Predicting drug-induced arrhythmias by multiscale modeling

Francisco Sahli Costabal | Jiang Yao | Ellen Kuhl*

1Department of Mechanical Engineering, Stanford University, California, United States
2Dassault Systèmes Simulia Corporation, Rhode Island, United States
3Departments of Mechanical Engineering, Bioengineering, and Cardiothoracic Surgery, Stanford University, California, United States

Correspondence
*Corresponding author: Ellen Kuhl, 452 Escondido Mall, Bldg 520-203, Stanford, CA 94305. Email: ekuhl@stanford.edu

Abstract
Drugs often have undesired side effects. In the heart, they can induce lethal arrhythmias such as torsades de pointes. The risk evaluation of a new compound is costly and can take a long time, which often hinders the development of new drugs. Here we establish a high resolution, multiscale computational model to quickly assess the cardiac toxicity of new and existing drugs. The input of the model is the drug-specific current block from single cell electrophysiology; the output is the spatio-temporal activation profile and the associated electrocardiogram. We demonstrate the potential of our model for a low risk drug, ranolazine, and a high risk drug, quinidine: For ranolazine, our model predicts a prolonged QT interval of 19.4% compared to baseline and a regular sinus rhythm at 60.15 beats per minute. For quinidine, our model predicts a prolonged QT interval of 78.4% and a spontaneous development of torsades de pointes both in the activation profile and in the electrocardiogram. Our model reveals the mechanisms by which electrophysiological abnormalities propagate across the spatio-temporal scales, from specific channel blockage, via altered single cell action potentials and prolonged QT intervals, to the spontaneous emergence of ventricular tachycardia in the form of torsades de pointes. Our model could have important implications for researchers, regulatory agencies, and pharmaceutical companies on rationalizing safe drug development and reducing the time-to-market of new drugs.

KEYWORDS:
drugs, arrhythmia, torsades de pointes, cardiac toxicity, electrophysiology, finite element analysis

1 | INTRODUCTION

Drugs of many types can induce global changes in cardiac electrophysiology by interacting with specific ionic channels. Undesirable side effect of some compounds are cardiac arrhythmias. A particularly lethal type of arrhythmia is torsades de pointes [1], a condition associated with drugs that prolong the repolarization stage of the action potential [2]. The current gold standard to assess the pro-arrhythmic risk of a drug is to measure the block of the rapid delayed potassium rectifier current in single cell experiments [3], the QT interval in animal models, and the corrected QT interval in healthy volunteers [4]. Pro-arrhythmic risk evaluation is critical to avoid the introduction of potentially dangerous drugs to the market [5]. Yet, the high cost and long time needed to test new compounds hinders the discovery of new drugs. In addition, the poor specificity of these markers can prevent potentially useful drugs to reach the market.

A promising initiative is the Comprehensive in-vitro Pro-arrhythmia Assay CiPA that brings together regulatory agencies, industry, and researchers to establish new mechanistic assays that can predict the pro-arrhythmic risk of new compounds [6]. A major recommendation of the CiPA initiative is to promote computational models [7] to quantify the effect of drugs [8]. Ideally, these models can quickly evaluate the impact of a new...
drug on the predictive biomarkers of cardiac arrhythmias: In a single cell model, a recent study characterized the prolongation in action potential duration and predicted the risk categories of 31 drugs (9). In a one-dimensional model of cardiac electrophysiology, other studies computed alterations in the QT interval in response to drugs (10, 11). In a three-dimensional model, a recent study identified critical drug concentrations for cardiac arrhythmias and correlated these concentrations to risk categories of torsades de pointes (12). However, there are still many open questions that could benefit from high fidelity modeling (7). Arrhythmias are inherently three-dimensional phenomena. Multiscale modeling could allow us to mechanistically correlate what a pharmacologist sees in a single cell action potential to what a physician see in a clinical electrocardiogram. Towards this goal, we establish a multiscale bi-ventricular model to characterize the effects of drugs in cardiac electrophysiology. Our model allows us quantify the interaction between specific compounds and specific ionic currents at the cellular scale and compute the overall response in terms of global activation profiles and electrocardiograms at the organ scale.

