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Abstract
Many drugs interact with ion channels in the cells of our heart and trigger heart rhythm disorders with potentially fatal
consequences. Computational modeling can provide mechanistic insight into the onset and propagation of drug-induced
arrhythmias, but the effect of drugs on the mechanical performance of the heart remains poorly understood. Here we establish
a multiphysics framework that integrates the biochemical, electrical, and mechanical effects of drugs, from cellular excitation
to cardiac contraction. For the example of the drug dofetilide, we show that drug concentrations of 5x and 8x increase the heart
rate to 122 and 114 beats per minute, increase myofiber stretches by 5%, and decrease overall tissue relaxation by 6%. This
results in inter-ventricular and atrial-ventricular dyssynchronies and changes in cardiac output by−2.5% and +7%.Our results
emphasize the need for multiphysics modeling to better understand the mechanical implications of drug-induced arrhythmias.
Knowing how different drug concentrations affect the performance of the heart has important clinical implications in drug
safety evaluation and personalized medicine.

Keywords Cardiac mechanics · Cardiac electrophysiology · Drug-induced arrhythmia · Computational whole-heart
modeling · Electro-mechanical coupling · Hemodynamic coupling

1 Motivation

All medications have side effects. Drug-induced ventricu-
lar arrhythmia and sudden cardiac death are rare but severe
adverse events that should be avoided at all cost. Conse-
quently, when a new drug is developed, the proarrhythmic
potential of the new compound is a key concern. The
current gold standard pharmacological pro-arrhythmic risk
stratification combines in vitro experiments to quantify phar-
macological blocking of specific cardiac ion channels, with
electrocardiographic large animal experiments and clinical
studies focusing on changes in tissue activation duration.
Although these biomarkers show good sensitivity, they are
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costly and have poor specificity, potentially blocking safe
new drugs from ever reaching the market [1]. To develop
novel and more accurate drug-induced arrhythmia biomark-
ers, multiphysics multiscale models mechanistically couple
what a pharmacologist sees in a single cell experiment towhat
a physician sees in a clinical electrocardiogram [2]. As part
of these efforts, our group has recently proposed an electro-
physiological exposure-response simulator that integrates the
interaction between multiple drug compounds and specific
ionic currents at the cellular scale with the intrinsic cardiac
anisotropic conductivity at the tissue scale and the transmu-
ral heterogeneity and tissue organization at the organ scale
[3]. This framework allows us to conduct in silico drug tri-
als formultiple drugs at various concentrations [4], providing
risk categories that correlate well with reported drug-induced
arrhythmia incidence [5]. Based on these results, we trained
and validated a binary risk classifier that accurately predicts
the critical pro-arrhythmic drug concentration [6,7]. From
a clinical perspective however, a binary risk classification
only provides a limited insight into the malignancy of the
arrhythmic event. Dependent on the periodicity of the drug-
induced arrhythmia, the cardiac output can increase, decrease
or stay relatively constant. Consequently, short-duration non-
sustained arrhythmogenicity can have multiple outcomes for

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00466-022-02146-1&domain=pdf
http://orcid.org/0000-0002-4948-5585
http://orcid.org/0000-0002-2612-463X
http://orcid.org/0000-0002-6283-935X


1398 Computational Mechanics (2022) 69:1397–1411

the patient. In this study, we extend our framework to pro-
vide insights into the changing cardiac output of the heart at
varying arrhythmogenic drug concentrations. More specifi-
cally, we use the electrophysiogical activation sequence to
drive biomechanical tissue contraction in the human heart
and study the resulting hemodynamic effects on the whole-
body cardiovascular circulation. Doing so, we compute a
drug’s pharmacological potential to impede efficient propul-
sion of blood through the heart chambers and the rest of the
body. As such, we extend what a physician sees in a clini-
cal electrocardiogram to what a patient feels and how likely
they are to survive specific dosage-dependent drug-induced
arrhythmia events.

2 Methods

2.1 Cardiac electrophysiology

We simulated the electrophysiological behavior of cardiac
tissue using the monodomain model [8]. The main variable
of the monodomain model is the transmembrane potential φ,
the difference between the intra- and extra-cellular potentials.
The transmembrane potential is governed by a reaction-
diffusion equation [9],

φ̇ = div(D · ∇φ) + f φ , (1)

where f φ are the ionic currents across the cell membrane
and D is the conductivity tensor,

D = D‖f ⊗ f + D⊥ [ I − f ⊗ f ] . (2)

which we further decomposed into fast D‖ and slow D⊥
signal propagation parallel and perpendicular to the cardiac
mucle fiber direction f , where I is the second-order unit
tensor [10]. In general, the ionic currents f φ(φ,q(φ); t)
are functions of the transmembrane potential φ and a set
of state variables q(φ) [11,12], where the state variables
themselves are governed by ordinary differential equations,
q̇ = g(φ,q(φ); t) . The number of currents and state vari-
ables determines the complexity of the model and varies for
different cell types.
To simulate the electrophysiological behavior of the Purkinje
fiber network, we chose the Stewart model for human Purk-
inje fiber cells [13]. A characteristic feature of this model
is the automaticity of its action potential, which enables the
cells to self-excite without an external stimulus. This model
is based on 14 ionic currents

I = ICaL + INa + ICab + INab + IKr + IKs + IK1

+ Ito + If + Isus + INaK + IpCa + IpK + INaCa
(3)

that are defined through 20 state variables.
To study the spatiotemporal action potential evolution in the
myocardium,we selected theO’Hara-Rudymodel for human
ventricular cardiomyocytes [14]. This model was developed
based on a vast amount of human experimental data and
includes description of key ionic currents for drug-induced
arrhythmias.More specifically, themodel is based on15 ionic
currents,

