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Microplane modelling of cohesive frictional
materials

E. Kuh!' and E. Ramm!

Abstract In the present paper, a constitutive model for cohesive frictional materials will
be derived, in which anisotropic elasto-plasticity coupled to anisotropic damage is taken into
account. The constitutive formulation is embedded in the framework of microplane theory. Con-
sequently, the basic constitutive laws are characterized on several individual material planes. The
homogenized response at one material point can thus be determined from the responses of all
these microplanes integrated over the solid angle. Special features of the new microplane for-
mulation will be diseussed in comparison to existing microplane models presented in literature.
One particular advantage of the microplane formulation presented herein is its close relation
bo macroscopic invariant-based models which enables the interpretation and identification of
the microplane parameters in lerms of macroscopically measurable quantities. The appropri-

ale cholee of the microplane parameters is illustrated for the model problem of Drucker—Prager
clagto-plasticity.

Keywords  microplane model, anisotropy, elasto—plasticity coupled te damage, micro-macro
relations

1 Introduction

The rapid development of computer technology in the past decades has provoked the
development of complex material models which account for material deterioration and
plastic effects not only in an igotropic but alse in an anisotropic sense, In this context,
the microplane model as a natural representative of anisotropic material models has at-
tracted increased attention only recently. It is based on the idea of characterizing the
response of a material point through the description of the behavior on various material
plancs in space. Consequently, complex three dimensional material formulations reduce
to easily interpretable two dimensional constitutive laws and the related parameters gain
an elementary physical interpretation. Moreover, material anisotropy is incorporated in-
trinsically through the consideration of individual independent material planes,

Although the basic concept of microplane modelling is more than a hundred years old
and originally goes back to MOHR [21], its computational realization in the context of
damage of cohesive frictional materials has been developed mainly in the past decade,
compare BAZANT & (GAMBAROVA [2), BAZANT & Prar [6], CAROL, BAZANT & PRrAT
[9] and CaRoOL, PRAT & BAZANT [11]. In order to guarantee a unique solution even in
the post-critical regime, a non—local version and a gradient—enhanced microplane damage
model were presented by BAZANT & OZsorr [4] and KunL, RaMM & DE BORsT (18],
respectively. Moreover, a first attempt has been made by CAROL & BAZANT (8] to apply
the basic concept to microplane plasticity as well. Only recently, the microplane model
has been embedded into a thermodynamically consistent framework by CAROL, JIRASEK
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& BaZANT [10] and JIRASEK [14]. The growing interest in microplane modelling has led
to various classes of microplane models each having its own advantages and disadvantages.
In this paper, we would like to point out the differences of the individual formulations and
suggest a class of models which is closely related to well-known macroscopic constitutive
models. Consequently, the formulation can profit from a wide range of experiences made
with classical macroscopic material formulations however keeping its freedom to model
even more complex constitutive behavior.

This paper is crganized as follows. In the second section, the basic equations of a contin-
uous microplane plasticity formulation coupled to microplane damage are derived. Their
algorithmic realization based on a spatial and temporal discretization is briefly summa-
rized. Thereby, the underlying class of microplane models is based on three microplane
components, namely a normal volumetric, a normal deviatoric and a tangential one. On
each microplane, the elastic domain is bounded by a damage loading surface in the mi-
croplane strain space and a plastic yield surface in the microplane stress space. In the
third section, an alternative class of microplane models based on only two microplane
components is discussed. The advantages and disadvantages of the two—component ap-
proach in comparison to the three-component model are illustrated in the context of
microplane elasticity. In the fourth section, yet another alternative class of microplane
models is introduced.- In contrast to the basic model, this class is based on the intro-
duction of independent loading functions for each individual microplane component, thus
introducing a multiple loading surface formulation on each microplane. A comparison of
the plane-wise single surface and the multiple surface formulation is given in the context
of microplane damage. Section five deals with a comparison of microplane-based mate-
rial models with well-known macroscopic invariant-based constitutive formulations. As a
result of this comparison, the microplane parameters can easily be related to their macro-
scopic counterparts. The appropriate choice of the microplane parameters is illustrated
for a DRUCKER-PRAGER plasticity formulation. Finally, the microplane-based approach
and the classical macroscopic formulation are compared by means of the model problem
of a plate with a hole. It should be mentioned, that this article represents the actual
state of work and most of the research is still in progress. This is the reason why the final
example is restricted to pressure-insenmsitive metallic materials. However, the extension
to pressure-sensitive materials like concrete is planned for the future.

2 Microplane elasto—plasticity coupled to damage

2.1 Continuous formulation

In the present section, a thermodynamically consistent microplane model for elasto—
plastically damaging materials will be derived. Its underlying kinematic constraint is
based on three microplane components, namely the volumetric, the deviatoric and the
tangential microplane strains ey, ep and ep. They can be derived as projections of the
overall strain tensor €, which corresponds to the symmetric part of the displacement
gradient € = V*™uy in the geometrically linear case. Consequently,

ev=V:ie ep=D:e e =T:¢ (1)
whereby the individual projection tensors V', D and T

1 1
Vzgl D=n®n—§1 T=n-ITV-n®@nen (2)
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Figure 1: Microplane elasto-plasticity coupled to damage

can be expressed exclusively in terms of the plane’s normal n, the second order unit
tensor 1 with the components d;; and the symmetric part of the fourth order unit tensor
Z°¥ with the components [5;, §;;+4; d;x] / 2. When restricting the formulation to a small

strain setting, an additive decomposition of the microplane strains into elastic and

plastic
contributions

Cv=epte, ep=ehte, er=eh+el (3)

can be assumed. On each microplane, a free energy U™ is introduced as a function of
the total strains and a set of internal variables g, such that W™ = ¥me (e, ¢ en, q).
In case of clasto—plasticity coupled to damage, the set of internal variables is composed
of the plastic microplane strains as well as a scalar—valued plastic hardening variable #?
and one common damage variable d for all strain components, g = [é},, €, €}, 5P, d]. The

free energy can thus be specified in the following form

, , , 1 L
U= [ - dUTE with T = [ &y e+ e Epch + e Eped] + f @di, (4)
a

whereby &y, £, and £ denote the volumetric, the deviatoric and the tangential mi-
croplane elasticity modulus, respectively. Note, that in general, tangential elasticity would
be characterized through a second order tensor £7. The special choice of Er=Ep1 ap-
plied herein is based on the assumption of microplane isotropy. Consequently, the three
microplane stresses oy, op and o can be introduced as energetically conjugate quantities
to the related strain components