We hypothesize that drugs with mild effects will produce moderate changes in the electrocardiogram, whereas in high risk drugs will trigger the spontaneous development of arrhythmias. We test this hypothesis for two common approved drugs with well-known risk factors, ranolazine and quinidine. Ranolazine was approved a decade ago as a drug to treat chronic angina (13). It blocks the rapid delayed potassium rectifier current and the late component of the sodium current (14). Although ranolazine is known to moderately prolong the action potential duration and QT interval, it has been classified with a low risk of torsades de pointes (8). Quinidine was discovered more than a century ago as a drug to treat cardiac arrhythmias (15). It blocks the rapid and slow delayed potassium rectifier currents and the transient outward potassium current (14). Quinidine is known to significantly increase the action potential duration and the QT interval, which has lead to its classification with a high risk of torsades de pointes (3). Here we show how ranolazine- and quinidine-induced alterations in ion channel dynamics propagate across the spatial and temporal scales to modify the action potential duration on the cellular level, the QT interval on the organ level, and the excitation pattern across the left and right ventricles. We anticipate that our multiscale computational model will become a useful tool to better understand the mechanisms of drug-induced arrhythmias and accelerate the development of new compounds.

2 | METHODS

2.1 | Cardiac electrophysiology

We represent the electrophysiology of cardiac tissue by the classical monodomain model. The key variable of the monodomain model is the transmembrane potential ϕ, the difference between the intra- and extra-cellular potentials. The spatio-temporal evolution of the transmembrane potential is governed by a reaction-diffusion equation (16),

$$ \gamma (C_m \phi + I_{ion}) = \text{div}(\hat{D} \cdot \nabla \phi), $$ (1)

where γ is the surface-to-volume ratio of the cell, C_m is the membrane capacitance, I_{ion} is the ionic current across the cell membrane, and \hat{D} is the second-order conductivity tensor (17). By normalizing this equation with (γC_m), we obtain the classical format of the evolution equation for the transmembrane potential in cardiac tissue,

$$ \phi = \text{div}(D \cdot \nabla \phi) + f(\phi), $$ (2)

Here, we have introduced the source term $f(\phi) = -I_{ion}/C_m$ and the new conductivity tensor D, which we further decompose into isotropic and anisotropic contributions,

$$ D = \frac{1}{\gamma C_m} \hat{D} = D_{iso} I + D_{an} f \otimes f, $$ (3)

to account for the anisotropy of cardiac tissue in terms of the orientation f of the cardiac muscle fibers (18). A wealth of research has focused understanding single cell dynamics and characterizing the ionic currents I_{ion} of different cell types (19). In general, the currents are functions of the transmembrane potential ϕ and a set of states variables $q(\phi)$ (20, 21).

$$ I_{ion} = I_{ion}(\phi, q(\phi); t) $$ (4)

where the state variables themselves are governed by ordinary differential equations,

$$ \dot{q} = g(\phi, q(\phi); t). $$ (5)

The number of currents and state variables determines the complexity of the model and varies for different cell types. Here we selected two distinct cell models, one for human ventricular cardiomyocytes and one for Purkinje fiber cells.

2.1.1 | Ventricular cardiomyocyte model

To model the electrophysiology of ventricular cells, we adopt the O’Hara-Rudy model for human ventricular cardiomyocytes (22). The O’Hara-Rudy model was developed exclusively based on human data, it includes the key currents relevant in drug-induced arrhythmias, and it is recommended by the CiPA initiative to unify regulatory guidelines (24). The
FIGURE 1 Single cell action potential for human ventricular cardiomyocytes, left, and Purkinje fiber cells, right. The ventricular cell model distinguishes between endocardial, midwall, and epicardial cells and is based on the modified O’Hara Rudy model with 15 ionic currents and 39 state variables (22). The Purkinje cell model displays inherent automaticity and is based on the Stewart model with 14 ionic currents and 20 state variables (23). The Purkinje cell model is based on 15 ionic currents,

\[
I_{ion} = I_{Ca} + I_{Na} + I_{CaNa} + I_{CaK} + I_{Cal} + I_{Na} + I_{Cab} + I_{Nab} + I_{Kb} + I_{Kr} + I_{Ks} + I_{K1} + I_{to} + I_{NaK} + I_{pCa} + I_{NaCa} + I_{NaCa,ss},
\]