I = ICaL + INa + ICaNa + ICaK + ICab

+ INab + IKb + IKr + IKs + IK1

+ Ito + INaK + IpCa + INaCa,i + INaCa,ss

(4)

of which we replaced the fast sodium current INa of the origi-
nal O’Hara-Rudy model with a modified fast sodium current
of the ten Tusscher model [15] tomodel propagation in tissue
scale simulations [16]. These 15 transmembrane ion currents
are defined through a total of 39 state variables. To account
for regional specificity,we reparametrized the cardiomyocyte
cell model for three different cell types: endocardial, mid-
wall, and epicardial cells [14].
We incorporated drug effects by blocking the currents of the
pharmacologically affected ion channels on the Purkinje and
cardiomyocyte cellmembrane. Based on discrete experimen-
tal patch clamp measurements of the fractional ion channel
block at various drug concentrations [17], we fitted a Hill-
type equation

β = Ch

ICh
50 + Ch

, (5)

to describe fractional blockage β at any possible drug con-
centrations C . Here, the drug’s concentration-specific ion
channel block is completely described by two parameters:
the Hill exponent h and the concentration IC50 required
to achieve a 50% current block. Here we focused on the
drug dofetilide, a selective IKr blocker, characterized by
the experimentally estimated half maximal inhibitory con-
centration IC50,Kr = 2.0nM and the Hill exponent hKr =
0.65 [17]. These parameters are consistent with a prospec-
tive randomized controlled clinical trial studying the effect
of dofetilide administration on QTc prolongation in healthy
patients [5,18]. To apply the drug at a desired concentration
C , we calculated the fractional blockage βKr and scaled the
rapid delayed rectifier potassium ion channel conductance,

I drugKr = [ 1 − βKr ] IKr (6)

by multiplying the baseline current IKr with the fractional
blockage [ 1 − βKr ]. We focused on IKr blockages of 75%,
80%, and 90% [19], which corresponds to effective thera-
peutic free plasma concentrations of 10.8 nM, 16.9 nM and
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58.8 nM, or to concentrations of 5x, 8x, and 28x when nor-
malized by the maximal effective free therapeutic plasma
concentration of 2.0nM [20].
To solve the governing Eqs. (1–6) we adopted the finite
element software package Abaqus [21]. We exploited the
structural similarities between the electrophysiological prob-
lem and a heat transfer problemwith a non-linear heat source.
Wediscretized the transmembrane potential as a nodal degree
of freedom and the ionic currents and gating variables as
internal variables [10]. Motivated by the small time step
size to resolve the fast dynamics during the initial phase of
the action potential, we adopted an explicit time integration
scheme.

2.2 Cardiac mechanics

To model the mechanical behavior of cardiac tissue, we
solved the equilibrium equations of Newton’s law,

div(σ ) + ρ f ϕ = 0 with σ = σ pas + σ act , (7)

whereσ is theCauchy stress tensor thatwe additively decom-
posed into passive and active parts σ pas and σ act, ρ is the
material density and f ϕ is the body force per unit mass. We
adopt the kinematics of finite deformation in terms of the
deformation field ϕ,

F = ∇ϕ and F = F̄ · Fvol , (8)

where F is the deformation gradient that we multiplicatively
decomposed into a volumetric part, Fvol = J 1/3 I , and an
isochoric part, F̄ = F · F−1

vol = J−1/3F, with J = det(F)

denoting the Jacobian. To characterize tissue stretch, we used
the right Cauchy-Green deformation tensor, C = Ft · F,
its isochoric counterpart, C̄ = F̄

t · F̄ = J−2/3C, and its
invariants,

Ī1 = C̄ : I Ī4 f = C̄ : [ f 0 ⊗ f 0 ]
Ī4 fs = C̄ : [ f 0 ⊗ s0 ]sym Ī4s = C̄ : [ s0 ⊗ s0 ] ,

(9)

where f 0 and s0 denote the cardiac muscle fiber and sheet
directions in the undeformed configuration.
We characterized the passive behavior of the tissue through
a hyperelastic strain energy function,

ψpas = ψvol + ψ̄iso + ψ̄ani , (10)

where ψpas denotes the passive strain energy that we addi-
tively decomposed into a volumetric part ψvol [22], an
isotropic isochoric part ψ̄iso, and an anisotropic isochoric
part ψ̄ani [23],

ψvol = 1

2d
[ J 2 − 2 ln J − 1 ]

ψ̄iso = a

2b
exp ( b [ Ī1 − 3] )

ψ̄ani = a f

2b f
[ exp ( b f [ Ī4 f − 1 ]2 ) − 1 ]

+ as
2bs

[ exp ( bs [ Ī4s − 1 ]2 ) − 1 ]

+ a fs

2b fs
[ exp ( b fs Ī

2
4 fs ) − 1 ] . (11)

Following the standard principles of thermodynamics, we
expressed the passive Cauchy stress,

σ pas = F · 2
J

∂ψ

∂C
· Ft = σ vol + σ iso + σ ani (12)

in terms of its volumetric, isotropic and anisotropic isochoric
parts [24],

σ vol = [ J − 1/J ]/d I

σ iso = a exp( b [ Ī1 − 3 ] )/J B : P
σ ani = 2a f [ Ī4 f − 1 ] exp( b f [ Ī4 f − 1 ]2 )/J [ f ⊗ f ] : P