Jimic . . .

oy = 65V oy = [1 - Cl] gV [EV - C:?/]
gyic ) . .

o = op = [L-d|€pép — &) (5)
i .

or = Jen or = [l~d&plér —ép)

while the yield stress ¢ is introduced .as conjugate quantity to the plastic hardening

variable kP )
Jmic

Po— _

¢ OKP
whereby H? denotes the plastic hardening modulus. The undamaged energy I*™c de-
noted by ¥ can be understood as conjugate quantity to the damage variable

B B\I,mic
od

qu =H? k'pw (6)

Y = - ‘Ij*mic. (7)
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Moreover, the scalar product of the partial derivative of the free energy with respect
to the set of internal variables with the evolution of the internal variables themselves is
introduced as microscopic dissipation D™ with
. aq,mzc

D = “ g xg=Yd+oy & +opé +op & — PP (8)
The process of damage evolution is governed by a damage loading function ®? which
is introduced as the difference of a function ¢@ of the damage driving force ¥ and the
damage variable d as a function of a history parameter x¢.

3 = ¢4(Y) — d(?) (%)

In this case, ®¢ is defined in an energy-based fashion according to SiMO & JU [23], but of
course alternative strain— and stress—based formulations could be thought of as well. Note,
however, that stress—based formulations seem to be physically inadequate when plastic
effects are incorporated as stated by Ju [15]. The classical KUEN-TUCKER conditions
and the consistency condition take the following form

<0 9f20 dit=0 d4d=0, (10)

whereby 4% denotes & damage multiplier. The evaluation of the consistency condition
yields the equivalence of this damage multiplier and the rate of the damage driving force
Y, such that ¥ = 44. In case of a monotonic function ¢¢, the calculation of the damage
variable thus reduces to the following simple format

d

d=¢*rx%  with & —Mglgg‘iT(Y(t), k) and  HY:= g—iz, (11)
with «# denoting a damage threshold value. From a physical point of view, the material
is damaged through the formation of microcracks and microvoids. Thus, the effective
stresses in the remaining material are higher than the nominal stresses and plastic yielding
will start remarkably earlier than in the undamaged material. Accordingly, microplane
plasticity is formulated in the effective stress space, whereby the effective microplane

stresses can be understood as the nominal stresses weighted by the undamaged area
fraction [1 — d] such that

Oy =

ay ~ op ) or
1-d “PT1-q 9TTI1=g
Plastic yielding on the microplane is governed by a yield function ®, which is introduced
as the difference of an equivalent stress ¢? and the yield stress ¢

= ¢ (Bv,Gp, ) — ¢F(KP). | (13)

In the following, the normals to the yield surface ®¢ in the effective stress space will be
denoted by 7y, 7p and pp

(12)

taliodg - 0P oor

by = — Up = Up =
BO'V 6ch

. 14
0&p (14)
In a general non-—associated plasticity formulation, these normals can be different from

the directions of plastic flow fiv, ip and ji; which can be understood as normals to a
plastic potential ®** with

BOP 8T o
T

By =

b5y (15)
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The plastic flow rules and the evolution of the plastic hardening parameter #? can thus
be expressed in terms of these flow directions and the plastic multiplier AP

&=Fhv &H=vip S=ywp, = (16)
The related KunN-TUCKER conditions and the consistency condition
<0 P20 WP=0  GPar=g (an

govern the loading-unloading process, whereby the latter defines the plastic multiplier *
: 1.
fyf’m—h;[uVEVV+17D8DD+aT-5T-T]:é, (18)

with h? == Dy Ey Dy + Tp &p Ap+ D7 Er oy + HP, The macroscopic response can be
determined by making use of the following fundamental assumption according to CAROL,
JIRASEK & BAZANT [10]

3 )
\Ifmac — ﬂ[zwmzcdﬂ, (19)

which relates the macroscopic free energy U™ to the integral of all microplane energies
U™ie gver the solid angle £2. Consequently, the overall stress tensor o can be derived
by evaluating the second principle of thermodynamics in form of the GLAUSTUS-DUHEM
mequality as o := W™ / e. With the help of the definition of the microscopic stresses
(5), the evolution of the macroscopic stresses can be written as

&:%f{l—d] VEvley—&)+DéEplip— &) +T7 - & [er — €] d. (20)
: Q

Moreover, the macroscopic dissipation

DM — 4% D™ 40 > 0 (21)
1]

and the overall tangent operator of microplane elasto—plasticity coupled to damage E® .=
do / de can be expressed as follows

Eiin =;§; /[1 ~ d] £V ®V +EpDOD +&TT - T a0
,..2%; ]til;—d [Vé'vﬁv +DéEpfip +T7 ST[LT]®[EV£VV + pEpD + by - EpT]dQY
“f’; L ‘ [Vay + Dap + T - or|®[eyV +6pD + o - T 0

;S? !;H;Z)w (Vo + Dop + TT - o] ®@[PvéyV + 0pEp D + br - E4T]dQ,

(22)
whereby ¢*? = Gy fiy + &p Jip + & - ip + ¢°. Note that the first row of equation (22)
represents the elastic material operator multiplied by {1 —d]. The combination of the first
and the second row characterizes the elasto-plastic tangent operator, again multiplied by
[1 — d], while the combination of the first and third row denotes the tangent opf.arator of
microplane-based elagto-damage. The last row takes into account the contributions due
to plastic-damage coupling.
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2.2 Algorithmic formulation

In the continuous formulation described in the previous section, the homogenization pro-
cedure is based on an integration over the solid angle Q. Tn the computational algorithm,
however, this integration is performed numerically by replacing each integral expression by
a discrete sum as [;(o) d2 & Y777 (o) w!. The related integrants (o) are thus evaluated
at I =1, .., ny, discrete integration points and weighted hy the corresponding weighting
coefficients w’. In the context of the microplane model, each of these integration points
corresponds to one discrete microplane.

