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Modellmg and computatlon of instability phenomena in multisurface

elasto-plasticity

E. Sawischlewski, P. Steinmann, E. Stein

Abstract This contribution is concerned with theoretical and
numerical aspects of instability phenomena in multisurface
elasto-plasticity which is the adequate constitutive framework
for e.g. single crystal plasticity. To this end, the localization
analysis for multisurface elasto-plasticity based on the additive
decomposition of the geometrically linearized strain tensor is
considered and the characteristic differences and similarities
to the wellknown single surface case are highlighted. In the
numerical part we subsequently discuss the computational
setting of single crystal plasticity as the paradigm for multisur-
face elasto-plasticity. Finally, the numerical examples demon-
strate the dramatic influence of the slip system orientation

on the resulting localized failure mode of a single crystal
compression panel.

1

Introduction

In single surface elasto-plasticity the stress state is limited by

a yield condition which is expressed as a single scalar valued,
smooth and convex tensor function of the stress tensor and
generally a set of internal variables, consider as an example the
classical v. Mises or Drucker-Prager criteria. By the way of
contrast, non smooth yield criteria as for example the Tresca
or Mohr-Coulomb models are characterized by several smooth
yield surfaces intersecting in a non-smooth fashion at certain
stress and internal variables states, Likewise, the formulation
of single crystal plasticity involves a number of yield conditions
associated with the possible slip systems within a crystal unit
cell which might be activated simultaneously. (Watanabe and
Atluri, 1986) elaborated on the unification of concepts of
internal time, internal variables and multi yield surface theories
to model nonlinear isotropic and kinematic hardening, (Rizzi,
Maier and Willam 1996) refer to models of elasto-plasticity
coupled to damage based on different loading functions as
multi-dissipative materials. Recently, in order to provide a
better prediction of shear band formation in metals (Rama-
krishnan and Atluri, 1994) and Ramakrishnan, (Okada and
Atluri, 1994) proposed a dual yield model consisting of a
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classical v. Mises yield surface and in addition a so called
shear yield function which acts as a potential for a directional
preferred partof the inelastic strain. Generally, all these different
approaches allow for the simultanous activation of several
constraints on the stress and the internal variables state, the
so called yield surfaces, and may be recast in the framework
of muldtisurface elasto-plasticity.

The objective of this contribution is on the one hand to
provide a systematically treatise on the localization analysis
within the setting of multisurface elasto-plasticity by deriving
conditions for the onset of localization under the assumption of
either continuous or discontinuous bifurcation of the strain rate
field. Thereby, the possibility of multiple active constraints
and its consequences within the localization analysis is of
particular interest. On the other hand computational issues
concerning the model problem of single crystal plasticity are
considered as the numerical counterpart to the preceding
analytical derivations.

Localization of inelastic deformations within narrow bands
is a failure phenomenon which is frequently observed in
laboratory experiments as well as in nature, Within standard
continuum theory localization is considered as a spatial
discontinuity of the velocity gradient (Rice, 1976) (Thomas,
1961). Analogous arguments in the context of planar acceler-
ation waves in solids are found in the early work of (Hadamard,
1903) and in the contributions by (Hill, 1962) and (Mande],
1962, 1966). Based on the assumption of a linear comparison
solid in the sense of (Hill 1958), continuous bifurcation is
thereby reflected by a singularity of the localization tensor.
Nevertheless, so far the interesting case of discontinuous
bifurcation has only been considered in the literature for the
basic model of single surface elasto-plasticity, see e.g. the
discussion in {(Ottosen and Runesson, 1991).

For the sake of transparency we restrict ourselves in this
study on multisurface elasto-plastic models at small strains
which are based on the additive decomposition of the strain
rate field together with the assumption of a free energy density
which governs the elastic stress response.

Finally, as a model problem, we will be concerned with single
crystal plasticity. Thereby, it is widely accepted, that models
of single crystal plasticity may be considered as particular
examples of multisurface plasticity, see for example the early
contributions by (Koiter, 1960) and (Mandel, 1972). Therefore,
the underlying motivation for the present investigation is
mainly provided by the desire to treat and to understand
instability problems arising in single crystal plasticity.

In this context, we will base the constitutive modelling on
the traditional lines of the framework for anisotropic crystal
slip plasticity set forth e.g. by (Hill, 1966), (Hill and Havner,
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1982) and (Asaro, 1983) among others. As far as the algorithmic
implementation is concerned we will resort to recent computa-
tional treatments of anisotropic single crystal plasticity which
have been advocated e.g. by (Cuitifio and Ortiz, 1992),
{(Borja and Wren, 1993), (Miehe, 1996) and (Steinmann and
Stein, 1996). Several numerical examples investigate the topic of
localization problems in computational single crystal plasticity.
The paper is organized as follows:

o Afterintroducing briefly the general setting of multisurface
elasto-plasticity based on the additive decomposition of
the geometrically linearized strain tensor we first investi-
gate the conditions for diffuse failure which is characterized
as the stationarity condition for the stress state. Thereby,
the analysis relies on the simple structure of the corre-
sponding elasto-plastic tangent operator in the form of
a sum of rank 1 updates.

e Next, the general localization or rather admissibility
condition for the maintainance of a spatial discontinuity
of the velocity gradient field is established. Based on this
result we then discuss the condition for the onset of
continuous localization for the case of multisurface
elasto-plasticity. Thereby, the simple structure of the
tangent operator carries over the structure of the localiz-
ation tensor and is thus frequently exploited. In particular,
for multiple active constraints the determinant of the
localization tensor is shown to be conveniently evaluated
in terms of a new matrix containing the hardening moduli
in a simple fashion. On the one hand, the critical hardening
moduli, allowing for the onset of continuous localization,
may be extracted from this matrix,

¢ On the other hand, it turns out in the subsequent in-
vestigation that the condition for the onset of discontinu-
ous localization is determined by negative spectral prop-
erties of this matrix. The analysis reveals the import-
ant result that in contrast to the single surface case
discontinuous localization may precede continuous localiz-
ation if multiple constraints are active.

e For iriple, double and single surface plasticity, equipped
with a particular family of hardening moduli frequently
employed in the cases of single crystal plasticity, examples
of how to compute the critical hardening moduli are
analysed in the sequel. Thereby, the intriguing results for
either latent or pure self hardening of the slip systems are
emphasized and the characteristic differences and similar-
ities to the wellknown single surface case are highlighted.