+2as [ Ī4s − 1 ] exp( bs [ Ī4s − 1 ]2 )/J [ s ⊗ s ] : P
+2a fs Ī4 f s exp( b f s Ī

2
4 f s )/J [ f ⊗ s ]sym : P , (13)

where B = F · Ft is the left Cauchy Green deformation
tensor, f = F · f 0 and s = F · s0 are the deformed fiber and
sheet directions,P = I− 1

3 I⊗ I is the fourth-order deviatoric
projection tensor, and I is the fourth-order unit tensor [25].
We described the active stress contribution using a time-
varying elastance model [26]. We assumed that depolar-
ization causes the inflow of calcium ions into the cells,
and myocyte contraction. We also acknowledge the Frank-
Starling effect, by introducing an active stress that depends
on both the regional calcium concentration Ca2+ and on the
sarcomere stretch state λ f ,

σ act = Tact ( [Ca2+ ], λ f ) [ f ⊗ f + ν s ⊗ s ] , (14)

where ν describes the active stress interaction between adja-
cent muscle fibers along the sheet direction s [27].
We solved the governingEqs. (7–14)within thefinite element
software package Abaqus using the heat transfer analogy
between electrophysiology and temperature [21]. We set up
a Fortran-based user-defined material subroutine to describe
the Cauchy stress with respect to the deformation invariants,
membrane potential, and time. We adopted all mechanical
constitutive parameter values from our prior work [28].

2.3 Finite element implementation

The basis for our simulation is the Living Human Heart
Model, an anatomically accurate four-chamber model of
the healthy human heart [29,30]. The underlying anatomic
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geometry is based on magnetic resonance imaging of
a healthy, 30-year old, 50th percentile U.S. male [31].
Images were reconstructed from 0.75mm thick slices using
a medium soft-tissue kernel with retrospective electrocar-
diogram gating. Data acquisition and reconstruction were
performed during 70% diastole. The resulting anatomically
accurate model includes all four chambers, and the major
vessels including the aorta, the pulmonary arteries and the
superior vena cava. We prescribed the complex myocardial
and atrial architecture of myofiber f 0 and sheet s0 orienta-
tions using rule-based algorithms based on observations from
histology and DT-MRI [28,32,33].
In this study, we neglected mechano-electrical feedback [34]
and solved the electrophysiological and mechanical problem
using a staggered approach. The balance between accu-
racy and computational cost with respect to element size
and critical time step for the defined electrophysiological
and mechanical problem leads to two different sets of spa-
tiotemporal discretizations [35,36]. Consequently, we used
two different meshes; one to solve the electrophysiological
problem in both ventricles specifically and one to subse-
quently couple the electrophysiological results to the full
heart model’s mechanical behavior. For each case, we simu-
lated five seconds without any drug administration followed
by an additional five seconds of drug exposure to study the
effect of dofetilide on the mechanical behavior and pump
efficiency of the heart.

2.3.1 Electrophysiologica drug response

Ventricular tissue model Given our focus on drug-induced
ventricular arrhythmogenesis and the fact that the atria are
electrically isolated from the ventricles, we concentrated on
electrophysiological drug effects in the ventricles. Motivated
by the relationship between element size and critical time
step size in explicit methods, we converted the ventricular
geometry into a regular spatial discretization of cube ele-
ments with a constant edge length of 0.3mm across the
entire domain. This results in a discretization with 6,878,459
regular linear hexagonal finite elements, 7,519,918 nodes,
and 268,259,901 internal variables. For the flux term, we
included tissue anisotropy using the fiber definitions f 0 and
assigned longitudinal and transverse conductivities D‖ =
0.090mm2/msand D⊥ =0.012mm2/ms [37]. For the source
term, we employed a body flux subroutine to incorporate the
ionic currents Iion in the solid element formulation [21]. To
account for and assign regional variations in cell type, we ran
a series of Laplace problems using the finite element mesh
with different essential boundary conditions [38]. From the
solutions, we defined the different cell types across the wall,
20% of endocardial cells, 30% of mid wall cells, and 50% of
epicardial cells. This arrangement ensures positive T-waves
in the healthy baseline electrocardiogram [39].

Purkinje network model The inclusion of the Purkinje net-
work is critical to model correct excitation patterns [9]. We
created the network as a fractal tree that growson the endocar-
dial surface [40]. This resulted in a discretizationwith 39,772
linear cable elements, 39,842 nodes, and 795,440 internal
variables. For these Purkinje fiber elements, we developed
a linear user element with a discrete version of equation 1.
We only connected the Purkinje network to the ventricular
tissue at the terminals of the fractal tree [41]. For these con-
nections, we used 3545 resistor elements with a resistance
of 1.78Ωm, i.e., χ = 140mm−1 and Cm = 0.01μF/mm2

[37], between each endpoint of the network and the closest
node of the ventricular mesh [42]. This allowed us to adopt
distinct cellular models with different resting potentials for
ventricular cells and Purkinje cells. Including resistor ele-
ments ensures a bi-directional conduction between Purkinje
network and surrounding tissue. For the flux term, we set a
conductivity of D = 3.0 mm2/ms.
Electrocardiogram computation To calculate pseudo elec-
trocardiograms, at every point x ∈ B across the heart we
projected the heart vector ∇φ onto the direction vector
∇(1/||r||) and integrated this projection across the entire car-
diac domain B [9,43],

φe(xe) = −
∫
B

∇φ · ∇ 1

||r||dV with r = ‖xe − x‖ . (15)

The vector r points from current point x to the electrode
position xe. To mimic the recording of pre-cordial lead V3 in
the clinical electrocardiogram, we placed the electrode 2cm
away from the left ventricular wall. This pre-cordial lead
is commonly used to study T waves and QT intervals [44],
which are critical to assess the risk of drug toxicity [45].