In addition to the spatial discretization of the solid angle, a temporal discretization has
to be performed by dividing the time interval of interest into n = 1, .., Nytep discrete time
steps. The computational solution procedure for the rate equations of elasto-plastic dam-~
aging materials is embedded in a three-step operator split algorithm. This algorithm,
which is composed of an elastic predictor and a plastic and damage corrector step, has
originally been proposed by Ju [15] for isotropic elasto~plastic damaging materials. As
the spatial interaction of the individual microplanes has been assumed to be negligibly
small, this three—step operator split algorithm can be applied on the microplane level
independently for each microplane. -
Therefore, it is assumed, that at the beginning of each time step ¢*, the values of the in-
ternal variables ", &, €, k*® and x%" of each microplane as well as the overall strain
and stress tensor €* and o are known. Moreover, the incremental displacement field Aw
and accordingly, the update of the strain tensor €*! = ¢* 4+ Ae with Ae = AV are
assumed to be given. In the first step of the algorithm, an elastic trial state is calculated,
for which the strain increment Ae is assumed to be completely elastic and

M =Vie—d" o p.e_ eh =T e &M (23)
Consequently, the related values of the plastic strains
ial trial ial
E;f/trm — EI‘J[TI. EpDTLﬂ. — E%n Egﬂt?"la — eg‘ﬂ- (24)
and the internal variables xPirial g kdiriel
/ﬂpt'rml = KPP and ﬁ:d triel . K,dn (25)

are identical to their values of the beginning of the time step and diel = ¢%(ktiel), The
resulting trial stresses

trial trial trial trial i i ; 4 1
U.‘;-m = [1 — (tria ]Svef,”“ O_Dm = [1 . dtrml]gDE%trml o_:tlfwl — [1 _ dtnal]gTE%trml

and the effective trial stresses can thus be expressed as follows 29
Firial _ UTt/rm_ Firial _ Ugm' _ Firial _ 7 52@"”. _ (27)
1 — gtrial b 1 — (Jtriat T 1 — (irial
In the second step, the plastic yield function
QP triol _ PP (Giial il Glrialy _ P (1P trial) (28)

is evaluated on the basis of the elastic trial values, If $ptial < 0, the current step is non—
plastic and consequently, the plastic variables at the end of the time step are identical to
their trial values and (e)?"+! = (o)pirial However, if §Ptil = 0, the KUuN-TUCKER
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conditions are viola;_ted and a plastic corrector step has to be performed to return the trial
:cg'l;a,'(;e back to the. yield s.ur.fa,ce. The plastic corrector is based on the calculation of the
incremental plastic multiplier A4? which determines the update of the plastic straing

P+l _ pirial AnP O@*® el ptrial A 0P pirial ae*r
v =€y ~nF1 tp = = T
Dy P Vo T T A
29
the hardening variable (@)
H[P'n-i—l — Klptrml _|_A,Yp (30)
and the effective stress state
. oPp*P . bl *
=n+1 __ =irial ] —n-1 =trial . 71 — bri 6(1) y
O’% =0y SVA")’ - aJd = —8DA P ol _ glriacl p 2T
gatt OP b T ognr T T Ay e
. (31)
With the help of these variables, the current energy release rate
1 : =
yntl 5 [E€In+L£V€$fn+1 + 6%n+1806%n+1 + Eg‘n+1 . gTe%n-{-l] +/ ¢p dpprtl (32)
0 .

can be calculated as driving force for the evolution of damage. Finally, the third step can
be performed based on the evaluation of the damage loading function

Qéiial — gaeyintly _ g cdirialy (33)

If deiriel < 0, the current step is non-damaging and the damage variables are identical
to their trial values as (e)™+! = (e)dirial It §dtrict & () 5 damage corrector step has to
be performed to return the trial state back to the damage loading surface. In this case,
the update of the damage variable can be calculated explicitly as

dn+1 — qﬁ(ﬁ;d"H) With K’dn+1 =~°I£3§T(Yn+l’ md)' (34)

Accordingly, the nominal stresses at the end of the time step can be calculated as follows
ot =[1—-d"eptt OB =1 - "ttt o =1 — gttt (35)

Note, that although plasticity and damage are coupled in the continuous rate equations of
section 2.1, the operator split renders a fully decoupled elasto—plastic damage algorithm.
Finally, the overall stress tensor can be calculated as the sum over all T = 1, .., ny,, discrete
microplane stresses weighted by their individual projection tensors V¥, D! and TV and
multiplied by the corresponding weighting coefficients w’ as

Nmp ,
a.'n.‘l-l — Z [VIO'{;H+1 -+ _DIO{)H—:-I + TIT . 0'51”-(-1] ‘LUI. (36)
I=1

2.3 Model problem - Uniaxial tension

The basic features of the proposed model of microplane elasto-plasticity coupled to dam-
age will now be elaborated with the help of an academic model problem. Therefore,
the homogeneous response of a single 1 mm? large eight-noded finite element is ana-
lyzed under uniaxial tension. The elastic parameters are chosen as E=30000 N/mm? and
v = 0.2. With the assumption of £p = 0 N/mm? the remaining microplane elastic-
ity parameters take the values & = 50000 N/mm? and & = 41666.67 N/mm? The
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evolution of damage is governed by the damage loading function, &4 = ¢¢ — d with
¢¢ = 1 — s/ki[1 — o + o’ exp|B[x§ — x7]]] defining an exponential damage growth.
The related damage threshold value x¢ = 0.0005 N/mm?, the ratio of maximum damage
a? = 0.90 and the parameter ¢ = 100 [N/mm?|~! take the given values. Moreover,
the plastic yield function @7 = ¢ — ¢* is defined through the following equivalent stress
of DRUCKER-PRAGER type ¢? = ||op|| + oPoy and the yield stress ¢f = o} + HP &P
Thereby, the initial yield stress o} = 15 N/mm? and the hardening parameter H” = 10
N /mm? define a linear hardening behavior. The friction coefficient o is chosen as of = 1.0
to introduce a volumetric deviatoric coupling on the microplane level, An associated flow
rule with @*? = ®F is assumed.