the L-type calcium current \(I_{Ca} \), the fast and late sodium currents \(I_{Na} \) and \(I_{CaNa} \), the background calcium, sodium, and potassium currents \(I_{Cal} \), \(I_{Nab} \), and \(I_{Kb} \), the rapid and slow delayed rectifier potassium currents \(I_{Ks} \) and \(I_{K1} \), the inward rectifier potassium current \(I_{K1} \), the transient outward potassium current \(I_{to} \), the sodium potassium pump current \(I_{NaK} \), the sarcolemmal calcium pump current \(I_{pCa} \), and the sodium calcium exchange currents \(I_{NaCa} \) and \(I_{NaCa,ss} \). Here we replaced the fast sodium current \(I_{Na} \) of the original O’Hara-Rudy model with a modified fast sodium current of the ten Tusscher model (25) to model propagation in tissue scale simulations (26). The 15 currents are defined through a total of 39 state variables. This level of detail is suitable to study the interaction of specific drugs across specific ionic channels. To account for regional specificity, the O’Hara-Rudy model has been parameterized for three different cell types, endocardial, midwall, and epicardial cells. Figure 1, left, illustrates the single cell action potential of the O’Hara-Rudy model for endocardial, mid, and epicardial human ventricular cardiomyocytes. We adopted the code of the original O’Hara-Rudy model (27), translated it to Fortran, replaced the fast sodium current (23), and kept all the parameters as in the original model (22).

2.1.2 Purkinje fiber model
To model the electrophysiology of the Purkinje fiber network, we choose the Stewart model for human Purkinje fiber cells (23). A characteristic feature of this model is the automaticity of its action potential, which enables the cells to self-excite without an external stimulus. This model is based on 14 ionic currents,

\[
I_{ion} = I_{Ca} + I_{Na} + I_{Cab} + I_{Nab} + I_{Kr} + I_{Ks} + I_{K1} + I_{to} + I_{f} + I_{sus} + I_{NaK} + I_{pCa} + I_{pk} + I_{NaCa},
\]

the L-type calcium current \(I_{Ca} \), the fast and late sodium currents \(I_{Na} \) and \(I_{Cab} \), the background calcium and sodium currents \(I_{Cab} \) and \(I_{Nab} \), the rapid and slow delayed rectifier potassium currents \(I_{Ks} \) and \(I_{K1} \), the inward rectifier potassium current \(I_{K1} \), the transient outward potassium current \(I_{to} \), the hyperpolarization-activated current \(I_{f} \), the sustained potassium current \(I_{sus} \), the sodium potassium pump current \(I_{NaK} \), the calcium and potassium pump currents \(I_{pCa} \) and \(I_{pk} \), and the sodium calcium exchange current \(I_{NaCa} \). These currents are
defined through 20 state variables. Figure 1, right, illustrates the single cell action potential for human Purkinje cells. We adopted the code of the original Stewart model (28), translated it to Fortran, and kept all the parameters as in the original model (23).

2.2 Finite element model

To solve the governing equations (2) to (5), we adopt the finite element software package Abaqus (29). We exploit the structural similarities with the heat transfer problem with a non-linear heat source and discretize the transmembrane potential as nodal degree of freedom and the ionic currents and gating variables as internal variables (18, 30). Motivated by the small time step size to resolve the fast dynamics during the initial phase of the action potential, we adopt an explicit time integration scheme.