2.3.2 Mechanical drug response

Electromechanical coupling For the mechanical problem,
a coarser spatial discretization suffices to compute accu-
rate responses [29]. Therefore, we discretized the ventricles
using 192,040 linear tetrahedral elements with a mean
edge size of 2.5 mm and 44,182 nodes. Consequently, the
electromechanical coupling required the interpolation of a
three-dimensional 7,519,918 nodal temperature field to a
three-dimensional 44,182 nodal temperature field. This was
accomplished using Abaqus’s temperature field interpola-
tion functionality between dissimilar meshes in subsequent
analyses [21]. The full heart mesh, including atria and prox-
imal vasculature parts, comprised 76,282 nodes and 290,723
elements and local fiber- and sheet-orientation assignments.
This discretization introduced 228,846 degrees of freedom
for the vector-valued deformation. We constrained the heart
kinematically through homogeneous Dirichlet boundary
conditions at the outlets of the proximal vasculature [30].We
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Fig. 1 Spatial discretization to compute the electrophysiological and
mechanical solution. Amismatch in required spatiotemporal discretiza-
tion to solve the electrophysiological and mechanical problem leads to
two different mesh sizes. To quantify the effects of the drug dofetilide
on the activation sequence of the heart, we discretized the ventricles
using 39,772 linear cable elements describing the Purkinje fibers and

6,878,459 regular linear hexagonal elements describing the myocardial
tissue. Concomitantly, we computed the biomechanical behavior of the
ventricles using a mesh consisting of 192,040 tetrahedral elements. We
meshed the atria and proximal vasculature using 98,683 additional tetra-
hedral elements

decribed the atrial action potential,which is not explictly sim-
ulated in our electrophysiological ventricular drug-exposure
response simulator, using a physiological amplitude step
function [46]. We reported quantitative myofiber stretches
across the left and right ventricular wall according to the
temporal median value and the 95% confidence interval.
Coupling to cardiovascular circulation In order to provide
realistic loading conditions and hemodynamic boundary con-
ditions for the atria and ventricles in the heart model, a
closed-loop lumped parameter model was set up in Abaqus
[29]. This lumped parameter model comprises the surface-
based fluid cavity representation of the four chambers and
additional unit cube fluid cavities representing the arterial
and venous systemic and pulmonary circulation. We mod-
eled the mitral/tricupus valve, the aortic/pulmonary valve,
and the systemic/pulmonary resistance flow resistances
between these chambers using fluid exchange resistors. We
incorporated chamber-specific structural compliances of the
additional arterial, venous, and pulmonary chambers using
capacitors on one free wall of the unit cube fluid cavities.

Since we deduced the geometry of the heart at 70% dias-
tole with the heart already hemodynamically loaded, we
estimated the in vivo stress state at the beginning of the sim-
ulation using an inverse prestressing method [47,48].
Pressure-volume loops and cardiac output The pressure and
volume in the left and right ventricle was computed using
the hemodynamic fluid-cavity definition of both chambers
in Abaqus. From these measurements, the pressure-volume
loops in both ventricles were extracted. We computed
the average stroke volume using the last three simulated
dynamically changing pressure volume loops. The average
case-specific heart rate was computed based on the aver-
age time difference between the last three strokes. Similarly,
the time difference between the maximum left and right
ventricular contraction was extracted from the last three
ventricle-specific contraction sequences. The instantaneous
left and right ventricular cardiac output was computed based
on the outflow from the left and right ventricular fluid cav-
ity. A 2-second rolling average of this instantaneous outflow
expressed as average outflow per minute provided a more
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descriptive insight on how the cardiac output changes with
respect to different administered dofetilide drug concentra-
tions.

3 Results

3.1 Electrophysiological drug effects

Figure 2 and the Supplementary Video show the different
activation patterns at healthy baseline, and dofetilide 5x,
dofetilide 8x and dofetilide 28x administration. These cases
correspond to 0%, 75%, 80%, and 90% block of the Ikr
ion channel current. For the baseline case, where no drug is
applied, we observe a regular activation sequence that repeats
itself ten times in the electrocardiogram. The QRS complex,
which represents the fast depolarization driven by the Purk-
inje network, is preceded by a P wave, which highlights the
atrial activation.

By blocking the Ikr current 75%, induced by adminis-
tration of 5x dofetilide five seconds after drug-free pacing,
we see a disruption in the periodic rhythm of the ventricles,
leading to arrhythmogenesis that shares features of torsades
de pointes. The first electrophysioligcal depolarization wave
after drug administration is still driven by the Purkinje net-
work, as shown in the first snapshot, followed by a delay in
repolarization, which leads to a secondary activation caused
by early afterdepolarizations in a group of midwall cells.

The case of 80% block of Ikr induced by 8x dofetilide also
shows drug-induced arrhythmogenicity, which is qualita-
tively similar to the 75%block case.However, the differences
in both activation patterns and electrocardiogram recordings
highlight the chaotic nature of the arrhythmia, where only a
small perturbation in Ikr block leads to a significantly differ-
ent temporal evolution of the transmembrane potential. At 5x
dofetilide, the left and right ventricle first get activated from
base to apex and subsequently from right to left ventricle. At
8x dofetilide administration, the depolarizationwave evolves
towards amostly baso-apical ventricular activation sequence,
where left ventricular depolarization slightly precedes right
ventricular depolarization.