lloz] [N/mm?|MICROPLANE RESPONSE | | o/[N/mm?] MACROSCOPIC RESPONSE
8.0 Ny 8.0

6.0- 6.0 -

4.0+ 4.0 1

2.0 2.0 1

0.0

T 1 T 1 T 040| T T T 1 T
0.00 0.05 0.10 0.150.20 ||er||[%) 0.00 0.05 0.10 0.15 020 ¢[%]

Figure 2: Microscopic and macroscopic response — Uniaxial tension

Figure 2, left, shows the response on the microplane level which is defined through the
choice of microplane laws and parameters. For the sake of transparency, only the tan-
gential stress strain behavior of one particular microplane is illustrated. The related
volumetric stress strain curve shows a similar behavior with a peak stress of about 2.0
N/mm?2. Obviously, for the given set of parameters, in first stage, the inelastic response
is dominated by damage only. The first unloading branch returns straight to the origin
without showing any irreversible strains. Under further loading, however, the inelastic
material behavior is clearly governed by a combination of damage and plasticity. Con-
sequently, during the following unloading cycles, stiffness degradation as well as inelastic
strains can be observed. The highly anisotropic distribution of the plastic multiplier 4?
is sketched in the small figure inside the diagram. The amount of plastic straining ap-
parently takes maximum values under approximately 45° towards the loading direction.
Figure 2, right, documents the macroscopic response on the material point level as a
result of the spatial integration of all microplane responses. The macroscopic stress com-
ponent in the loading direction is plotted versus the related strain component. Note, that
the macroscopic peak stress is remarkably higher, than the tangential peak stress on the
microplane level. This difference is obviously caused by the volumetric stresses which
also contribute to the macroscopic response. Nevertheless, the shape of the overall stress
strain curve is similar to the response on the microplane level. Again, the onset of damage
takes place before plastic effects can be observed. In a later stage, the overall response is
governed by a combination of damage and plasticity, as expected.



Microplane modelling of cohesive frictional materials

3 Microplane elasticity:
Choice of relevant microplane components

In this section, the counstitutive equations presented in the previous section will be re-
stricted to microplane elasticity, for which no internal variables are needed. Consequently,
the microscopic and the macroscopic dissipation vanish identically with D™¢ = ( and thus
Dmac = (). 'While in the first part of this section, a volumetric—deviatoric-tangential model
will be presented which can be considered as a special case of the basic model introduced
in section 2.1 the second part will be dedicated to an alternative microplane formulation,
for which the volumetric and the deviatoric component have been summarized in only
one normal component ey with ey = ey + ¢5. The second model thus represents the
most natural choice of microplane variables based on only two components. Finally, the
volumetric—deviatoric-tangential model and the normal-tangential model will be com-
pared and discussed by means of their features and ranges of application.

3.1 Volumetric-deviatoric—tangential model

As indicated in figure 3 and used already in section 2, the first microplane elasticity
formulation will be based on three microplane strain components, namely a scalar-valued

MICROSCOPIC STRAINS MICROSCOPIC STRESSES

Figure 3: Model with volumetric, deviatoric and tangential microplane components

volumetric and deviatoric strain component associated with the direction normal to the
plane and a tangential strain vector lying in the plane of consideration

ev=V:e ep=D:e e=T:e (37)

Consequently, the strain vector of the related plane can be expressed ast = [ ey +ep | n+
er. The volumetric, deviatoric and tangential projection tensor are given as follows

V:%l D:n®n—%1 T=n-I%" —-n@nen, (38)

whereby their fourth order products show the following integration properties when inte-
grated analytically over the solid angle ), compare LuBARDA & KRrRAJCINOVIC [20] and
KANATANI [16]

L VeV d = Iv

L D@D do = :I% (39)
i — 3 7de :

f’;erTl-TdQ—BI”
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Herein, 7% = 1 ® 1 denotes the volumetric part of the fourth order unit tensor, while
Tdev — T — Tl denotes its deviatoric part. A purely elastic material behavior can be
characterized exclusively in terms of the microplane strains, such that the free energy of
each microplane can be specified as follows,

. 1 1 1
‘I’TMC:-Q*GVEV Ev+§61) Ep ED+§ET'5T €T. (40)
whereby &, £p and £, denote the volumetric, the deviatoric and the tangential elasticity
modulus, respectively. The free energy defines the microplane stresses as energetically
conjugate quantities to the microplane strains as

oy =&y €y op:=Epep op =&y er, (41)

and the related stress vector #, results as t, = [oy + op]n + or. The general definition
of the macroscopic stress tensor (20) thus reduces to

=%/ngév-*-Dgpép”i—TT'gTGTdQ, ) (42)
Q

while the overall tangent moduli of equation (22) reduce to the following expression for
the elastic moduli

:%/SVV@)VMDD@DMTTT.TM (43)
Q

By assuming an isotropic distribution of the elastic constants &£y, £, and £r and making
use of the integration formulae (39), the above equation can be evaluated analytically
and compared with the elasticity tensor of HOOKE’s law. This comparison results in
the following relations between the elastic microplane moduli &y, £, and £5 and the
macroscopic elastic bulk and shear modulus K and G with

£, =3K  and 8D+8T=%QG. (44)

Remarks on the volumetric-deviatoric-tangential models

¢ The determination of three elastic microplane moduli &y, £, and £p in terms of only
two elastic constants, for example K and G, is non—unique. Equation (44) documents,
that either £, or £ can be chosen independently. However, in any case, the volumetric
modulus has to be related to the bulk modulus while both deviatoric moduli can be

expressed exclusively in terms of the shear modulus. This is what one intuitively
expects.