2.2.1 Ventricular tissue model

The basis for our simulation is the Living Heart model, an anatomically accurate four-chamber model of the healthy human heart (32). The underlying anatomic model was created from magnetic resonance images of a healthy, 21-year-old, 50th percentile U.S. male (31). Its images were reconstructed from 0.75-mm-thick slices using a medium soft-tissue kernel with retrospective electrocardiogram gating. The initial DICOM images were exported as JPEG files, segmented using Amira, post-processed using Maya, and converted into NURBS surfaces, from which the final solid model was created (33). Motivated by the relationship between element size and critical time step size in explicit methods, we converted this geometry into a regular discretization of cube elements with a constant edge length of 0.3 mm across the entire domain. This results in a discretization with 6,878,459 regular linear hexagonal finite elements, 7,519,918 nodes, and 268,259,901 internal variables. For the flux term, we include tissue anisotropy using the fiber definitions \(f \) of the Living Heart model (32) and choose the isotropic and anisotropic conductivities to \(D_{\text{iso}} = 0.012 \text{ mm}^2/\text{ms} \) and \(D_{\text{ani}} = 0.078 \text{ mm}^2/\text{ms} \) (17). For the source term, we employ a body flux subroutine to incorporate the ionic currents \(I_{\text{ion}} \) in the solid element formulation (29). To account for regional specifity in cell type, we simulate a series of Laplace problems using the ventricular model with three sets of essential boundary conditions, at the epicardial surface, at the left endocardial surface, and at the right endocardial surface (34). The combination of boundary conditions defines transmural gradients according to which we allocate the different cell types, 20% endocardial, 30% midwall, and 50% epicardial cells. This arrangement ensures positive T-waves in the healthy baseline electrocardiogram (35). Figure 2 illustrates how densely our discrete Purkinje fiber network covers the endocardium of the left and right ventricles.

2.2.2 Purkinje network model

The inclusion of the Purkinje network is critical to model correct excitation patterns. We create the network as a fractal tree that grows on the endocardial surface (36). By construction, branches of the tree repel one another and follow the gradient of the distance of all existing branches. We initialize tree growth at four anatomical locations, the right bundle branch, the left bundle branch, and the anterior and posterior fascicles of the left ventricle. The right ventricular septum is not covered by the Purkinje network since this region is known to activate from left to right. This results in a discretization with 39,772 linear cable elements, 39,842 nodes, and 795,440 internal variables. For these Purkinje elements, we developed a user element with a discrete version of equations (2) to (5). We only connect the Purkinje network to the ventricular tissue at the endpoints of the fractal tree (37). For these connections, we use 3,545 resistor elements with a resistance of 1.78 \(\Omega \text{m} \), i.e., \(\chi = 140 \text{ mm}^{-1} \) and \(C_m = 0.01 \mu \text{F/mm}^2 \) (17), between each endpoint of the network and the closest node of the ventricular mesh (38). This allows us to adopt distinct cellular models with different resting potentials for ventricular cells and Purkinje cells. Including resistor elements ensures a bi-directional conduction between Purkinje network and surrounding tissue. For the flux term, we choose a conductivity of \(D_{\text{iso}} = 3.0 \text{ mm}^2/\text{ms} \). Figure 2 illustrates how densely our discrete Purkinje fiber network covers the endocardium of the left and right ventricles.

2.2.3 Electrocardiogram Computation

To calculate pseudo electrocardiograms, at every point \(x \in B \) across the heart, we project the heart vector, \(\nabla \phi \), onto the direction vector, \(\nabla(1/||r||) \), and integrate this projection across the entire cardiac domain \(B \) (39, 16).

\[
\phi_e(x_e) = -\int_B \nabla \phi \cdot \nabla \frac{1}{||r||} dV \quad \text{with} \quad r = ||x_e - x||. \quad (8)
\]

The vector \(r \) points from current point \(x \) to the electrode position \(x_e \). To mimic one of the pre-cordial leads in the clinical electrocardiogram, we place the electrode 2 cm away from the left ventricular wall. This pre-cordial lead is commonly used to study T waves and QT intervals (40), which are critical to assess the risk of drug toxicity (41).
2.3 | Drug model

We model the effect of drugs on single cell action potentials by selectively blocking ionic currents (14). The degree of block of individual ion channels can be measured experimentally for varying drug concentrations using patch clamp electrophysiology. To estimate the fractional block β for a specific current at any given concentration C, we can fit a Hill-type equation to the discrete data points,

$$\beta = \frac{C^h}{IC_{50}^h + C^h}.$$ \hspace{1cm} (9)

The Hill-type equation has two parameters, the exponent h and the concentration IC_{50} required to achieve a 50% current block. To apply the drug, we scale all affected currents I in all epicardial, midwall, endocardial, and Purkinje cells by the fractional block β of the desired concentration C.

$$I_{\text{drug}} = [1 - \beta] I.$$ \hspace{1cm} (10)