The final case of 90%block of Ikr caused by 28x dofetilide
shows an arrhythmic event that is closer to ventricular fibril-
lation, as there are multiple spiral waves driving contractile
tissue activation. This chaotic behavior is reflected in the
electrocardiogram, where the QRS complexes during the
arrhythmia are less defined, with a lower amplitude.

3.2 Mechanical drug effects

Figure 3 and the Supplementary Video highlight the effect
that different drug concentrations have on the time sequence
of regional myocyte activation over time. The shown snap-

shots correspond to the time points fromFig. 2with a delay of
50 ms (to showcase the locally induced myocardial contrac-
tion following a depolarization wave). Figure 4 showacases
the left and right ventricular myofiber stretch evolution over
time during the five seconds after drug administration. For the
baseline no-drug case, the orchestrated depolarization wave
of both the left and right ventricle fromapex to base causes the
ventricles to contract collectively, pushing the blood volume
out to the systemic and pulmonary circulation in one coopera-
tive squeeze.More specifically, themyofiber stretches during
maximum contraction measure 0.766 (95% CI 0.704–0.828)
and 0.671 (95% CI 0.634–0.797) for the left and right ventri-
cles. Moreover, the myocardium is fully relaxed during the
atrial contraction, allowing an optimal additional filling of
the ventricles during the atrial kick. The myofiber stretches
at full relaxation amount to 1.070 (95% CI 1.021–1.134)
and 1.055 (95% CI 0.997–1.136) for the left and right ven-
tricles. The myofiber contraction and relaxation remain in
complete sync with an average absolute time difference of 25
ms between maximum left and right ventricular contraction.
For the left ventricle, we compute minimum and maximum
myofiber stretches of 0.704 and 1.139.

The 5x dofetilide-induced arrhythmogenicity leads to dis-
synchronous myocardial contraction and relaxation patterns
within the ventricles. Consequently, the myocardial tissue is
in active contraction and passive tension at the same time, as
can be seen from thewider shaded regions ofmyofiber stretch
variability in Fig. 4. In more detail, for dofetilide 5x we com-
pute left and right ventricular myofiber stretches of 0.776
(95% CI 0.730–0.837) and 0.689 (95% CI 0.642–0.804) at
maximum contraction and myofiber stretches of 1.030 (95%
CI 0.967–1.099) and 0.990 (95% CI 0.898–1.074) at max-
imum relaxation. The drug-induced torsadogenic activation
sequence leads to a general right-left ventricular contraction
dyssynchrony, during which the right ventricle contracts on
average 117ms prior to the left ventricle. Administration of
5x dofetilide leads tominimumandmaximum left ventricular
myofiber stretches of 0.710 and 1.208.

The mechanical effects of 8x dofetilide administration
are similar to 5x dofetilide, however an important difference
between both cases can be found in dyssynchrony. In con-
trast to 5x dofetilide, upon 8x dofetilide administration both
left and right ventricular contraction remain mostly synchro-
nized.We compute an average 25ms time difference between
left and right ventricular peak contraction, which agrees with
the no-drugbaseline case. Similar to 5xdofetilide, the left and
right ventricularmyofiber stretches after 8x dofetilide admin-
istration amount to 0.772 (95% CI 0.712–0.845) and 0.686
(95% CI 0.639–0.837) at maximum contraction, and 1.007
(95% CI 0.943–1.136) and 1.016 (95% CI 0.802–1.123)
at maximum relaxation. 8x dofetilide affects the minimum
and maximum left ventricular myofiber stretches measuring
0.712 and 1.187. For both 5x and 8x dofetilide administra-
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Fig. 2 Time evolution of the transmembrane potential for different con-
centrations of dofetilide. Snapshots are taken at different timepoints for
different cases of drug-induced IKr channel block, showcasing the con-
tractile and relaxing deformation in correspondence to the color-plotted

electrical activation pattern in the heart. At the top of each row, the
computed electrocardiogram signal is shown in black, where the grey
vertical lines depict the showcased snapshots for each specific case
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Fig. 3 Spatiotemporal evolution of the myofiber stretch for different
concentrations of dofetilide. Snapshots are taken at different timepoints
for each case, showcasing the effect that blocking of the IKr channel, in

correspondence to different administered concentrations of dofetilide,
has on the spatiotemporal contraction of the heart

tion, the maximummyofiber stretches are approximately 5%
higher compared to the baseline no-drug case, and typically
occur just prior to overall ventricular contraction. This effect
arises from the partial contraction of the myocardial tissue
during the interventricular pressure buildup phase, causing
the tissue that is not activated yet to stretch beyond the base-
line physiological stretch range. Concomitantly, the tissue
does not properly relax in between contraction waves, lead-
ing to 6% lower relaxation stretch compared to the healthy
baseline case. At the same time, the minimum left ventricu-

lar myofiber stretches at 5x and 8x dofetilide administration
remain relatively comparable to the no-drug baseline case,
showcasing the contractile capacity of the tissue is not heav-
ily compromised.