e An advantage of this class of models is, that the whole range of POISSON’s ratio
-1 € v < 0.5 can be covered with positive microplane moduli &, > 0, &, > 0
and Ep > 0, as discussed in detail by CAROL & BAZANT [8].

o In the volumetric-deviatoric-tangential model, the individual stress and strain compo-
nents ey and oy, €p and op, € and o have been introduced as energetically conjugate
pairs through equation {41). Consequently, the volumetric and the deviatoric behavior
can be controlled independently. However, in general it is not possible, to characterize
the overall stress tensor o in terms of the stress vectors t,, and o # £ [, [t @n}*™dQ.
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¢ Note, that the original microplane model of BAZANT & PRAT [6] is based on an al-
ternative homogenization procedure. It induces an artificial coupling of the normal
volumetric and the normal deviatoric component, since the overall stress tensor is in-
troduced as o0 = - [[t; ® n]**™dQ. However, their formulation, which does not
include any work conjugate pairs of microplane strains and stresses, is thermodynam-
ically inconsistent and may result in non-symmetric material operators.

* The microplane model of FICHANT, LA BORDERIE & P1IAUDIER-CABOT [12] which
takes into account different damage laws for the volumetric and the deviatoric behavior,
can be understood as a special case of this class of models by setting £, = 0. Moreover,
with the assumption of £, = 0, specific representatives of this class of models can be

related to macroscopic constitutive formulations based on invariant representations as
shown by KUHL, RAMM & WiLLAM [19].

3.2 Normal-tangential models

In this section, we will discuss the most natural type of microplane formulation which
is based on only two microplane components, namely a scalar—valued quantity ey and a
tangential vector €y, as illustrated in figure 4. Note, that the normal strain component

MICROSCOPIC STRAINS MICROSCOPIC STRESSES

EN tE

Figure 4: Model with normal and tangential microplane components

can be understood as the sum of the volumetric and the deviatoric strains introduced in
equation (37), such that ey = ey +€ep. In case of a kinematically constraint microplane
formulation, the normal and the tangential strain component can be determined as normal
and tangential projections of the strain vector ¢, = € - n with

en=N:¢€ er=T:¢ (45)

and consequently ¢, = ey n -+ ep. Hereby, N and T denote the second and third order
projection tensor

N=n@n T=n-I%-n@n@n (46)
and the related analytical integration of their corresponding fourth order products yields
the following results

3 — 12

an NN di = I”"-i—gI:” (47
— 3 ev
71?;? o ITT - T d2 = A

Correspondingly, the free energy function on the microplane is introduced exclusively in
terms of the two strain components and the related elastic microplane moduli £y and &p

. 1
\:[Imwz-%- en EN EN+§ET’£T €. (48)
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The normal and tangential stress component oy and o can be introduced as energetically
conjugate quantities to the corresponding strains with

oN 1= SN EN or = ST €T (49)

and the related stress vector ¢, on the microplane can be expressed as t;, = ony n + o7
Note, however, that oy is not necessarily identical to the normal stresses of the previous
model defined through the sum of the volumetric and the deviatoric components oy and
op as oy # oy +op. The two-component analogue to the overall stress definition given
in equation (42) can thus be expressed as

JIE—/NSNEN-l-TT'STETdQ. (50)
4ar 0

while the elastic material operator of the two-component model can be expressed in
analogy to equation (43)

SEE/ENN®N+£TTT-TOIQ. (51)
4’1T Q .

With the help of the integration formulae (47) and the assumption of an isotropic distri-
bution of the microplane elasticity moduli, a comparison of the coefficients of the elasticity
tensor (51) with the elasticity tensor of HOOK®’s law yields a relation between the micro-
scopic elasticity moduli £y and &, and the macroscopic bulk and shear modulus K and
G as ,
10
Ey=3K and 8T=?G—2K. (52)

Remarks on the normal-tangential models

e Note, that for this class of models, the relation between the two elastic constants
and the two elastic microplane moduli £, and &, is unique, as shown in equation
(52). However, it should be mentioned, that the elastic tangential behavior is somehow
related to the bulk modulus K, which is not what one intuitively expects.

o The range of validity of this class of microplane models is physically limited to positive
elastic microplane moduli, such that £, > 0 and £ > 0. According to equation (52),
the model is thus restricted to materials for which G > 2 K which corresponds to an
artificial limitation of POISSON’S ratio to a range of —1 < v < 0.25.

¢ For this class of microplane models, the overall stress o can be expressed as the integral
of the symmetric part of the dyadic product of the stress vector ¢, with the plane’s
normal n. Consequently, the macroscopic stress definition (50} can alternatively be
expressed as o = = [ [t, ® n]*™dQ. The class of microplane models introduced by
JIRASEK [14], which have been derived in a different context, can thus be understood
as a subclass of these models. Moreover, this model is identical to the microplane
models without volumetric-deviatoric split as discussed by CAROL & BAZANT [8).

e The microplane model with normal and tangential components represents the most
natural microplane formulation. Since this is the type of model one would intuitively
think of, its equations show a remarkable similarity with the well-known rotating and
fixed crack models as shown by DE BoOrsT, GEERS, KUHL & PEERLINGS [7] and with

discrete particle models as discussed by KuHL, D’ADDETTA, HERRMANN & RAMM
[17].
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3.3 Comparison

A comparison of the two different clagses of microplane models is shown in table 3. It
documents, that the model with only one normal component

: as introduced in section 3.2
shows several disadvant

. ages. Theirefore, the following discussions will be restricted on the
first type of microplane formulations, which are hased on & volumetric deviatoric split of

the normal component, as introduced in section 2.1 and specified in section 3.1.