e In the numerical part we first discuss the computational
setting of single crystal plasticity as a paradigm for
multisurface elasto-plasticity. Thereby, the restriction to
a geometrically linearized format allows for a particular
simple and transparent integration algorithm. Finally, in
the numerical examples we focus on the dramaticinfluence
of the slip system orientation on the resulting localized
failure mode and load carrying capacity of a single crystal
compression panel,

2

Multisurface plasticity

(Koiter, 1960) and (Mandel, 1972) considered models of single
crystal plasticity as particular examples of multisurface plastic-
ity. In polycrystal metal plasticity the classical Tresca yield

condition or the recently proposed dual yield model by
(Ramakrishnan and Atluri, 1994) may be considered as typical
examples of doublesurface plasticity. (Watanabe and Atluri,
1986) demonstrated that models of nonlinear kinematic
hardening may be recast within multi yield surface theories,
Likewise, within soil mechanics the Mohr-Coulomb condition,
the Cam-Clay and the cap models allow for the simultaneoys
activation of different loading functions and therefore fafl
into the framework of multisurface plasticity.

To set the stage for the subsequent developments, we briefly
review some essential relations of geometrically linear multi-
surface elasto-plasticity. As usual, the underlying kinematical
assumption is the additive decomposition of the total strain
into an elastic and a plastic part

e=¢,+¢ with £=V?"u and wueRm, 1)

For multisurface elasto-plasticity with n, ;- 1sotropic hardening
mechanisms, we restrict ourselves to only 1, scalar internal
variables «; to define the free energy density ¥ as

V= P"i(g,) + ¥ () with P™e(g) =1lg: &g

e

and I= Lo.ng. 2)

Here, &, denotes the fourth order elastic tangent operator of
the geometrically linear theory. From the Clausius-Duhem
inequality and upon introducing the additive decomposition
of the strain rate £into an elastic and a plastic part, we obtain
the elastic part of the constitutive law and the yield stresses Y,
which are the dissipative stresses that are thermodynamically
conjugated to x;, as

a Eumac _

llt/mfc
s =§,:¢, and Y,=a

3 KI

VIi= L.ty (3)

For multisurface elasto-plasticity the structure of the remaining
dissipation inequality then suggests 7, .+ Vield conditions @, in
terms of the stress measure ¢ and the yield stress Y,

_ op,

@ (6,Y)=0¢,(0)—Y, 20 with vj—ao_

VI=1...n,
(4)

Here, the v, denote the normal to the yield conditions in the
stress space. Moreover, for the general non-associated case

a Koiter type flow rule in terms of the flow directions s, together
with the evolution equations for the hardening variables i, are
given by

MHyyp
L=)mm and K=y V¥I=l.n, (5)
I=1

Finally, the evolution of the stress and the yield stresses Y,
renders the elastic tangent operator and the hardening moduli
H, sampled into the matrix H for later use

a;'f’m“‘
6=£&:4 with =
it “ De,de,
. Asrf 82 lflmic
Y=>H with H, =——, (6)
! El ul T e, e,



The special case of associated plasticity is obtained upon
substituting g, by v, whereby the principle of maximum
dissipation will be satisfied. Plastic-loading and elastic-unload-
ing conditions together with the requirement of consistency
are expressed for each yield condition as

w20 @(a,Y)Z20 3,9(a,Y)=0

and y,8,(0,Y,) =0 @)

For associated plasticity the loading-unloading conditions
follow from the optimality conditions that are implied by the
principle of maximum dissipation. In terms of an optimization
problem with n_; inequality constraints they represent the
classical Kuhn-Tucker complementary conditions. For non-
associated plasticity they are rather postulated by physical
reasoning. Since generally not all n,, yield conditions are
simultanously active, we define in addition the set of active
constraints .«/ by

o ={Ie{l..n }|@=0 and y,>0} with n,,=dims/.
(8)

We are now in the position to evaluate the consistency

conditions for the &, in Eq. 7.4 as

B=v:&pe—Y hyy,; =0 Vies (9)

Jess

Thereby, the coefficients of the h and 5-matrices follow by
incorporating the flow rule ¢, as given in Eq. 5 into Eq. 9 to
render

hy=ny+H, and ny=v:&:m,. (10)

In the case of plastic loading the plastic multipliers y, follow
from Eq. 9 with @, = 0. Introducing the pseudo surface normals
¥, as an abbrev1at10n, we thus obtain

n=9:E:&>0 with §=)Hvy Vied

Jest

(11)

As a result we obtain the elasto-plastic tangent operator in the
remarkably simple format of a sum of rank one updates

=&—- Y&

Tess

@ P&y (12)

3

Diffuse failure
Diffuse failure is characterized by a singularity of the elasto-
plastic tangent operator or, equivalently, by the limit point
condition for the stress state, thereby the corresponding (right)
critical strain rate is denoted by &,
£y8,=0. (13)
By taking the structure of the multisurface tangent operator
in Eq. 12 into account, the singularity requirement rewrites as
&= (&g

cr]”l
les/

(14)

and thus the critical strain rate is given by the weighted sum
of the flow directions g,

& =Yy with

Ies/

(15)

T - AN o B Y
W= Tabd, > OJ

Obviously, the critical strain rate does not contain elastic
contributions and thus characterizes a state of perfect plasticity
which allows for purely plastic strain rates. Introducing _ from
Eq. 15 into the definition of ;" we obtain the condition

=y [V: &)y where &= Wy

Jeos Jed

(16)

therefore we conclude that the elasto-plastic tangent operator
obeys a singularity with multiplicity n_, for vanishing hardening
moduli H, since the above requirement renders

iy = Oy vy = v &y + Hy, (17)

In summary the elasto-plastic tangent operator is n, , rank
deficient as soon as all active constraints cease to harden

simultaneously

Hy=0 VI]ed ~»&;:¢,=0 with § =

Z Vr iy

lesf

(18)

Thereby, the flow directions g, span the n_, dimensional space
of critical strain rates. Typically, this situation might be
encountered in the case of isotropic hardening where all
hardening moduli H,, coincide, say with the modulus H. This
particular hardening behaviour will frequenctly be addressed
in the sequel.