Upon 28x dofetilide administration, the spatiotemporal
stretch patterns in Fig. 3 are completely irregular, as can
be expected from ventricular fibrillation. Consequently, lit-
tle synchronicity in ventricular contraction and relaxation
remains as can be seen from the large shaded temporal
myofiber stretch variability shown in Fig. 4. The left and
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Fig. 4 Time evolution of the left and right ventricular myofiber stretch
for different concentrations of dofetilide. The temporal myofiber stretch
evolution is shown for the left (red) and right ventricle (blue) for differ-
ent administered concentrations of dofetilide. The solid lines showcase

the temporal median myofiber stretch valuefor each respective ventri-
cle whilst the transparent shaded regions represent the ventricle-specific
95% myofiber stretch confidence intervals

right ventricular myofiber stretches amount to 0.807 (95%CI
0.768–1.026) and 0.716 (95% CI 0.649–0.981) during maxi-
mum contraction and 1.014 (95%CI 0.894–1.178) and 0.977
(95% CI 0.854–1.092) during maximum tissue relaxation.
We compute maximum contractile myofiber stretches of
0.767 and maximum relaxing myofiber stretches of 1.179 in
the left ventricle upon 28x dofetilide administration. It should
be noted that periodicity in overall ventricular contraction-
relaxation starts to fade at this drug concentration, showcased
by the smaller amplitude of the median temporal myofiber
stretch evolution and the minimum left ventricular myofiber
stretches remaining relatively constant around 0.770–0.800
during the last three seconds. During the 28x dofetilide-
induced ventricular fibrillation, the right-left ventricular
dyssynchrony rises to a 92ms time difference between left
and right ventricular peak contraction. Similar to the 5x and
8x dofetilide cases, the maximum relaxed myofiber stretches
are approximately 4% higher compared to the baseline case,
whilst the median relaxed myofiber stretches are up to 5%
smaller. Interestingly, at this drug concentration, we start see-
ing a compromised contractile capacity of the tissue with left
ventricular maximum contractile myofiber stretches that are
approximately 8% weaker, and left ventricular median con-
tractile myofiber stretches that are approximately 5%weaker
compared to the no-drug baseline case.

Overall, the myofiber stretch variability amounts to a tem-
porally averaged standard deviation of 0.118, 0.114, 0.133 for
dofetilide 5x, 8x and 28x administration.Compared to the no-
drug baseline averaged myofiber stretch variability of 0.066,
it can be seen how dofetilide affects an effective synchro-
nized contraction of both ventricles, and leads to decreasing
cardiac pumping efficiency.

This decreasing cardiac pump efficiency is shown in more
detail with respect to the overall cardiovascular circulation
in Fig. 5. The no-drug baseline pressure-volume loop for the
left and right ventricle is shown in the left column. When
no drug is administered the stroke volume remains constant
at 72ml. At 5x dofetilide administration, the stroke volume

drops to 29ml and 20ml for the left and right ventricle. This
stroke volume change is mostly caused by a drop in the
end-diastolic volume, whilst the end-systolic volume stays
approximately the same. The average arrhythmic heart rate
after 5x dofetilide administration increases to 123bpm. At a
80% IKr channel block induced by a 8x dofetilide adminis-
tration, the stroke volume drops from 72ml to 35ml for both
ventricles. Again, the drop in stroke volume is mostly caused
by a smaller end-diastolic volume, whilst the end-systolic
volume stays approximately constant. Dofetilide 8x causes
the average arrhythmic heart rate to increase to 114bpm. At
a dofetilide administration of 28x, the stroke volume drops
to 20ml for the left ventricle and to 17ml for the right ven-
tricle. In this case, the drop in stroke volume is caused by
both a decrease in the end diastolic volume and an increase
in the end-systolic volume. The average arrhythmic heart rate
increases to 109bpm.

Figure 6 quantifies the combined effect of drug-induced
changing heart rates and stroke volumes on the instantaneous
and average cardiac output, denoted by a dotted and solid
line. The cardiac outputs for the left and right ventricle are
highlighted in red and blue. Shown here, 5x dofetilide admin-
istration leads to a +5% increase and a−10% decrease in the
cardiac output for the left and right ventricle. For 8xdofetilide
administration, the cardiac output has moderately increased
after 5seconds of drug exposure. More specifically, the left
and right ventricular cardiac output increased +11%and+3%
compared to the baseline cardiac output with no drug expo-
sure. A 28x dofetilide administration causes a severe −46%
and −64% decrease in left and right ventricular cardiac out-
put.

4 Discussion

Many drugs—not just cardiac drugs—can have serious side
effects. One of the most dangerous side effects entails the
development of cardiac arrhythmias. More specifically, the
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Fig. 5 The pharmacological effects of dofetilide on the ventricular
pressure-volume loops. Pressure-volume loops showcase the efficiency
and frequency of heart contraction for each studied case. For the no-drug
case, the pressure-volume loop remains the same. For a 75% IKr channel
block (dofetilide 5x), the end-diastolic volume decreases significantly

and fluctuates whilst the heart rate increases. For a 80% IKr channel
block (dofetilide 8x), the end-diastolic volume drops moderately and
the heart rate increases. For a 90% IKr channel block (dofetilide 28x),
the end-diastolic volume drops significantly and the end-systolic vol-
umes increase for both ventricles whilst the heart rate increases

Fig. 6 The pharmacological effects of dofetilide on the cardiac output.
Cardiac output for the left ventricle (LV - red) and right ventricle (RV
- blue) expressed instantaneously (dotted line - l/s) and as a 2-second

rolling average (solid line - l/min) for the normal case (left column), the
mild case (middle column) and the severe case (right column)

development of torsades de pointes—a specific type of poly-
morphic ventricular tachycardia characterized by a gradual
change in amplitude and twisting of the QRS complexes
around an isoelectric line on the electrocardiogram [49]—can
be especially lethal. Torsades de pointes are often transient
but can, in severe cases, lead to ventricular fibrillation causing
myocardial damage and even sudden cardiac death. Given
its often short-termed episodic nature, most torsadogenic
episodes remain under the radar [50,51], which leads to
limited knowledge on the clinical behavior of the heart dur-
ing such episodes. When picked up, the clinical evidence
of these arrhythmia typically confines itself to electrocar-

diogram recordings. Pressure-volume loop measurements or
flow measurements within a clinical setting are therefore
typically unavailable. In this work, we use computational
modeling to gather otherwise unattainable insights into the
mechanical behavior of the human heart during drug-induced
ventricular arrhythmogenic episodes.