Figure 3 illustrates the effects of the two drugs we consider within this study, ranolazine and quinidine. We follow recommendations by the CiPA initiative (14) and only model the effects on channels that are blocked by 10% and more: Ranolazine primarily blocks the rapid delayed rectifier potassium current I_{Kr} and the late component of the sodium current I_{Na} and quinidine primarily blocks the rapid and slow delayed rectifier potassium currents I_{Kr} and I_{Ks} and the transient outward potassium current I_{to}. Although ranolazine and quinidine also affect the fast and late sodium currents I_{Na} (42), the L-type calcium current $I_{Ca,L}$, and the inward rectifier potassium current I_{K1}, these effects are marginal at the free plasma concentrations we consider in this study (9, 14, 43). The graphs in Figure 3 illustrate the fractional block for varying concentrations, plotted on a logarithmic scale, normalized with respect to the free plasma concentrations of ranolazine, $C_{\text{max}} = 1948.2 \text{nM}$, and quinidine, $C_{\text{max}} = 842.9 \text{nM}$, as indicated by the dashed vertical lines at 1x. The dashed horizontal lines highlight the IC_{50} values. The solid lines represent the fitted Hill model with $h_{Kr} = 0.8$, $IC_{50Kr} = 6490 \text{nM}$, $h_{Na} = 0.9$, $IC_{50Na} = 842.9 \text{nM}$, and $IC_{50Ks} = 1948.2 \text{nM}$. The Hill curves are fitted using the Hill equation.

FIGURE 2 Finite element model of the left and right ventricles created from high resolution magnetic resonance images of a human heart (31). The ventricular wall is discretized with 6,878,459 regular linear hexagonal finite elements with an edge length of 0.3 mm, a total number of 7,519,918 nodes, and 268,259,901 internal variables. The Purkinje fiber network is discretized with 39,772 linear cable elements, a total number of 39,842 nodes, and 795,440 internal variables. It is connected to the ventricles at its terminals through 3,545 resistor elements. Epicardial, midwall, endocardial cells are marked in blue, green, and red; Purkinje cells are shown in white.
and IC_{50Na} = 7884 nM for ranolazine and h_{Kr} = 1.0, IC_{50Kr} = 343 nM, h_{Ks} = 1.3, IC_{50Ks} = 3487 nM, h_{to} = 4899, and IC_{50to} = 1.4 nM for quinidine, error bars represent the standard error mean (14).

Figure 3 illustrates the effects of ranolazine and quinidine on the transmembrane potential. The black lines represent the baseline action potential of epicardial cells without drugs and the yellow to red lines represent the modified action potential for normalized drug concentrations increasing from one to four. Ranolazine slightly prolongs the plateau of the action potential resulting in a moderate increase of the overall action potential duration. Quinidine markedly prolongs the plateau of the action potential and also increases its peak resulting in a significant increase of the overall action potential duration. At similar concentration levels, quinidine has a notably stronger effect on the action potential duration than ranolazine.

FIGURE 3 Effects of ranolazine and quinidine on different ionic currents. Ranolazine primarily blocks the rapid delayed rectifier potassium current \(I_{Kr} \) and the late component of the sodium current \(I_{Na} \). Quinidine primarily blocks the rapid and slow delayed rectifier potassium currents \(I_{Kr} \) and \(I_{Ks} \) and the transient outward potassium current \(I_{to} \). The concentration is plotted on a logarithmic scale and normalized with respect to the free plasma concentrations of ranolazine, 1948.2 nM, and quinidine, 842.9 nM, dashed vertical lines at 1x. Solid lines represent the fitted Hill model; error bars represent the standard error mean (14).

3 | RESULTS

To demonstrate the potential of our model, we explore the effects of the drugs ranolazine and quinidine on the activation patterns of the left and right ventricles. We first simulate the baseline electrophysiology without drugs and then apply either ranolazine or quinidine at their free plasma concentrations. In all three cases, we simulate a time window of 5,000 ms. We initialize the excitation by applying an initial external stimulus at the location of the atrio-ventricular node and then let the automaticity of the Purkinje network drive the following excitation cycles. Figures 5 to 7 show a posterior view of the spatio-temporal evolution of the transmembrane potential for the baseline case and the cases with ranolazine and quinidine. Blue colors represent the resting potential of the heart and red color represent the excited state. Figure 8 summarizes the three resulting electrocardiograms at the pre-cordial lead.