4

Localized failure

Within classical continuum mechanics the kinematical
structure of a possible jump [V, ] of the velocity gradient
V.11 across a discontinuity surface I” characterized by the
surface normal n as depicted in Fig. 1 is given as

[V, i) =(m@n~[&] ={[m@n]7" (19)
with amplitude { and jump vector m. Thereby, the key
requirement for the possible development of a discontinuity
is the spatial continuity of the traction rate vector across the
discontinuity, see e.g. Rice [1976], which may be expressed as

[(]=£,—f_ =0 (20

Fig. 1. Discontinuity Surface
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Next, we use the definition of the traction rate = 6+n to
compute . and f_ on both sides of the discontinuity

t_ =&, ]'n and t,=[&:8,1n (21)
and insert &, = &+ {[m@mn]?™ to evaluate
t, =t +[[&:é ]-n+g, m (22)

Here, we introduced the localization tensor q,, as the contraction
of the tangent operator £, with the surface unit normal n to
obtain

(23)

q, =&

Thereby, the contractions are performed with respect to the
second and fourth index of the fourth order tensor &;.
Moreover, we defined the jump in the tangent stiffness

[&] =%, - &

ep (24)

since & and & might take, in general, different values in
%+ and B~ due to the difference of £, and g_.

From the traction continuity in Eq. (20) we establish the
localization condition, or rather the admissibility condition for
maintaining a discontinuity as

[[&]1:é-1-n+{q,m=0 (25)

In the sequel we will examine the localization condition in

Eq. 25 for different loading scenarios on both sides of the
discontinuity under the assumption that no discontinuity has
developed so far. Therefore, we concentrate on the investigation
of the condition for the onset of localization. Thereby, we
restrict ourselves to the basic case of continuous localization
characterized by further plastic loading of all active constraints
on both sides of the discontinuity and the limiting case of
discontinuous localization where the domain 4~ completely
unloads elastically whereas the domain #* continues to be
loaded plastically for all active constraints.

5

Continuous localization

For multisurface elasto-plasticity, the situation of primary
interest is characterized by continuous displacements across
the anticipated discontinuity at the current state of deformation,
i.e. no discontinuity has developed so far. For the onset of
continuous localization we consider the case of plastic loading
on both sides of the discontinuity, thus the jump in the
elasto-plastic tangent operator vanishes identically

& =8 ~1&]=0. (26)
Upon introducing this result into Eq. 25, the condition for
the onset of continuous localization is then formulated as
gp'm=0~m+#0 if detg, =0. (27)
Observe that the jump amplitude { does not come into play

for this scenario, Taking into account the simple structure of
&, 1n Eq. 12 results in an intriguing concise representation

of the corresponding q,, as a sum of rank 1 updates of the
elastic localization tensor

\Ep=qel_~ 265[@6{_

(28)

leg/

Here, the e:‘ and & may be interpreted as ‘traction’ vectors
acting on the discontinuity surface and involve the flow
directions g, and the pseudo yield surface normals

el =[E:pmlin and & =[V:§]n (29)
In the sequel it is our objective to evaluate the localization
condition

detg,, =0

(30)

for the case of multisurface plasticity in order to obtain explicit
expressions for the critical hardening matrix H, which renders
q,, singular. Therefore, for the case of multisurface plasticity,
we essentially have to compute the determinant of a n,, rank

1 update, thus extending the basic case of singlesurface
plasticity discussed e.g. by (Ottosen and Runesson, 1991).
Thereby, for the general case of multisurface plasticity, consider
for example as a paradigm (fcc) or (bec) single crystal plasticity,
it appears convenient to introduce the normalized elasto-plastic
localization tensor 4, as
Gop =1 *9sp (31)
which represents a rank n_, update of the identity I by the
‘projected’ vectors & and the ‘“traction’ vectors é;

qEP=I~—ZE{I®é{, with é"‘=q;11-e’

L (32)
Tes/

Next, we merely examine the eigenproblem for the update
matrix, i.e. only the sum &, ® ] of rank 1 matrices. Here we
follow lines advocated by (Rizzi, Maier and Willam, 1996) in the
context of the geometrically linear theory for coupled models
of plasticity and damage. To this end, we expand the right
eigenvector into a sum ¢ &’ with unknown coefficients a;.
Thus, then,, x n, eigenproblem reads

). [e®@& — AT {a 2l ] =0.

Llesl

(33)

By inspection we readily extract the equivalent n,, x n,,
eigenproblem for the #-matrix with coefficients #; =€ j-é‘{,
maximum rank min(n,,,n, ) and the eigenvector acomprising

the coefficients o; as

act

Y, Elel-e —Aed oy =0~ A I]-a=0.

lLjed

(34)

Please note that this result relies, however, on the linear
independence of the ‘projected’ vectors ;. Clearly, for n,, <7,
the eigenvalues of the update matrix and the #-matrix are
related via

M (7)) = ,11”_HM<2 E® éj) and A, (Z é},@é{) =0.
Jea!

fes?
(35)



Vice versa, for n_, >n,, the eigenvalues of the update matrix
and the # matrix are connected as

;t‘l...ndi,"(ﬁ.) = ll...nd,-,,,( Z élll ® é\l') and j">ndim(ﬁ') = 0 (36)
Ied

Moreover, the eigenvalues of the normalized elasto- plastic
localization tensor g, and the update matrix 3", _, “® é'are
connected by an eigenspectrum shift

(@, =14 (szl@ ) VK =1...n,, (37)

whereas the eigenvectors o, El{ coincide. From these consider-
ations we conclude straightforward that the determinant of

q,, is generally given by the characteristic equation of % at

the eigenvalue A(#) = 1 or, equivalently, by the determinant of a
newly introduced matrix @ = I — e R"*"«, This intriguing
result may be condensed in the followingline of argumentation

detée,F"ﬁl:l— (Ze,l@) ﬂ ﬁ[l—i (7)]

K=1 K=1

=detI—7) =detw (38)

The matrix o will play a prominent role in the subsequent
derivations in the context of discontinuous localization, Based
on this background we summarize our findings for the general
multisurface case of the elasto-plasticlocalization tensor. Firstly,
from Eq. (38) we obtain the determinant of q,, with the
generic structure

detq,,=detq,deto =detq, [1 — Z:[ + - + [~ 1]"det 7].