To understand the genesis and development of drug-
induced ventricular arrhythmia, cardiac electrophysiology
needs to represent both the fast ionic subcellular mechanisms
and the slower spatiotemporal cell-tissue-organ scale diffu-
sion process in one and the same framework. To provide
accurate physiological outputs and compute potential spi-
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ral wave formation, we need a fine-scaled spatio-temporal
discretization of the computational domain [35]. Cardiac
deformation, however, is governed by smoother spatial and
slower temporal scales. This implies that we can solve
the mechanical balance equations with a coarser spatio-
temporal discretization of the computational domain [36].
Given this mismatch in required spatio-temporal discretiza-
tion and the exponential dependence of computation time
on the number of degrees of freedom [52], we adopted up
a unidirectional forward electromechanical coupling frame-
work: We first computed the electrical propagation of the
action potential through the ventricles using a fine-resolution
exposure-response simulator [8], and then solve the biome-
chanical contraction of the cardiac tissue driven by the
transmembrane potential. Since the contractility of the tissue
is critically affected by pre-load and after-load conditions
[53], we incorporated an active tension law that depends
on the local and temporal sarcomere stretch state λ f and
coupled the electromechanical heartmodel to a realistic zero-
dimensional surrogate lumped parameter network model of
the cardiovascular circulation.

We successfully build an electrophysiological model that
inherently captures the regional specificity of the ventricular
myocardiumand probes the dynamic interplay of its endocar-
dial,midwall, epicardial, and Purkinje cells [3]. By extending
thismodel with the dose-dependent effect of dofetilide on the
transmembrane ion channel currents, we developed a mech-
anistic exposure-response simulator that is able to predict the
three-dimensional excitation profiles and electrocardiogram
recordings shown in Fig. 2. The in silico predicted dose-
dependent torsadogenic risk of dofetilide agrees favorably
with clinical and experimental findings [4,8]. By extending
this multiscale framework to a multi-physics framework tak-
ing into account the mechanical behavior of the heart and its
hemodynamic interaction with the surrounding cardiovascu-
lar circulation, we are now able to compute the pharmaco-
logical effects that different dosages of dofetilide have on the
temporal mechanical behavior ofmyocardial tissue, as show-
cased in Figs. 3 and 4. Studying the phamarcological effects
of different dosages of dofetilide on cardiac pump efficiency
involves a complex interplay between regional tissue de-
and repolarization, regional tissue contraction and relaxation,
and continuously changing hemodynamic loading conditions
through the heart’s connection with the surrounding cardio-
vascular circulation. Therefore, we can only fully appreciate
these effects by concomitantly studying the myofiber stretch
state in Fig. 4, the pressure-volume loops depicted in Fig. 5
and the corresponding cardiac output in Fig. 6.

For the no-drug baseline case, both ventricles push out
the blood in one cooperative synchronized contraction, fol-
lowed by an extended relaxation phase allowing for atrial
blood to refill the ventricle during early diastole and the atrial
kick at end diastole. The myofiber stretches cooperatively

switch between a contractile and relaxing state, showcased
by the low shaded temporal myofiber stretch variability in
Fig. 4. These computed temporal myofiber stretch evolu-
tions are in line with clinical observations for non-diseased
human hearts, measured with both ultrasound and magnetic
resonance imaging techniques [54–57]. Naturally, the corre-
sponding pressure-volume loops and cardiac output remain
constant.

Upon 5x dofetilide administration, the resulting torsado-
genic activation sequence causes an important left-right
ventricular contractility dyssynchrony. Immediately after
drug administration, the left ventricular contraction starts to
trail the right ventricular contraction. Additionally, the drug-
induced torsadogenic swirling electrophysiological activa-
tion sequence drives the heart rate up to 123 bpm, which
causes the ventricles to contract twice before the atria con-
tract. Consequently, the passive atrial-ventricular filling time
is significantly shortened, leading to a decreased mean
myofiber stretch state during tissue relaxation in Fig. 4
and a drop in the left and right ventricular end-diastolic
volumes in Fig. 5. The corresponding drop in the stroke
volume leads to the decreasing instantaneous cardiac out-
put showcased in Fig. 6. The increased heart rate also causes
an important dyssynchrony between the atrial kick and the
ventricular filling phase, further affecting efficient diastolic
ventricular filling and decreasing the end diastolic volume.
Initially, the atrial kick trails the ventricular contraction, how-
ever at specific timepoints within the simulated five-second
drug administration timeframe, this dyssynchrony temporar-
ily catches up, as can be appreciated from the fluctuating
end diastolic volume evolution in Fig. 5. Interestingly, the
decreased cardiac output is, at least initially, counterbal-
anced by the increased heart rate, which partially recovers
the expected decrease in cardiac output in Fig. 6. For 8x
dofetilide (80% IKr block), we see a similar combined effect
of heart rate and ventricular filling. However, in this case,
the torsadogenic activation sequence does not cause a strong
left-right ventricular contraction dyssynchrony. Addition-
ally, a heart rate of 114bpm leads to an atrial kick that
leads the ventricular contraction, eventually becoming com-
pletely out of phase with the ventricular filling phase at the
end of the five second simulated timeframe. This explains
the gradual drop in stroke volume in Fig. 5. For 5x and
8x dofetilide administration, differences in cardiac output
in Fig. 6 result from dose-dependent interventricular and
atrial-ventricular dyssynchronies. Our results showcase a
decreased and increased cardiac output for 5x dofetilide and
8x dofetilide, highlighting how higher arrhythmogenic drug
concentration can impact the cardiac output in a non-intuitive
way. Even though the 5x and 8x dofetilide induced arrhyth-
mogeneis affects the cardiac output, the depolarizationwaves
swirling around the ventricles still lead to a somewhat tem-
porally structured contraction of the whole ventricle. The
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resulting active force build up still leads to a decent contrac-
tion of the full ventricle, leading to end-systolic volumes that
are only slightly larger than for the baseline no-drug case.