Figure 5 displays the evolution of the transmembrane potential for the baseline case without drugs. The snapshots are taken between the beginning of the QRS complex at 50 ms and the end of the T wave at 450 ms. During depolarization, from 0 ms to 100 ms, the Purkinje network drives the excitation from apex to base with a sharp depolarization front propagating across the heart. During repolarization, from 100 ms to 450 ms, both ventricles gradually return to their resting state. The Purkinje network paces the heart at 60.15 beats per minute and the displayed excitation pattern repeats itself identically every 1,000 ms, five times within the simulated time window of 5,000 ms. Figure 8, top row, confirms this observation with regular periodic activation patterns and no signs of arrhythmia.
FIGURE 4 Effects of ranolazine and quinidine on single cell action potential. By blocking the rapid delayed rectifier potassium current I_{Kr} and the late component of the sodium current I_{Na}, ranolazine prolongs the plateau of the action potential and moderately increases overall action potential duration. By blocking the rapid and slow delayed rectifier potassium currents I_{Kr} and I_{Ks} and the transient outward potassium current I_{to}, quinidine prolongs the plateau of the action potential and significantly increases overall action potential duration. Black lines represent the baseline action potential of epicardial cells without drugs, yellow to red lines represent the modified action potential for normalized drug concentrations varying between one and four.

The baseline electrocardiogram displays a well defined QRS complex and a positive T wave with a QT interval of 257.9 ms.

Figure 6 shows the evolution of the transmembrane potential for the case of ranolazine. The snapshots highlight the beginning of the QRS complex at 50 ms and the end of the T wave at 500 ms. During depolarization, from 0 ms to 100 ms, the Purkinje network drives the excitation from apex to base with a sharp depolarization front that propagates rapidly across the heart. From Figure 4, left, we know that ranolazine has virtually no effect on the upstroke of the single cell action potential during the first 100 ms of the cardiac cycle. This explains why the depolarization pattern with ranolazine is virtually identical to the baseline case without drugs in Figure 5. During repolarization, from 100 ms to 500 ms, both ventricles gradually return to their resting state. From Figure 4, left, we know that ranolazine slightly prolongs the plateau of the action potential and increases the overall action potential duration. This explains why the repolarization pattern with ranolazine takes 50 ms longer than for the baseline case. Similar to the baseline case, the displayed excitation pattern repeats itself identically every 1,000 ms, five times within the simulated time window of 5,000 ms. Figure 8, middle row, confirms this observation with regular periodic activation patterns and no signs of arrhythmia.

The ranolazine electrocardiogram displays a well defined QRS complex and a positive T wave with a prolonged QT interval of 308.1 ms, an increase of 19.4% compared to the baseline case with no drugs.

Figure 7 illustrates the evolution of the transmembrane potential for the case of quinidine. The snapshots are taken at the beginning of the QRS complex at 50 ms, at the end of depolarization at 100 ms, and then at every 1,000 ms. During depolarization, from 0 ms to 100 ms, the Purkinje network drives the excitation from apex to base with a sharp depolarization front propagating across the heart. From Figure 4, right, we know that quinidine has virtually no impact on the upstroke of the single cell action potential during the first 100 ms of the cardiac cycle. This explains why the initial depolarization with quinidine is similar to the cases with no drugs in Figure 5 and with ranolazine in Figure 6. From Figure 4, right, we know that quinidine significantly increases the plateau of the action potential of epicardial cells and, with it, the overall action potential duration. Figure 8, bottom row, illustrates how the prolonged action potential increases the QT interval to 460 ms, an increase of 78.4% compared to the baseline case with no drugs. This initial QT interval of 460 ms is considered a high risk factor for arrhythmias. Indeed, after 800 ms,
the propagation of the excitation wave becomes irregular and asynchronous and the heart is excited in chaotic patterns, from right to left, from base to apex, from left to right, and from apex to base, before the heart seems to return to its regular sinus rhythm after 4,200 ms. The rapid, widened irregular QRS complexes patterns that appear in the electrocardiogram are caused by a ventricular self-excitation that overwrites the regular activation of the Purkinje network, a characteristic hallmark of torsades de pointes.