volume'tric—deviatoric~tangential

normal~tangential

clastic constants

non-unique
Ey = 3K
813 + gT = 10 / 3 G

uniquely determined
Ey = 3K
Ep = 10/3G—-2K

coupling

fully decoupled
Ev volumetric

Ep,Ep deviatoric

~ artificially coupled

£y volumetric

£ volumetric & deviatoric

range of validity

Po1sson’s ratio unlimited
—-1<v <05

POISSON’s ratio liﬁlited
~1< <025

overall stresses

different from original models
compare [2], [6], [11]

3
sym
o # ym /[t,,@n] d$

similar to previous models

compare [8]

3
—_ sym
a—4ﬂ./[ta®n] 40

closely related

to discre_te models

to macroscopic models

Table 3: Comparison of normal-tangential with volumetric-deviatoric-tangential models

4 Microplane damage:
Choice of damage loading functions

In the context of the kinematic constraint, the microplane theory has almost exclu-
sively been applied to elasto-damaging materials, compare BAZANT & GAMBAROVA [2],
BAZANT & PRrAT [6] and CAROL, PRAT & BAZANT [11] for example. In this section, we
will therefore recuce the generalized microplane formulation of section 2.1 to a microplane-
based continuum damage model, for which the dissipative influence of plastic deformation
is negligibly small. In accordance with the previous section on microplane elasticity, we
will first demonstrate, how a microplane damage formulation can be extracted from the
equations presented in section 2.1. The resulting formulation will thus be based on the
introduction of only one damage variable d for each microplane which is governed by a
single damage loading function ®%. In the second part of this section, however, we will
discuss an alternative damage model, for which three independent damage variables dy,
dp and dr are introduced taking into account an independent degradation of the volu-
metric, the deviatoric and the tangential stiffness. Most existing microplane formulations
belong to this class of models, for which three independent damage loading functions &%,
®% and $% have to be introduced. Finally, the two different strategies will be compared
and discussed with special focus on the efficiency and numerical stability of the related
algorithimic realization.
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4.1 Single loading function model

The first microplane damage model is characterized through only one damage variable d
introducing an equivalent degradation of the volumetric, the deviatoric and the tangential
microplane stiffness. The related free energy

- J- 1 [
P = [1 — d] Bevaev+§eDSDeD+§€T'ETET (53)

defines the corresponding nominal stresses
ovi=[1~déey op:=[l~dépep or:=[1-dEer (54)

and the driving force for the damage evolution

1 1 1
Y;:ievgvév—l--2-6D£D€D+§6T'ETET' (55)

Thus, the elastic domain is bounded by a single damage loading function %
@4 = g9 (¥) — d () - (56)

which induces a volumetric—deviatoric coupling in the inelastic regime. The corregponding
KuHN-TUCKER conditions and the consistency condition

< 0 >0 ot ft = 0 P it= 0 (57)

define the loading-unloading conditions. The consistency condition yields the equivalence
Y =4 which allows for an explicit update formula for the damage variable, as

d=¢*(xk%)  with k= max (V{t),xd). (58)

—eoltlT

Consequently, the overall stress tensor

3

o= [1-d[& VOV +E DOD+ETT - T]d: e (59)
Q

and the tangent operator take the following form

3
87311:;1;/ L1-d[&VeV+EDeoD+ 6T T) o
Q
_3 _&id [Voy + Dop +T7 . o] ® lovV +o0pD + op - T dQ o0
4qr Q Ard 1—d 1-4d .

Remarks on the one damage parameter model

o The structure of the overall tangent operator (60) indicates, that a volumetric—
deviatoric coupling has heen introduced through the damage loading function ma-
nifesting itself in the second integral expression. This coupling is an essential feature
to model the pressure—sensitive behavior of cohesive frictional materials.

In the numerical computation, the model requires the relatively low storage of one
history parameter % for each microplane.

Numerical calculations have shown, that the choice of only one loading function leads
to a computationally stable and robust nnmerical calculation procedure.
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4.2 Multiple loading function model

In the original microplane formulation, the damage behavior is controlled separately for
eac@ component, Conselquen’dy7 three individual damage variables dy, dp and dr have to
be introduced and the free energy can be expressed in the following form

\Ifmic — [

1 1
1 —dV]§€V8V5V+[1—dD]-2-€D€DED+[1—dT]%ET-STGT. (61)

It defines the microplane stresses

ay = [1 - dv] EVEV op = [1 - dD] SDGD gr = [1 - dT] STET (62)
and the three conjugate quantities to the damage variables as

1 1 1
YV = EEV SV ty YD = 561) ED €p YT = ~2“€'p . 8T €. (63)

Furthermore, three different damage loading functions
Oy = Y (V) —dv(sf)  h=¢h(¥p)—dplkb) % = gi(¥r) dr(xy) (64)

have to be introduced. The loading process is thus governed by the three sets of Kuan-
TUCKER loading-unloading conditions and the related consistency conditions

B, < 0 kL >0 ®% il = 0 B¢ kd =0
4 < 0 kb > 0 3¢ kb =0 & kh =0 (65)
DL < 0 kg > 0 8L ih = 0 e ks = 0,

which can be evaluated independently yielding the following update formulae for the
damage variables

dy = ﬁir(fﬁg/) dp = ¢(1i) (K’%) dp = ¢%(Kig‘), (66)

whereby the three history parameters %, k% and x% are defined as follows
4 , d A d
wy = max (Vy(t),she) kb =max (Yo(t)spe) % = max (¥r(t),rfo). (67)

—ca< i<

Consequently, the overall stress tensor o
AT J0

and the overall tangent operator £ can be expressed in the following form

tan
sggnzf_/ [l—dv]e, VOV+ [-dpléy DD +T% [1—drl€y T d0
9 2 d
3 [8¢% % 8¢%  o% r 0¢far®@or
30 oy, 0 D@D+ 17 2PrIT8T 1y
pred) e R N (g Bk T = dg?