For the 28x dofetilide case however, the completely
chaotic depolarization patterns no longer lead to a syn-
chronous contraction, as can be seen by the large myofiber
stretch variability through thewhole arrhythmogenic episode
in Fig. 4. As a result, both the left and right ventricular end-
systolic volumes are considerably larger than normal. At the
same time, the small re-entrant waves that flicker around the
heart also strongly impact the diastolic filling time, leading to
decreased end-diastolic volumes. The resulting decrease in
stroke volume is so large that the resulting cardiac output in
Fig. 6 drops significantly. Therefore, the risk for sudden car-
diac death at 28x dofetilide administration can be expected to
be significantly higher than for 5x and 8x dofetilide-induced
arrhythmia episodes.

Apart from a more mechanistic sudden cardiac death risk
stratification, our framework also gives important insights
into drug-induced arrhythmogenic overstretching of the tis-
sue. The tissue stretch state is believed to play an important
role in pathophysiological growth and remodeling pro-
cesses [28]. Compared to the no-drug baseline case, each
drug-induced arrhythmogenic episode showcased increased
myofiber stretches in Fig. 4. Additionally, at 28x dofetilide,
the contractile capacity of the ventricles also got affected by
the chaotic electromechanical depolarization and contraction
patterns. As such, it can be appreciated that our framework
provides both acute and chronic mechanistic insights into
heart health during and after drug-induced arrhythmogenen-
esis.

Our study provides valuable insights into the simul-
taneous pro-arrhythmic simultaneous pro-arrhythmic and
inotropic liabilities of pharmacological therapies. We used
the well-established O’Hara Rudy model for describing the
electrophysiological behavior of the ventricular cardiomy-
ocytes. This model was developed, calibrated and validated
based on a vast amount of rate- and drug-dependent cel-
lular electrophysiology experiments on undiseased human
ventricular tissue samples [14]. The O’Hara Rudy model
also serves as the consensus base model for the Compre-
hensive in Vitro Proarrhythmia Assay initiative established
to develop a new paradigm for assessing proarrhythmic risk
[58,59]. Despite its use as the consensus base model, novel
updates to this model have recently been proposed which
report dynamic drug-IKr interactions and a re-assessment
of the myocardial pro-arrhythmic sensitivity to IKr block-
age [60,61], sex differences in drug-sensitive cardiomyocyte
ion channel current densities [7], and apico-basal hetero-
geneity in the slow delayed rectifying potassium channel
conductance [62]. These aspects might affect the critical
drug concentration at which arrhythmia start developing in
this study. Subsequently, we used a unidirectional excitation-

contractionmodel that takes into accountmyocardial preload
and a critical depolarization threshold. It has recently been
shown that two-way electromechanical coupling can par-
tially mitigate the action potential duration induced by
dofetilide, raising the critical concentration inducing early
afterdepolarization onset [53]. Further model development
providing a bidirectional coupling between human electro-
physiology and active tension generation [34,63,64] will
allow us to implement more detailed active tension gen-
eration models that take into account calcium dynamics,
actin-myosin crossbridge cycling transition states and force-
frequency responses. Importantly, these coupledmodels need
to remain computationally tractable to be able to compute
multiple serial heart beats and potential steady state out-
comes. This is a challenging endeavor given the very stiff
system of ordinary differential equations for the electrophys-
iology problem and the amount of state dependent variables
in the contraction-excitation coupling, that can require up to
40x2400 CPU hours for simulating one heart cycle, even in
a semi-implicit, operator splitted, MPI optimized framework
[65]. Future work therefore also needs to study the sensitiv-
ity of inotropic whole body level results (e.g. end-diastolic
and -systolic volumes, ventricular and atrial dyssynchrony,
tachycardia) on the biophysical details of the underlying
cellular models, and whether or not (potentially machine
learning-based) reduced order models can speed up these
computations [66–69].

5 Conclusion

This study provides a human-based multiscale and multi-
physics mechanistic framework that couples the effect that a
drug has on one singular ion channel down at the subcellular
level all the way up to a changing cardiovascular circulation
at the whole body level. The developed framework provides
a granular insight in malignancy of concentration-dependent
drug-induced ventricular arrhythmia.Our simulations extend
the binary pro-arrhythmic risk classification paradigm for
different drug concentrations to an assessment of arrhythmia-
severity in light of clinical output metrics as pressure-volume
loops and cardiac output. Here, we showed the clinical dif-
ferences between three drug-induced arrhythmic episodes
which results from the fine balance between electrophysi-
ological action potential duration and depolarization times
on the one hand and the contractile behavior of the myocar-
dial tissue combined with the contraction of the atria and the
connection to the surrounding cardiovascular circulation on
the other hand.
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