(39)

Thereby the # and # matrices with coefficients given by

RN S R | PN RPN U ) ; I |
fy=&q ' e, and m;=e-q;"-e, with Z=h
(40)

together with the i and 5 matrices with coefficients given in
Eq. (10) are n,, x n,,, matrices. With detq,, > 0 for properly
formulated elastic constitutive models, the condition for

the onset of continuous localization in Eq. (30) is recast, based
on the characteristic equation of 7 at the eigenvalue A(%) =1,

into the simple expression

deto=det(I— %) =0 (41)

By multiplying with - det i we obtain a formulation better
suited for the actual computation of the critical hardening
moduli contained in H,,

det(r—h) =det(j—H) =0 where #=n—1 (42)

thereby we invoked the 7 matrix e R "= with coefficients

- — l —_ N N
Hy= e,y l.epll - V& (43)
Generally, the critical hardening moduli H , rendering

detq,, =0, might be extracted from Eq. 42 in terms of the

77 matrix by invoking the explicit expression for the determinant
of a sum of two n_, % n_, matrices. This line of arguments

results in the structure

det(ij—H) =

detj+[—1]"detH —adjij: H 4+ =017, HeR"=*"a| (44)

The proof of this propesition follows immediately by e.g.
assuming that fjis nonsingular to render

det(fj—H) = det#jdet(I— 77 "-H)

= det ij[characteristic equation of 7~

Hat A(ip7"+H) =1] (45)
Note that it is not necessary to compute explicitly the inverse
(e)"! of a matrix (e) in order to determine the coefficients of
its adjungate matrix adj (e). In the analytical examples, which
are postponed until the case of discontinuous localization is
discussed, we will exploit Eq. 44 for a typical family of hardening
moduli,

6

Discontinuous localization

Another possible loading situation within multisurface
elasto-plasticity is characterized by plastic loading of all active
constraints on the & side and complete elastic unloading

on the #~ side of the anticipated discontinuity, while it is
still assumed that no discontinuity has developed so far. The
tangent operator on the Z* side of the discontinuity will then
get an additional contribution due to the plastic loading
condition in #* such that

i by ® V1 &,

&+& and [E]=—) & (46)

Teod/

Upon introducing this result into Eq. 25 we obtain the condition
for onset of discontinuous localization as

(g, m= 2,7 e, (47)

Tesd

Here, y; denote the negative ‘plastic multipliers’, which reflect
the elastic unloading condition on the £~ side of the discon-
tinuity

yr = pé <O,

c (48)
Observe that the jump amplitude { is contained in the condition
for discontinuous localization and, moreover, is indirectly
driven by the strain rate &_ on the %~ side of the discontinuity.
Thereby, it turns out that the solution for the jump vector

m is given by the sum of the ‘projected’ vectors &) weighted
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by factors 7, which in turn are related to the negative ‘plastic
multipliers’ 7,

{m=73 §;& with §=Y oy and &=q,"e
e/ Ker/

(49)

Recall from the last section that the entries of the @ matrix
are given by

-5 K _
w,;=08,~7%, and ) o, =4,. (50)
Jed

For a prove of this result insert the solution for the jump vector
m into the lefthand side of Eq. (47) and consider the structure
of the localization tensor in Eq. (28) to obtain

‘:qep'm ={g,m~{ Z [éxf'm] elln = Z [511— ﬁl}]";’fe;]l

Tess Ljexd
e — ol
- Z i e;l

les

(51)

Finally we have to check under which condition the above
localization mode complies with the assumed loading scenario.
To this end, the strain rate &, = £_ + {[m ® n]¥" is incorpor-
ated into the definition of the ;" on the #* side of the dis-
continuity

W =Vpgpé, =ViEpé + VpEpm@nl =y +L&-m>0.
(52)

Considering the localization mode as given in Eq. 49 results
in the following line of argumentation

=k LT = Y, Lo+ Ry lo g = 3 oy >0

Jes? L Kest Kes
(53)

Thus the positive multipliers y," on the £ side and the negative
multipliers y;” on the &~ side of the discontinuity are simply
connected via the inverse of the @ matrix, and moreover we
conclude that y = §,. Equivalently, the ‘plastic multipliers’

Py <0in Z~ follow as

Y=y <0.
Jesl

(54)

Finally, the quadratic form of @ computed with vectors
containing the ;" renders a strictly negative value

1
Z?’fr?rﬂ: Z oy ) Z 1 log+ o]y <0, (55)
les/ LIex/ Ljes

Thus, as a necessary condition, at least one eigenvalue of the
symmetrized @ matrix ®?" has to be negative in order to allow
for discontinuous localization. Moreover, as a sufficient
condition, all entries y;” in the corresponding eigenvector
have to be strictly positive and have to be mapped into strictly
negative values by the original matrix @. A wellknown result
in algebra, sometimes refered to as the Bromwich theorem,
states that the eigenspectrum of a symmetrized matrix

bounds the corresponding real eigenspectrum of the nonsym-
metric matrix. Since @=I—h""' 7 is generally nonsymmetric,
we therefore conclude that discontinuous localization may
generally precede continuous localization which is characterized
by a zero eigenvalue of the original @ matrix

i (07™) S R (4,5, (9))- (56)

min

7

Analysis of continuous localization

In this section we will give examples of how to compute the
critical hardening moduli for the onset of continuous
localization in the case of triple, double and single surface
plasticity. Thereby we resort to a common family of hardening
moduli capable to describe latent as well as self hardening.
We like to note that the following results coincide with the
outcome of more direct but trite calculations based on the
sequential application of the Sherman-Morrison formula and
the corresponding formula for the determinant of a rank

1 update.

71

Critical hardening moduli for n,,=3 and n,,=2

On the one hand, the case of triplesurface plasticity is in a sense
a limiting case in a three dimensional application n,, =3
since it leads to the maximum rank that might be obtained

by the sum of linear independent dyadic products that updates
the elastic localization tensor. On the other hand, typical
examples for the case of doublesurface plasticity are the Asaro
double slip kinematic within the framework of single crystal
plasticity and likewise all plasticity models with two intersecting
yield surfaces, e.g. certain cap models, where the two yield
mechanisms might be activated simultaneously. Likewise, it
was recently pointed out by (Rizzi, Maier and Willam, 1996) in
the context of the geometrically linear theory that coupled
models of plasticity and damage lead to a similar structure

of the tangent operator. Moreover, the dual yield model
proposed for metals by (Ramakrishnan and Atluri, 1994) fits
neatly into the framework of doublesurface plasticity since it
consists of the v. Mises yield surface and in addition a shear yield
function which acts as a potential for the directional preferred
part of the inelastic strain.