Figure 10 summarizes the excitation profiles and electrocardiogram recordings for the baseline case without drugs and drug treatment with ranolazine and quinidine. The black arrows in the electrocardiograms indicate the time points of the ten excitation profiles of each sequence. Compared to the baseline case with a return to the resting state within 460 ms, drug treatment with ranolazine delays the repolarization period and the return to the resting state takes 505 ms. In both cases,
excitation is driven by the Purkinje network, with similar depolarization patterns that repeat themselves every 1,000 ms as highlighted in columns one, seven, eight, nine, and ten. Compared to the baseline case with five beats within the simulation window, drug treatment with quinidine spontaneously triggers a sequence of rapid, widened irregular QRS complexes with a total of nine activation peaks. Characteristic for torsades de pointes, the activation front varies from right to left, from base to apex, from left to right, and from apex to base. After 4,750 ms, the heart spontaneously returns to its resting state.

4 | DISCUSSION

The effects of drugs on single cell action potentials have been modeled and simulated extensively throughout the past decade; yet, it remains unclear how individual drugs affect the overall excitation pattern of the human heart. A major road block is the required computational power and storage to keep track of the underlying ion channel dynamics across the entire heart. In a collaborative effort, we have created a high resolution, high fidelity human heart model with 7,559,760 degrees of freedom and 269,055,341 internal variables to perform simulations throughout a time window of 5,000 ms at a spatial and temporal resolution of 0.3 mm and 0.005 ms. Each simulations runs 40 hours on a 160 processor cluster equipped with Intel Broadwell E5-2683v4 nodes. For post-processing, we only store the primary degree of freedom, the transmembrane potential at every node, at every 5 ms, which generates an output file of 29 GB. With an element size of 0.3 mm, our simulator has a high enough resolution to accurately capture
FIGURE 7 Evolution of the transmembrane potential with the drug quinidine. Snapshots are taken at the beginning of the QRS complex at 50 ms, at the end of depolarization at 100 ms, and at every 1,000 ms. During the first 100 ms, the Purkinje network drives the excitation from apex to base with a sharp depolarization front propagating across the heart, almost identical to the case without drugs. After a markedly prolonged QT interval, the propagation of the excitation wave becomes irregular and asynchronous. Excitation is no longer driven by the Purkinje network, but by excitation fronts that activate the heart in chaotic patterns, from right to left, from base to apex, from left to right, and from apex to base. These are characteristic features of torsades de pointes.

the electrical wave dynamics. Other recent studies have used resolutions of 0.2 mm (35), 0.4 mm (44), and 1.2 mm (41). We demonstrate the features of our model for the pro-arrhythmic risk assessment of two representative drugs of low and high risk, ranolazine and quinidine.

For the baseline case without drugs in Figure 5, our model predicts periodic activation patterns with distinct QRS complexes and positive T waves (45), which agree well with electrocardiograms of a healthy human heart (46). To validate the activation maps themselves, we could, for example, compare Figure 5 with high-resolution electroanatomic mappings of multispine bashed catheters (47).

For the low risk drug ranolazine in Figure 6, our model predicts periodic activation patterns with a moderate increase of the QT interval, which agrees well with electrocardiograms of ranolazine patients. QT intervals in ranolazine patients have been reported to increase by 6.1 ms to 9.2 ms (13) and 5% to 15% (48) compared to baseline. In ranolazine, two competing effects help explain the moderate prolongation of the QT interval and the low arrhythmic risk: Blocking the rapid delayed rectifier potassium current I_{Kr} increases the QT interval while blocking the late sodium current I_{NaL} decreases it (8). From Figure 3, left, we know that the fractional blocks at the free plasma concentration are quite similar, 27.7% for I_{Kr} and 22.2% for I_{NaL}, which could explain why ranolazine mildly affects the QT interval, but is classified as a low risk drug for torsades de pointes (49).

For the high risk compound quinidine in Figure 7, our model predicts a significantly prolonged QT interval followed by an episode of torsades de pointes (40). Indeed, our initial QT
FIGURE 8 Electrocardiogram recordings for baseline and drug treatment with ranolazine and quinidine. Signals are recorded at a pre-cordial lead located 2 cm from the left ventricular wall. The baseline and ranolazine electrocardiograms display regular periodic activation patterns at a heart rate of 60.15 beats per minute determined by the Purkinje fiber network. Ranolazine increases the QT interval by 50.2 ms compared to baseline. The quinidine electrocardiograms display a regular depolarization during the first 50 ms, followed by a significantly prolonged QT interval, which triggers a sequence of rapid, widened irregular QRS complexes before the heart returns to its regular rhythm, all characteristic features of torsades de pointes.