(69)
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Remarks on the three damage parameter model

The structure of the tangent operator (69) documents, that due to the introduction
of three individual damage variables, the volumetric, the deviatoric and the tangential
component remain decoupled even in the inelastic regime. From a physical point of
view, this assumption does not seem reasonable especially when modelling pressure—
sensitive materials. It has been shown, that models based on a complete decoupling
are unable to simulate the behavior of cohesive frictional materials such as concrete,
compare for example BAZANT & PLANAS [5] or OZBOLT & BAZANT [22].

Since the volumetric material response is only influenced by the volumetric strain state,
it is identical for each microplane. The volumetric response can thus be calculated
globally independent from the deviatoric material behavior.

Irom a computational point of view, the model with three damage variables requires
a relatively high storage. In addition to the global volumetric history parameter gy,
a deviatoric and a tangential history parameter kp and kr need to be stored for each
microplane, compare CAROL & BAZANT [8].

During numerically simunlated loading processes, an artificial unloading-reloading has
been observed especially for the deviatoric and the tangential component. This in-
stability seems to be caused by the fact, that both components affect the deviatoric
material behavior.

4.3 Comparison

one loading function- three loading functions
) all components identical each component individually
degradation . )
d one single variable dv,dp, dr three variables
inelastically coupled fully decoupled
of = 0 (ev)
coupling D¢ = ®(ey, ¢p, €r) Y = (I)%(GD)
0 = ®f.(er)
acceptable relatively large
storage k¢ globally
k% for each microplane rh, ké for each microplane
L all materials including o5t
application 1nc uding restricted to
pressure—sensitive materials pressure—insensitive materials

Table 6: Comparison of models with single loading function and multiple loading functions

It has been shown, that the second class of models which is based on the introduction
of several independent loading functions is more expensive from a computational point
of view. It requires the storage of a large number of internal variables. However. it
is unable to characterize the behavior of pressure-sensitive materials and moreover n:lay
even lead to computational instabilities. For these reasons, the first class of models, which
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enables a controlled volumetric—deviatoric cou
more attractive. Note, however, that with this
the tangential stiffness exhibit an equivalent a
are once again summarized table 6.

pling in the inelastic regime is considered
model, the volumetric, the deviatoric and
mount of degradation. The above remarks

5 Microplane plasticity:
Choice of microplane parameters

In this section, it will be demonstrated, how the inelastic microplane parameters can be
related to macroscopically measurable quantities. Therefore, the constitutive equations
presented in section 2.1 will be reduced to microplane plasticity, by setting ¢ = 0. In
the firgt part of this section, a microplane plasticity formulation based on a DRUCKER—
PRAGER yield function will be discussed, compare IORDACHE & WILLAM [13] for a de-
tailed interpretation. In the second part, a similar plasticity formulation will be introduced
in terms of the invariants of the overall stress tensor. A comparison of the correspond-
ing coefficients enables the characterization of the microscopic friction coefficient and the
microscopic yield stress in terms of the uniaxial tensile and compressive strength. For
the sake of simplicity; we will assume, that in the following model, the deviatoric elasti-
city modulus vanishes identically as £p = 0. According to equation (44), the remaining
microplane elasticity moduli take the values & = 3K and &r = 10/3G.

5.1 Microplane—based Drucker—Prager plasticity

The model is thus based on only two strain components, a volumetric and a deviatoric
one, -

ev=V.e=e,+&, e =T e=e+¢e, ('70)

which can be additively decomposed into elastic and plastic parts. The free energy

. 1 , e
e = %[ev — eyl évlev — €]+ sler - €] - Erler — €] + f ¢Pmieds, (71)
0

defines the microplane stresses conjugate to the elastic microplane strains

a\]?mz'c ) ) ‘
Oy = ay = £V [CV - 6‘?/]
B?If'r‘nfic (72)
aq ':: d’T = 8‘1" [ET — 651]
5(-:T

In accordance with the classical macroscopic yield function of the DRUC?KER—PRAG'ER
type; the yield function on the microplane as introduced in (13) is specified in the following
form { ' | | )

@Pmic = —— ||lorp|| + apmmco,v _ ¢pm‘zc' (73

whereby, ||()]] = +/()2. Note, that due to the introduction of only one yield function,‘a
volumetric deviatoric coupling, which is controlled through the friction coefficient c-v”-’““,
is taken into account. With the help of the flow rule (16), the KUHN-TUCKER conditions
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(17) and the equation for the plastic multiplier (18) the evolution of the overall stress
tensor can be expressed as a special case of (20) as

3 . .
Moreover, the overall tangent operator £, can be extracted from its general form (22)
£7, = VeV + &I T ds
Ty (75)
_— — [ngﬂv+TT-5T[.LT]®[vavV+VT‘ETT] ds,
4q Q h?

whereby the definitions of the normals vy, vy, py and pp have been given in equations
(14) and (15).

5.2 Classical invariant-based Drucker—Prager plasticity

In contrast to the microscopic yield function (73) the classical macroscopic DRUCKER-
PRAGER yield function

q)p'mac - Jg + apma.cl'l . (bpma.c ‘ (76)
is based on the first invariant of the stress tensor I; and the second invariant of its deviator
Js. Tt is governed by two parameters, namely the macroscopic friction coefficient af™ae
and the macroscopic yield stress ¢?™2, which can be identified uniquely through a uniaxial
tension and compression test. Before the onset of plastic yielding, in the elastic regime,

the invariants of the overall stress tensor o can directly be related to the microplane stress
components oy and o as

L = o:1 = 4:3——% oy dQ?