As generic expressions for these models, the elasto-plastic
localization tensors for triplesurface and doublesurface
plasticity with n_, =3 or n_, =2, respectively, are recast in
the form of three or two rank 1 updates with the ‘traction’
vectors €] and &,

— I 51 2 =2 3 ~3
qep =fqq— e;:® €, — ejl ® e, — e[l @ e,
— ~1 51 2 ~2

or qep - qei_ eu ® eum e/l ® ev ’ (57)

Based on the previous discussion, the determinant det g, for

the cases of triplesurface or doublesurface plasticity follows
easily as

detq,, = [1 — #:I +adj#:I—det#] or

detg,,=[1— #: 1+ det 7] (58)




Recall that the terms in brackets might be interpreted as the
characteristic equations at the eigenvalue (%) =1 of matrices
# Thereby, in the triplesurface case, #:I, adj#:I and det#
represent the three invariants of #eR**>, Equivalently, for

the doublesurface case, 7:1 and det 7 denote the two invariants
of #eR**%

To ease notation we will in the sequel tacitly understand
that the proper dimension of the %, #, h, 1, ij and H matrices is
either n_ = 3 or n_, = 2, respectively.

With this preliminaries at hand and with detg, > 0 for
properly formulated elastic constitutive models, the localization
condition in Eq. 58 may be rewritten according to Eq. 42 as
det(i7— H)} = 0. It is interesting that we will encounter a
similar structure for the basic singlesurface case in the sequel.
For the triplesurface case the critical hardening moduli H_,
rendering detq,, = 0, are then extracted from Eq. 42 in terms
of the # matrix by invoking the explicit expression for the
determinant of a sum of two matrices € R***, see e.g. de Boer [2]

det (i — H) = det fj — det H + fj:adjH — adj#j:H =0

for #, HeR®*? (59)

Equivalently, in the doublesurface case the critical hardening
moduli H_ are extracted from Eq. 42 in terms of the # matrix by
invoking the explicit expression for the determinant of a sum
of two matrices € R**? as

det(fj — H) =detij+ detH —adji: H=0 for #, HER**%

(60)

Here, adjfj = detj#~* and adjH = detH H ™' and denote the
adjungate matrices of fj and H,

Explicit expressions for the critical moduli H,, are derived
in the following for the one parameter family of hardening
moduli H proposed by (Hutchinson, 1970) in the context of
single crystal plasticity. These hardening moduli are particular-
ized for n,,,=3 and n,,, =2 as

H=H[/i+[1-7/]I]

11 (61

111 1 1
with either i=|1 1 1| or i= I: }
111
Here, the parameter H is a scalar valued reference hardening
modulus. For single crystals the latent hardening parameter
¢ typically takes values 1 </ = 1.4, see (Kocks, 1970). As
a special case we first consider latent hardening of the slip
systems for # = 1. Here, this type of isotropic Taylor harden-
ing results in detH = 0 and adjH = 0. Then Eqs. 59 and 60
render
det)— H adjfj:i=0 (62)
from which we explicitly compute the critical hardening
modulus in terms of the sum of all coefficients of 7'

Fﬂ=n'1:.uc[1"]‘1:i]‘1

ln)j=1

(63)

Next we examine the other limiting case of pure self hardening
of the slip systems for / = 0. This particular Koiter hardening
model leads to the simplifications detH = H’, adjH = H*I

for He®*** and detH = H* for He[R**?, respectively. Accord-
ingly, Eqs. 59 and 60 transform into

—H*+H*i:I— Hadjij:I+ detfj=0

or H?-H adjij:I+ deti)=0 (64)
which are the characteristic equations for 7j with H = A(#)
corresponding to the eigenvalues of #. Therefore, the critical
hardening modulus is explicitly computed by the eigenvalue
problem for i}

F—i" = max max A (i) (65)

nl=1 K

In a general situation characterized e.g. by overshooting of
the slip systems with ¢ > 1, for which in fact experimental
evidence was provided by Kocks [11], it is easily verified that
the critical hardening modulus H_ for the triplesurface and
the doublesurface case follows from the roots of either

a cubic or a quadratic polynomial in H, respectively.

As an extension of the previous results, we may summarize
the analysis of the critical hardening moduli for the onset of
continuous localization in the case of multisurface plasticity
by the sequence of steps given in Table L.

7.2

Critical hardening moduli for n, =1

In order to highlight the characteristic similarities between
the cases with n_, = 1 and the cases of multisurface plasticity
n,,> 1, we finally briefly reiterate the results obtained in the
basic case of singlesurface plasticity as discussed in detail

e.g. in (Ottosen and Runesson, 1991). Here, the elasto-plastic
localization tensor boils down to only one rank 1 update and
is given together with its determinant by the simple expression
4,=49,—¢,®% and detq,=detq,[1—7]. (66)
Thereby, similar to the multisurface case, we introduce the

%, 7, h and 1 ‘matrices’ €R as the products of the inverse of
the hyperelastic localization tensor and the ‘traction’ vectors e,

~ —1 - -1
fi=h"'r, mw=e, q; e,

h=n+H with n=v:E; (67)

With this notation at hand and since detq,, > 0 holds for
properly formulated elastic constitutive models, the localization

Table 1. Analysis of continuous localization in multisurface plasticity

e Compute the n-matrix with entries rj; = v: &
e Compute the 7-matrix with entries 7, = el+q; "¢}
® Analyse )= n— 1) to obtain the critical hardening moduli H,,

& Typical results: H,, = max[#~":{]™' or H, = maxmax 4, (7)
|nf==1 Jnf=L K
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condition may be rewritten from Eq. 66.2 as

1-7=0~7j—H=0 with j=n—n=e q;' e, —~v:E
(68)

Finally, the critical hardening modulus H_, rendering

detq,, =0, is derived straightforward in terms of the jj ‘matrix’

or equivalently in the more familiar expanded format

H. = maxij = max (e, q; ' e,) — vi& L. (69)
=1 Inj=1

We conclude that no localization can occur aslong as H > H_.

