N/mm² and fG 0.11= N/m, similar to those 
in the literature [30, 67]. Comparative discrete failure simulations of this benchmark 
problem can be found e.g in [3, 30, 69]. To ensure the mentioned loading protocol, we 
couple the degrees of freedom in the shear direction to apply the shear force. Then, we 
use 320 displacement controlled loadsteps of tu 0.001= mm. This example is well suited 
to demonstrate the importance of boundary conditions for the crack tracking problem in 
the context of defining symmetric initial conditions. That means, if we want to achieve a 
symmetric solution for the crack tracking problem and accordingly for the mechanical 
problem, we have to begin with a symmetric setup. Accordingly, the mesh-dependent 



boundary conditions previously used in the literature are not useful. We thus choose to 
apply the initial boundary conditions on the geometry. In detail, we predefine the 
particular areas of the notches starting with -50 on the outside and ending with +5 on the 
inner side of the particular area introducing symmetric initial boundary conditions as 
displayed in Figure 14.  
The onset of crack propagation occurs on the notches as imposed. Thereby, the cracks 
will propagate under mode II 45° as long as the shear load is applied. Afterwards, with 
increasing tensile loading, the cracks rotate as mentioned before, compare Figure 14, in 
which both the iso-lines and the zero-iso-surface are displayed.  The crack path is in 
remarkably good qualitative agreement with the crack pattern of the experiments, [67]. 
The reaction force is mesh independend but the peak load is slightly overestimated 
compared to the experiment. However, this is also the case for the comparison numerical 
analyses of Meschke&Dumstorff in two dimensions and Gasser&Holzapfel in three 
dimensions whereas the latter simulation is in closest agreement with the experiments. 
The reason for the over-estimation of the peak can be explained by the following 
considerations: First, the fracture energy fG 0.11= N/m is not experimentally determined 
in the original work [67]. Its value is only estimated for the numerical simulations in the 
corresponding literature.We assume that the fracture energy could be overestimated itself. 
Second, the used exponential cohesive model could have over-estimated the peak load 
because only tractions normal to the interface are considered. This is a first approach 
reasonable for tensile-dominated failure. For the present mixed-mode example, which is 
dominated by shear failure especially at the onset of cracking,we should also account for 
the tangential tractions. Third, we have used relatively uniform meshes without mesh-
refinement at the notches which could also be a factor for the overestimated peak load. 
Finally, Figure 15 shows the  principal stress distribution of the deformed configuration. 
The displayed analysis is based on the discretization with  35176 elements and shows the 
results of imposed displacements of tu =0.025mm ( tδ =0.0247 ) and tu =0.28mm 
( tδ =0.0922 ) whereby the displacement is scaled with factor 25. 
Concluding this example of the Nooru-Mohamed test, we have demonstrated that the 
presented framework is ideally suited to model more than a single crack successfully. 
 
 

 



Figure 13: Left: Geometrical dimensions [mm] and loading. Right: Load displacement 
relationship Ft[kN] versus δt[mm].   
 

 
Figure 14: Left: Potential crack surface. Right: Iso-surfaces for an imposed displacement 

tu =0.28mm ( t =0.0922δ ). 

Figure 15: Principal Cauchy stress [N/mm²] for imposed displacements tu =0.025mm 
( t =0.0247δ ) and tu =0.28mm ( t =0.0922δ ) scaled with factor 25. 
 
DISCUSSION  
 
We have illustrated the design of a novel algorithmic tool for modeling brittle fracture 
within the finite element setting. The suggested approach is able to characterize the 
formation of failure surfaces in typical engineering applications. The computational 
simulations have been compared with experiments documented in the literature.      
Due to its modular nature, recall that the framework is divided in the elastic bulk 
problem, the cohesive interface problem, and the crack tracking problem, the proposed 
tool shows a great development potential.  



The proposed fracture simulation tool can be generalized to other kinds of materials or 
loading scenarios by simply modifying the constitutive equations for the bulk. Ductile 
fracture and time dependent problems can be treated straightforwardly with only small 
algorithmic modifications. In particular, high impact failure and explosion of concrete 
structures can be simulated by adding transient terms. The prediction of saftety and 
reliablily of concrete buildings, bridges, storage containers, and other engineering 
structures constitutes another potential field of application of the proposed approach. As 
failure is only represented through the interface, the suggested framework relies on only 
very few material parameters and the examples have demonstrated that their fit is 
straightforward. A possible generaliation would be to include history variables in the 
cohesive law, e.g., similar to a damage or plasticity type formulation that is able to 
account for loading / unloading processes. Cohesive laws seem to be ideally suited to 
incorporate irreversible damage processes in a phenomenological sense.  
We have extensively elaborated the crack tracking problem that characterizes the crack 
kinematics. Based on previous systematic comparisons, we have decided to focus on the 
global tracking algorithm that couples the crack kinematics with the chosen crack 
propagation criterion.  
Since this approach is relatively novel, it still faces a nuber of technical difficulties which 
we have tried to address in this manuscript. Similar to most multifield problems which 
are not directly linked to first principles, it is not straightforward to define the boundary 
conditions for the additional field. We classified the possible kinds of boundary 
conditions for the crack tracking problem. For each category, we have identified different 
scenarios for which it is particularly useful. The proposed guidelines to chose the 
appropriate boundary conditions have been verified by three numerical examples of 
different complexity.  
We are aware that the extension of the global tracking algorithm to more sophisticated 
crack propagation laws, necessary to treat more complex failure mechanisms, is not as 
straightforward as the extension of the bulk and the cohesive interface problem. 
Nevertheless, we believe that the coupling of a continuous level set function with the here 
suggested failure criterion similar to the global tracking scheme is also possible for other 
crack propagation criteria. We are currently exploring the potential of the proposed 
algorithm of generalizations along these lines. 
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