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Abstract The present manuscript focuses on the al-
gorithmic treatment of three-dimensional discontinu-
ities within a purely displacement based finite element
setting. In contrast to two-dimensional cracks, the lo-
cal element based geometric representation of three-
dimensional crack surfaces is non-unique and thus not
straightforward. Accordingly, we compare different crack
tracking strategies, one being algorithmically extremely
efficient but yet somehow restrictive, the other one be-
ing more complex but rather general in nature. While the
first method is able to represent entirely smooth discon-
tinuity surfaces, the second approach introduces inter-
element discontinuities in the overall crack surface rep-
resentation. Both methods are compared systematically
and additional comments about the algorithmic realiza-
ton are provided. From the numerical results we conclude
that neither of the two algorithms is able to solve all
defined quality criteria satisfactorily, although both are
mesh independent, computationally cheap and rather ef-
ficient. The ultimate solution might be an overall global
crack surface representation that a priori circumvents a
number of algorithmic deficiencies and at the same time
provides a unique and smooth three-dimensional crack
surface representation.

1 Introduction

Within the past decade, the extended finite element
method first introduced by Belytschko and co-workers
[3, 4] has advanced to a widely-accepted canonical tech-
nology to simulate propagating discontinuities within a
finite element setting, see also [6, 7, 24, 28, 29]. In con-
trast to the classical extended finite element method
which is based on the finite element discretization of
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displacements and displacement jumps, the recently in-
troduced reparametrization by Hansbo et al. [13, 14] is
conveniently restricted to a purely displacement based
finite element discretization, see also [2, 16–18].
While both techniques are quite well-established in the
context of two-dimensional crack propagation, their ex-
tension to three-dimensional crack phenomena is unfor-
tunately not straightforward and we feel that some of
the underlying computational issues deserve additional
attention. First attempts along these lines have been
made by Belytschko et al. [1] and Sukumar et al. [26]
and significant recent progress has been documented by
Gasser & Holzapfel [9, 10]. When rising the number of
spatial dimensions from two to three, most algorithmic
changes are of minor concern, e.g., crack initiation and
crack propagation criteria which are formulated in a gen-
eral tensorial framework can easily be transformed into
three dimensions. However, some technical implementa-
tional details still remain. For example, a discontinuity
would always divide a two dimensional triangular ele-
ment into one triangle and one quadrilateral element.
Three dimensional tetraheder, however, can be divided
in two different ways introducing either a tetraheder and
a wedge element or two wegde elements, see [9, 19].
The most cumbersome issue related to three-dimensional
discontinuities is probably the choice of an appropriate
crack tracking algorithm. Most of the existing literature
on three dimensional discontinuities including our own
work is thus restricted to problems for which the dis-
continuity surface is a priori known. A typical problem
along these lines it the classical peel test. Although the
crack plane normal might undergo severe rotations for
the non-symmetric peeling of a bi-material interface as
displayed in Figure 1, the normal vector can still be con-
veniently prescribed in the undeformed reference config-
uration. Knowing the crack plane normal a priori sim-
plifies the algorithmic treatment to a large extend. For
most technically relevant examples, however, the direc-
tion of the crack is initially unknown and a successful
crack propagation simulation in three dimensions is im-
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Fig. 1 Non-symmetric peel test. Simulation of bi-material
layer with predefined crack plane normal discretized with
3750 purely displacement based Hansbo discontinuty ele-
ments

possible without identifying appropriate crack tracking
strategies. Existing crack tracking algorithms can ba-
sically be classified in two categories, local and global
tracking methods. The later which are obviously more
demanding from an algorithmic point of view are ad-
dressed in the recent work by Chaves [5] and Oliver et
al. [21, 22].
Nevertheless, in this paper, we focus on the former class
of methods, since they typically provide a highly efficient
solution at relatively low computational cost. In particu-
lar, we aim at comparing two different local crack track-
ing methods, one initially introduced by the Belytschko
group [11,12,27] and an alternative one by the Holzapfel
group [9, 10]. As we will show, the Belytschko method
essentially produces smooth discontinuitiy surfaces. It is
extremely efficient, since algorithmic modifications are
restricted to the element level. Unfortunately, it is lim-
ited to a particular subset of problems for which the
direction of the crack path is not allowed to change dras-
tically from one element to the other. These more com-
plex phenomena are captured nicely by the Holzapfel
method. This strategy is somewhat semi-global since it
relies on a global averaging of the crack path. Accord-
ingly, algorithmic modifications beyond the element level
cannot be avoided. Apart from its algorithmic complex-
ity, the Holzapfel method suffers the essential drawback
of non-smooth disontinuity surfaces. Due to the nonlo-
cal averaging of crack plane normals, the crack surface
might eventually exhibit jumps across the inter-element
boundaries. When systematically elaborating different
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Fig. 2 Kinematics of nonlinear deformation map

crack tracking algorithms, our group has thus come to
the conclusion, that ultimately, an overall global crack
representation might indeed be the only way to accu-
rately eliminate all shortcomings of the currently avail-
able local crack tracking algorithms. Based on global av-
eraging techniques, the Holzapfel method presents a first
promising step in this direction.
This paper is organized as follows. After a short review
of the governing equations in section 2, we briefly dis-
cuss the finite element discretization within the frame-
work of a purely displacement based Hansbo interpo-
lation scheme in section 3. We also address the issues
of consistent linearization and provide the overall tan-
gent stiffness matrix for the numerical implementation.
Section 4 is the key section of this paper; it introduces
different algorithms for crack initiation, crack propaga-
tion and crack tracking. In particular the latter is elab-
orated in terms of two alternative strategies which are
then compared by means of numerical examples in sec-
tion 5. Finally, section 6 concludes with a critical discus-
sion of alternative local crack tracking procedures and
identifies the need for algorithmically challenging global
crack tracking strategies.