Moreover, the condition for discontinuous localization
takes a particular intriguing format in the case of singlesurface
plasticity since the @ matrix boils down to a scalar w < 0 thus
rendering

detq,, =detgw <0~y*>0 and 3" =wy* <0. (70)

Thereby, w happens to coincide with the smallest eigenvalue
2in(4,,) Of the normalized localization tenser 4g,,. Thus, dis-
continuous localization is possible as soon as the localization
tensor obeys a negative eigenvalue,

8
Computational single crystal plasticity

8.1

Formulation of rate independent single crystal plasticity

As a paradigm of associated but anisotropic multisurface
plasticity we consider the example of single crystal plasticity
in the format advocated e.g, by (Asaro, 1983). Here, the flow rule
is dictated by the kinematics of dislocation flow along fixed
slip systems characterized by the slip direction s, and the

slip plane normal m, in the so-called isoclinic configuration

(é'p = z }’1 V] With VI = [sl®m1]5)'m. (71)
less

Here the plastic multipliers y, take the interpretation as the
slip rates on the slip systems I. Please note that plastic flow is
assumed to preserve the plastic volume since we have simple
shear with 5,1 m, for each crystallographic slip system I
Typically, for fce crystals we have 12 slip systems which might
be activated in a general deformation. These are given by the
four m, e {111} planes and the three 5,[110] directions of
a crystal unit cell, see Fig. 2.

For the sake of simplicity we restrict ourselves to the
geometrically linear case and assume the elastic response to
be governed by the isotropic Hooke model valid for small strains

E,=2G5"™ +KI®I with S*¥=70—

UL (72)

Next, the so called Schmid tensor v, projects the stress tensor
¢ or rather the deviatoric stress tensor s onto the shear stress
1, = (p, which acts in the slip systems I, frequently refered to
as the Schmid stress

1, =s:v, with s=2Ge, and e,=.J"":¢, (73)

Then the yield condition for each slip system is defined in
terms of the Schmid stress and the critical shear flow stress,
which will be denoted by ©; =Y, as

O=1,—1,20 (74)
To describe isotropic Taylor hardening of Al-Cu alloys, the

micro part of the Helmholtz free energy ¥"* is typically
expanded as

. (1, — 1,2 Hyx
Yj"" (K) —_— TOIC + __T-[D_"____ln COSh ’[w 0_ ‘CO (75)

with 7, and 7, the initial shear yield stress and the saturation
strength, H, the initial hardening rate and the isotropic
hardening variable « defined as

£=Y 7. (76)

Ted

Then the critical shear flow stress T, = 7! and its derivative

H=0,t,= H, follow in closed form

H
T,(K) =1, + [1,, ——ro]tanh( o )
T —Tp

o0

and H(x) = H,cosh™? (——H—OE-> (77)

T —To

The constitutive model of small strain single crystal plasticity
is summarized for convenience in Table 2.

8.2

Integration of rate independent single crystal plasticity

For the integration algorithm of the plastic strain rate in Eq. 71
it proves convenient to explicitly compute the 7 and the h
matrices in terms of the slip direction s, and the slip plane
normal m, as

Ny =26V, = G[[sps;] [mpm] + [myps)][s,.m;]]
and hU =My +H (78)

With this preliminaries at hand the deviatoric part of the plastic
flow rule and the hardening variable are integrated over a finite

Fig. 2. Slip Systems of a fcc Crystal Unit
Cell
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Table 2. Constitutive equations of small strain single crystal plasticity

e Macroscopic and Microscopic Free Energy

(Ijnm:

. T, — T, | H,x
poie =1 K +—————[ 2~ %l 1n<c05h(———° ))
H, T,.— T

e Yield Conditions

Ge,e,+ = K[I £}

¢=7,—7,20 with =51y, and v =[5;@m,]?"

o Flow Rule and Evolution Law for the Hardening Variable

&=y and k=) 7y

Tes/ lesd

o Elasto-Plastic Tangent Operator

&,=&— 4G 2 h s @m @ (s, @m; 17"

INLES

time step A¢ = """t — "t by the Euler backward method to render

Ae,= Y Ayv, and Ax= ) Ay, with Ay, =Aty,

Iest Ted/

(79)

Equivalently, we obtain the update for the deviatoric stresses
with s denoting the deviatoric trial stresses as

s =2%—2G ) Ay,v, with

Tew?

s =2G["*'e— "ep]. (80}

Moteovet, the updated Schmid stresses follow in terms of the
trial Schmid stresses and the incremental slip rates as

" =t — Z A?]’T{]‘

Jesof

(81)

Finally, the unknwon incremental slip rates Ay, are then
determined from the solution of the implicit algorithmic
consistency condition

Il-de n+l

1—7,(" + Ax) = 0. (82)

Thereby, one step of the local Newton iteration for the Ay, is
given in combination with a projection onto Ay,eR, as

6%"“@1: —ny—H=~— hy

~ Ay, = max{(A'y,—i— > B! tP,), 0}-
Jes/

In computational single crystal plasticity we typically encounter
two major difficulties. Firstly, the choice of the active slip

systems is ambiguous and thus not trivial. Therefore, we resort
to an algorithm advocated by (Cuitifio and Ortiz, 1992) which

(83)

includes the most loaded slip system into the active set after the
local Newton iteration, based on the old active set, has con-
verged. This outer loop is repeated until all yield conditions
are satisfied, The problem of controlling the active slip
systems has recently attracted much interest. Alternatively,
thermodynamical considerations suggest to base the choice of
the active slip systems on the local dissipation power.

Secondly, the active slip systems might not be linearly
independent, thus prohibiting the inversion of the /2, matrix
necessary for the local Newfon iteration. Here we apply a back
substitution filter technique proposed by (Borja and Wren,
1993) to suppress the linear dependent equations. Typically,
this problem is not encountered in classical algorithmic
treatments of multi-surface elasto-plasticity with linearly
independent constraints as discussed in detail in (Simo,
Kennedy and Govindjee, 1988). The integration algorithm is
summarized for convenience in Table 3.

Finally, by linearizing the stress update formula in Eq. 80
and exploiting d@,=0 for all slip systems Ie.«/ we obtain

ds=2Gde—2G ), dyv,

les/

with d®,=2Gv:de— ) h,dy,=0

Jes/

(84)

and thus the algorithmic tangent operator, necessary for the
optimal convergence of the global Newton-Raphson equilib-

Table 3. Integration Algorithm for Small $train Single Crystal Plasticity

1. Increment [nitialization ;= 2G v v, &/ = {J and Trial State

- +1 = ege e = .
s=2G[""'e="e,] ‘1;=‘s1y, ‘k="w ‘@ =°r—1,(x)

»

Iteration Initialization ""'@y =, ""'x=*%¢ and Ay, =0

3. Newton Step with Iteration Matrix hy, =, + H (**'x), Projection
and Filter

Ay = maX{(A}'ﬁ Y a" "“cD,), 0} o = (Ay,=0)

Jes!