interval of 460 ms is considered a high risk factor for arrhythmias (50). Our results are in line with clinical reports that estimate the frequency of torsades de pointes during quinidine therapy between 2% and 8% (51). In quinidine, two reinforcing effects help explain the significant prolongation of the QT interval and the high arrhythmic risk: Blocking the rapid and slow delayed rectifier potassium currents I_{Kr} and I_{Ks} significantly increases the QT interval. From Figure 3, right, we know that the fractional blocks at the free plasma concentration are 71.1% for I_{Kr} and 7.9% for I_{Ks} (52), which explains why quinidine drastically increases the QT interval, and is classified as a high risk drug for torsades de pointes (8).

With our computational model, we can explain and interpret these electrocardiogram abnormalities by means of the underlying activation patterns in Figures 5 to 7. During torsades de pointes, distinct re-entrant waves of ventricular activation overwrite the regular sinus rhythm of the baseline activation in Figure 5. The ventricles re-excite themselves in chaotic patterns with sharp fronts that initiate from the right ventricle, the base, the left ventricle, and the apex, Figure 7, bottom row. As a result, the projection of the heart vector that defines the electrocardiogram trace in Figure 8 displays an irregular sequence of rapid, widened irregular QRS complexes (51, 53). These observations agree well with simulated reentry patterns in human ventricles in response to drugs (54), and with recent simulations of torsades de pointes in heterogeneous ventricles (55, 56). A unique asset of our multiscale computational model is that these abnormal macroscopic patterns emerge naturally from abnormalities on the microscopic scale. While previous computer models had to initiate re-entrant spiral waves artificially through an external stimulus in the repolarizing wave tail (16, 54, 57, 58) or trigger torsades de pointes through external pacing (55, 56), our model naturally predicts the spontaneous transition from a regular rhythm into ventricular tachycardia as a natural consequence of high risk drugs. Strikingly, our
model also predicts a spontaneous termination of the episode of torsades de pointes and a natural return to the resting state. While our predicted excitation patterns and electrocardiograms agree well with clinical observations, our current study has several limitations that point towards future improvements. In our simulations, first signs of ventricular tachycardia and torsades de pointes were already visible for quinidine at the free plasma concentration. In agreement with the literature (59), Figure 9 suggests that early afterdepolarization of midwall cells is a major contributing factor to torsadogenesis. However, recent studies have predicted the development of torsades de pointes for quinidine at normalized concentrations of ten rather than one (12). We attribute this discrepancy to the uncertainty in the current block measurements that critically impact how an individual drug affects the different ion channels in Figure 3. In a current follow-up study, we are currently characterizing the effects of current block variations using uncertainty quantification. This will provide a range of QT intervals for any given drug, which will allow us to better estimate the risk of torsades de pointes.

ACKNOWLEDGMENTS

This model was developed within the Living Heart project. We acknowledge the Zygote Media Group for providing the anatomic model and Dassault Systèmes SIMULIA, Uber Cloud, Advania, and Hewlett Packard Enterprise for providing the computational resources for our simulations. This study was supported by a Stanford Cardiovascular Institute seed grant and by the Becas Chile-Fulbright Fellowship to Francisco Sahli Costabal and by the National Institutes of Health Grant U01 HL119578 to Ellen Kuhl.

References

FIGURE 10 Excitation profiles and electrocardiogram recordings for baseline and drug treatment with ranolazine and quinidine. Black arrows in the electrocardiograms indicate the time points of the ten excitation profiles of each sequence. Compared to baseline with a return to the resting state within 460 ms, drug treatment with ranolazine delays the repolarization period and the return to the resting state takes 505 ms. In both cases, excitation is driven by the Purkinje network, with repeated, similar depolarization patterns every 1,000 ms. Drug treatment with quinidine triggers a sequence of rapid, widened irregular QRS complexes with varying activation fronts from right to left, from base to apex, from left to right, and from apex to base, before the heart returns to its resting state at 4,750 ms.

How cite this article: Sahli Costabal F., J. Yao and E. Kuhl, (2017), Predicting drug-induced arrhythmias by multiscale modeling.