1 3 3 (77)
Jo = = dev: dev . . -
2= 5 oo | i o g o7 O ds)

If the material behaves elastically, we can assume that the macroscopic DRUCKER—

PRAGER yield function (76) can be expressed as the integral of all microplane yield
functions over the solid angle £

3 .
(I)pmac o BINLC .
y /n ¢ ds2 (78)

Note, that this assumption is only valid in the elastic regime and in a final state, in
which all microplanes have entered the plastic regime. In general, we cannot expect all
microplanes to start yielding simultaneously. Thus, a transition zone between these two
stages can be observed, which is characterized through a progressive onset of yielding such
that more and more microplanes enter the plastic state. However, if we consider equation
(78) as an approximation, it can help to understand how to determine the values of the
microplane parameters of™¢ and ¢?™¢. Therefore, the following integration formulae
according to KUHL, RAMM & WILLAM [19] have to be applied

3 1 5
%/ Lozl a0 = /3 %
E cM:mm'co.v a0 = Ozpm'ic Il (79)

3 mic mie
i /: o dQ = ¢F 3
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Finally, a comparison of the coefficients of the m

! . . acroscopic yield function (76) and the
integral over all microscopic yield functions (73)

P mac — \/"E 4 gPmac I~ ¢pmac
3 ™ic 5 : ; 80
Eﬁ®pdﬂ ﬁh@+ﬂmhw3wm 0

yields the following relations between the microsco
cients and yield stresses

il

pic and the microscopic friction coeffi-

, 5 . V5
aP e o \/: QP mae and ¢pmzc ~ pmac ]
R N ) 1
3 33 ¢ (8)
The macroscopic DRUCKER-PRAGER parameters can be determined from a uniaxial ten-
sion and compression test and can thus be expressed in terms of the uniaxial tensile

and compressive strength f, and f,. Consequently, the microplane parameters can be
expressed in terms of macroscopically measurable quantities as

pmac _ ifﬂ—ft mec __ i fe fi

R e Y ey o

apm{cm _\_/_gf _ft and ¢pmic~ 2_\/_5 Je Ji ( )
3 fo+1i 9 f+f

5.3 Comparison — Plate with a hole

Finally, the microplane-based plasticity formulation and the invariant—based macroscopic
plasticity model will be compared by means of the model problem of a plate with a
hole, compare BARTHOLD, SCHMIDT & STEIN [1]. Originally, the presented model was
developed for cohesive frictional materials. However, in this example, a classical pressure—
insensitive metallic material, aluminium, has been chosen. The aluminum plate, for which
a plane strain state is assumed, has a size of 200 x 200 mm?, while the radius of the holeisr
= 10 mm. The plate is loaded vertically under displacement control with A, whereby 5 =
100 MPa. The material is characterized through a Young’s modulus of E = 206900 N /mm?
and a Poisson’s ratio of v = 0.29, such that £ = 492619.05 N/mm?, £p = 0 N/mm?
and &p = 267312.66 N/mm? Moreover, a perfectly plastic material behavior is assumed
with f. = fy = 450 N/mm? Consequently, the microscopic and the macroscopic friction
coeflicient vanish identically as o™ = 0 and of™* = (), while the macroscopic and the
microplane-based yield strength take values of ¢?™%¢ = 259,81 N/mm? and ¢? "¢ = 111.80
N/mm?, For the spatial discretization, 256 eight-noded finite elements with a reduced 2
% 2 integration have been applied. Moreover, the spatial discretization of the solid angle
has been performed with 7y, = 42 integration points as proposed by BAZANT & On [3].
IFigure 5 depicts the resulting load—-deflection curves of both simulations. The critical load
factor of the macroscopic model A4 = 4,66 corresponds to the reference solution given by
BARTHOLD, SCHMIDT & STEIN [1]. Remarkably, the critical load factor of the microplane
plasticity model \74¢ = 4.30 is slightly lower. This difference is caused by the fact, that
on several microplanes, the yield condition is violated before the yield stress is reached
macroscopically. Then, a successive onset of yielding can be observed on more and more
microplanes until all planes of the corresponding integration point have finally entered
the plastic regime. Despite this slight difference, both models behave rather similarly.
The related strain distributions at a top displacement of u = 0.0025 mm shown in figure
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- A MACROSCOPIC PLASTICITY A MICROPLANE-BASED PLASTICITY
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Figure 5: Macroscopic and microscopic model — Load displacement curves
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Figure 6: Macroscopic and microscopic model - Strains in loading direction

6 underline the similarity of the different formulations. In both cases, plastic yielding
is nitiated at the horizontal edges of the hole and a zone of localized deformation forms
under an angle of 45° towards the loading axis. It should be mentioned, that for the sake of
simplicity, this comparison has only been shown for a rather simple material formulation,
but more complex studies involving pressure—sensitive materials are straightforward.

6 Conclusion | -

In this paper, different aspects of microplane modelling have been highlighted. The basic
idea of the microplane concept has been introduced for microplane elasto—plasticity cou-
pled to microplane damage. Thereby, the assumption of a kinematic constraint defined
three strain components for each microplane. A related plastic yield surface and a damage
loading function were-introduced to define the elastic domain on the microplane level.

In a second step, an alternative microplane formulation based on only two components
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has been discussed in the context of microplane elasticity.

artificial coupling of the normal and the tangential behavior through the bulk modulus.
Another alternative strategy based on the introduction of independent loading functions
for each microplane component has been illustrated in the context of microplane damage.
However, the introduction of individual loading functions requires the storage of a larger
number of internal variables. Moreover, it results in a fully decoupled volumetric devi-
atoric material characterization which is non-physical for most non-metallic materials.
Consequently, the three component model with a single damage and plastic yield function
is considered to be a better choice.

As a typical representative of this class, microplane plasticity has been analyzed. Special
focus was dedicated to the choice of the related microplane parameters, which can be ex-
pressed in terms of macroscopically measurable quantities in several specific cases. This
approach has been validated by a comparison of a microplane-based DRUCKER-PRAGER
plasticity formulation with the classical macroscopic DRUCKER-PRAGER model.

In summary, this paper documents the potential of the microplane concept to simulate
an anisotropic material behavior which is not yet fully exploited. Due to several small
modifications of the original microplane model from the literature, a controlled volumet-
ric deviatoric coupling can be taken into account. Moreover, in contrast to the original
model, the class of microplane models presented in this paper is formulated in a ther-
modynamically consistent fashion and can thus guarantee the satisfaction of the second
principle of thermodynamics. Future work will be dedicated to the application of this
basic concept to various different materials such as concrete, reinforced concrete or wood.
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