4, Tteration Update

o=ty — Y Ay ny "=+ 3 Ay,

Jesd Teof

"+1CDJ= _T (n+l )

5. Check Residuum for Active Slip Systems

If Y |["™'@F=Tol* then Goto3

leo/
6. Check Residum for All Slip Systems
with "' @ = max{"*' @, 0}

if i{l"“(ﬁﬂl;’[‘olz then & =/ Ul{max""'d})

I=1

and Goto 2

7. Increment Update

ntlg=fg—2G Y Ay v, "=+ Y, Ay,

leo/ Ted

8. Algorithmic Elasto-Plastic Tangent Operator

:p =Cg— 4G? Z Ky [sl®ml]sym® [SI ® ml]sym

Lies/
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rium iteration, is given by Observe that the structure of the algorit_l_lmic tangent operator
is preserved with only h substituted by k", Thus, the singularity
do=&de with &= &,—4G' Y Hv®v,. (85)  of the algorithmic tangent operator is excluded as long as
Ljcui

lat sl
Please recall from the discussion in the previous section on H"#0 or HY#0~H#0 or m#0 and T, #0.
diffuse failure that &, is singularized as soon as the slip systems (90)
cease to harden isotropically with H = 0. Thereby, the active _ ‘ ) _ _ .
flow directions v, span the space of critical strain increments The resultmg algorithm is forma!ly 1F1ent1cal to that summarized
de_. Moreover it is remarkable, that the algorithmic tan- in Table 3 with only a few substitutions, e.g. for @, 7, and
gent operator &7, coincides with the differential format of the H,,. It turns out in the computations that this formulatxc?n is
tangent operator &, which is due to the linearity of the yield much more robust even in the nearly rate independent limit

conditions of . Usually for common plasticity models which is obtained as m — 0, e.g. by setting m = 0.01.
as e.g. the v. Mises model the operators £ and & differ due to
finite load steps.

Compression problem of a square panel
83 This section is devoted to the analysis of a representative plane
Extension to rate dependent single crystal plasticity strain BVP incorporating single crystal plasticity. Thereby, it
1t is common in single crystal plasticity to allow for rate is our objective to compare the failure modes and load car-
dependent behaviour by stating explicitly a viscoplastic rying capabilities for different orientations of the crystal
evolution law for the slip rates 7, on the slip systems I which slip systems with respect to the global laboratory frame.
are activated as soon as the yield condition is violated The homogeneous square panel of single crystal material

with side lenght of 10 mm is subjected to uniaxial compression

L between two rigid platens applied by displacement control,
P=1-1,>0~>p=y H}T—] - I:I (86)  gee Fig. 3. Thereby, the specimen is compressed quasi-statically

7 with a constant process velocity of 10 ~* mm/s until a maximum
Here y, denotes the reference slip rate and m is the rate compaction of 4% is obtained. The contact between the platens
dependence parameter, To incorporate this type of rate and the specimen is modelled as ideal sticking thus enforcing
dependence into the algorithm described above the viscoplastic an inhomogeneous displacement pattern. In order to capture
evolution law for the shp rates 7, is jntegrated bY the EBuler localized failure modes and to avoid volumetric locking in quasi
backward method and the result is subsequently reformulated ~incompressible plain strain computations we employ QLE4
into an implicit equation for the determination of the enhanced elements developed by (Simo and Rifai, 1990). The
incremental slip rates Ay, whole panel is discretized into 20 x 20 elements in order to

allow for nonsymmetric failure modes which will auto-
- Ay, " matically be triggered by nonsymmetric orientations of the
L=,k +AK)| =41 T ith to the global
Ay, slip systems with respect to the global axes.
The material parameters are chosen to model a nearly
rate independent Al-Cu alloy with Lamé constants
= 2 ! 2 i
Here, Ay, abbreviates Aty,. Note that this equation resembles L,_ 35104.88 N/mum” and G S, 23427'2,5 N/mn’, intial shear
S . o . yield stress 7, = 60.84 N/mm’, saturation strength 7, =
the algorithmic consistency condition of the rate independent 109,51 N/mm?, initial hardeni te H. — 541.48 N/ant, rat
formulation and thus its implementation necessitates only ) [, NILal RArcening rate o = o&.. i, rate

CES I S T - .
@ ="""7,—17,=0 with

(87)

marginal modifications to the basic algorithm. Moreover, it serf1ltgv'1§y11‘); rametetr m 1= O’OIt antd ffere?§e shear sttraln rate

trivially reduces to the rate independent case by setting m = 0. Yo 50 . these material constants co not incorporate @

Finally, one step of the local Newton iteration for the Ay, is softening behaviour into -the constitutive description. Th.ere—

given in combination with a projection onto Ay,eR, in fore, as a phenomenological model of damage effects, a 11nea_r

standard form as S softening term H x with H, = H,/12 is appended to the defini-
tion of the critical shear flow stress t,. For the kinematics of

Dy, &= —n,—H,=—F, the crystal we assume the Asaro planar double slip model.

7 I i i

@Ay[=max{(Ay, + ) E”(T),) 0}- (88) Fy

Jest l |
d f =0°

Thereby, the iteration operator h, for the local Newton iteration s o OS Ié=_325314%%82% w/rpnrrfg
is given with the algorithmic viscoplastic hardening moduli 2 ! T _ 60.84 IN Jmm2
H;, which consist of two contributions resembling a kind of M TO = 0'9.51 N/mm2
latent and self hardening HT) — 541.48 N/mm?
_ m = 0.01
H, =H"(Ay,) + HY(Ay)) 4, ms Yo =10%

t
A m mr A m—1 i F
=Hl:——y—'+ ] +——1[—y—’+1} 5,1 ®
Ay, Aye | Ay, Fig. 3. Single Crystal Compression Problem of a Square Panel



Thereby the two slip planes are symmetrically oriented with
+ 30° about a d direction which itself is specified by the angle
0 enclosed by the d the global e, directions.

In the following we investigate slip system orientations
which are characterized by § =0° + n x 15° with n=0,1,2,3.
Thereby, different failure modes emerge. Moreover, it turns
out that the computations for n > 3 render identical load
carrying results compared to those obtained with n < 3,
whereby the deformed configurations are symmetric counter-
parts to those which are displayed in Figs. 4 to 7. Therefore,
we exclusively concentrate on the cases with = 0,1,2,3.

In particular, the deformed configurations, magnified by five,

O = 45°
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/
|
]
!
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/
/
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\
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| I
| i

in Figs. 4and 5 for n =0 and n = 1 document a strong tendency Fig. 7. Deformed Configuration 6 = 45°

towards localized failure modes. On the other hand, Figs. 6
and 7 reveal a less emphasized shear band development.

Obviously, the symmetric § = 0° slip system orientation results in a symmetric deformation mode. Counterintuitively, the

0=0°
11 [ 1
1
1
[
!
|| |1
Fig. 4. Deformed Configuration 8 =0°
0=15°
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Fig. 5. Deformed Configuration 8 =15°
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[
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Fig, 6. Deformed Configuration § = 30°

non-symmetric § = 45° slip system orientation renders as
well a symmetric deformation mode as displayed in Fig. 7.
Remarkably, the shear band in Fig. 5 develops perpendicular
to the orientation of the most active slip system 2.

The resalting load displacement curves for the different
orientations of the slip systems are reported in Fig. 8. Thereby,
the peak load increases with the decreasing tendency towards
localization. Moreover, it turns out that we obtain the identical
results for the n =2 and n =4 as well as for the n=1 and
n =5 orientation. Due to the small amount of softening
introduced in order to model phenomenologically damage
behaviour, the load deflection curves merely drop down very
gently after peak load.

The tendency to develop localized or diffuse failure modes
is reflected in the distribution of the internal variable « depicted
in Figs. 9to 12, Again, in particular Figs. 9 and10 corresponding
to the # =0 and ¢ = 15° slip system orientations clearly
demonstrate localized failure modes. In contrast, the plastic
zones in Figs. 11 and 12 are characterized by a rather diffused
distribution.

Finally, the activity of the two slip systems is highlighted
in Figs. 13 and 14 for the basic 0 = 0° case. Please note, that the
incremental shear rates Ay, associated with the individual slip

4000

3000

2000 -

Applied load

1000 40=0
0®=1575
B O =30, 60
0 Q=45
0 T 7 T T
0 0.1 0.2 0.3 04 0.5

Deflection of top surface

Fig. 8. Load Deflection Curves § =0°, 8 = 15°, 0 =30°, § = 45°




hardening variable x @=0°

7,

Fig. 9. Distribution of Hardening Variable § =0°

hardening variable @=15°

hardening variable ¥ ®=130°

i

Fig. 11. Distribution of Hardening Variable 0 = 30°

hardening variable « ®=45°

Fig. 10. Distribution of Hardening Variable # = 15°

systems take their maximum values within localized zones
which are almost perpendicular to the orientation of the slip
direction s,.

10

Summary and conclusions

The objective of this work was the analysis of instability
phenomena within the framework of multisurface elasto-
plasticity.

To this end, first the condition for diffuse failure,
characterized as the stationarity condition for the stress state,
has been investigated. As a result, the elasto-plastic tangent
operator loses positive definitness as soon as all active con-
straints cease to harden simultaneously with the space of
critical strain rates spanned by the flow directions, Thereby, the
analysis relied on the simple structure of the multisurface
elasto-plastic tangent operator in the form of a sum of rank

Fig. 12. Distribution of Hardening Variable 6 = 45°

1 updates which is subsequently mirrowed as well in the
structure of the localization tensor.

The localization tensor has been the prime quantity in the
subsequent establishment of the general localization or rather
admissibility condition for the maintainance of a spatial
discontinuity of the velocity gradient field. In this context we
distinguished the conditions for the onset of continuous and
discontinuous localization for the case of multisurface
elasto-plasticity. Thereby, the basic case of continuous
localization is characterized by further plastic loading of all
active constraints on both sides of the anticipated discontinuity
whereas in the limiting case of discontinuous localization the
domain on the one side of the discontinuity completely un-
loads elastically while the domain on the other side continues
loading plastically for all active constraints.

The investigation of the critical hardening moduli allowing
for the onset of continuous localization in the general multi-



internal variable Ay,
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Fig. 13. Incremental Shear Rate 1. Slip System 6 = 0°
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Fig. 14. Incremental Shear Rate 2. Slip System 8§ = 0°

surface case then leads to a particular eigenvalue analysis to
compute the determinant of a matrix with multiple rank one
updates. As a result, for multiple active constraints the
determinant of the localization tensor was conveniently
evaluated in terms of the @ matrix containing the hardening
moduli in a simple fashion. On the one hand, the critical
hardening moduli, allowing for the onset of continuous
localization, may be extracted from the @ matrix. On the other
hand, the condition for the onset of discontinuous localization
is determined by negative spectral properties of the symmet-
rized @ matrix. Thus, the analysis reveals the important
result that in contrast to the single surface case discontinuous
localization may precede continuous localization if multiple
constraints are active.

The results for the general multisurface plasticity case with
multiple active constraints were emphasized for the special

cass of triple, double and single surface plasticity. As a major
result, for a popular family of hardening laws the analysis of
continuous localization boils down to the simple examination
of the so-called # matrix to render the critical hardening
moduli which allow for the onset of localization. Thereby, the
remarkable simple results for either latent or pure self hardening
of the slip systems, highlighting the characteristic similarities
to the wellknown single surface case, have been elaborated.
As a numerical counterpart we briefly addressed the com-
putational setting of single erystal plasticity as the paradigm
for multisurface elasto-plasticity. The restriction to the geo-
metrically linearized formulation allowed in particular for
a simple and transparent integration algorithm. Thereby, to
allow for rate dependent behaviour and to avoid the impend-
ing singularity of the tangent operator in the perfect plastic

case, we applied a widely accepted extension of both the

model and the algorithm by incorporating a viscoplastic
evolution law for the slip rates. As a demonstration of the
dramaticinfluence of the slip system orientation on the resulting
localized failure mode and load carrying capacity of single
crystals the algorithm has then been applied to the examination
of a plane strain panel under compression.

In summary it is believed that the present work serves as
an extension of the traditional localization analysis where only
a single active constraint is taken into account by providing
a canonical representation which allows for the examination
of the localization properties in the general multisurface case.
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