2 Governing equations

To set the stage and introduce our notation, we briefly
reiterate the continuous boundary value problem of a
three-dimensional body crossed by an arbitrary discon-
tinuitiy.

2.1 Kinematic equations

The first step to incorporate discontinuities in the dis-
placement field is to define the relevant kinematic quan-
tities. In the present notation we define the reference
configuration of a body as B with its positions X and
the spatial configuration as S with its positions x, see
Figure 2. If B is crossed by a discontinuity Γ we divide
the body B into disjoint parts B+ and B− to ensure a
unique nonlinear deformation ϕ from the referential to
the spatial configuration for each of the two parts.

ϕ(X) :=

{
ϕ+(X) ∀ X ∈ B+

ϕ−(X) ∀ X ∈ B− (1)
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Fig. 3 Kinematics of fictitious discontinuity surface

This deformation map is continuous in both parts of the
body but can be discontinuous along the internal bound-
ary Γ . Accordingly, the jump in the displacement field
arises automatically as the difference of the deformation
maps evaluated on both sides of the discontinuity.

[[ϕ]] = ϕ+
|Γ − ϕ−

|Γ ∀ X ∈ Γ (2)

As a result of the definition of the deformation map (1)
all related kinematic quantities, the deformation gradi-
ent F , its determinant J and all related stress and strain
measures are defined independently on both sides B+

and B− as

F =

{
F+ = ∇Xϕ+ ∀ X ∈ B+

F − = ∇Xϕ− ∀ X ∈ B− (3)

with J+ =det(F +) and J− =det(F−). Recall that due
to the definition of the deformation map the one unique
surface Γ is mapped onto two surfaces γ+ and γ−. We
thus define a fictitious discontinuity surface γ̄ which is
centered in the spatial configuration, compare Figure 3.

ϕ̄ := 1
2 [ϕ+

|Γ + ϕ−
|Γ ] ∀ X ∈ Γ (4)

To complete the set of kinematic equations, we intro-
duce all related average quantities, i.e., the deformation
gradient F̄ = 1

2 [F + + F−], the Jacobian J̄ = det F̄

and the normal vector n̄ = J̄F̄
−t · N on the fictitious

surface γ̄.

2.2 Equilibrium equations

Let the boundary ∂B in the referential configuration be
subdivided into disjoint parts ∂B = ∂Bu∪∂Bt with ∂Bu∩
∂Bt = ∅, where either Dirichlet or Neumann boundary
conditions are prescribed. Along the fictitious surface Γ
we require traction continuity in terms of the cohesive
tractions T̄ for which we will introduce a constitutive
law in subsection 2.3. The boundary value problem of
a cracked body B can then be expressed through the
following set of governing equations, here denoted in the
reference configuration,

Div P = 0 ∀ X ∈ B+ ∪ B−

ϕ = ϕp ∀ X ∈ ∂Bu

P · N = T p ∀ X ∈ ∂Bt

P + · N = P− · N = T̄ ∀ X ∈ Γ

(5)
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Fig. 4 Boundary value problem for cracked configuration

where P is the Piola stress. In the following we transfer
the strong form of the boundary value problem (5.1),
(5.3) and (5.4) into its weak form. By multiplication with
a testfunction δϕ and integration by parts we obtain
the corresponding integral format of the boundary value
problem in the reference configuration.

∫

B+∪B−

δF : P dV +

∫

Γ

[[δϕ]] · T̄ dA =

∫

∂Bt

δϕ · T p dA (6)

To express the above equation in terms of the symmetric
Cauchy stress σ and the Cauchy tractions tp we perform
a push forward to the spatial configuration.

∫

S+∪S−

∇xδϕ : σ dv +

∫

γ̄

[[δϕ]] · t̄da =

∫

∂St

δϕ · tp da (7)

2.3 Constitutive equations

In this subsection we specify the constitutive equations
for the Cauchy stress σ inside the body and the cohesive
Cauchy tractions t̄ along the discontinuity. The constitu-
tive equations for the bulk stress σ are assumed to be of
compressible Neo-Hooke type whereby σ can generally
take different values on both sides of the discontinuity.
The strain energy function Ψ and the related stress mea-
sures P and σ can be written in the following compact
form,

Ψ = 1
2µ

[
(F · F t) : I − 3

]
− µ ln(J) + 1

2λ ln2(J)

P =
∂Ψ

∂F
=

[
λ ln (J) − µF−t + µ F

]
(8)

σ = 1
J P · F t = 1

J

[
λ ln (J)I − µ I + µ F · F t

]

with λ and µ denoting the Lamé parameters. The in-
elastic behavior is attributed exclusively to the fictitious
discontinuity surface through the cohesive crack concept,
for which all inelastic deformations around the crack tip
are collectively represented through the traction forces
on the discontinuity, see, e.g., [6,7,24,28]. We assume an
uncoupled traction separation law for which the normal
traction vector t̄n is expressed exclusively in terms of the
normal jump vector [[ϕn]] = [[[ϕ]] · n̄] n̄ and the in-plane
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traction vector t̄m is only a function of the tangential
jump [[ϕm]] = [[ϕ]] − [[ϕn]].

t̄ =

[
t̄n

t̄m

]
=

[
exp

(
− ft

Gf
[[ϕn]]

)
n̄

d [[ϕm]]

]
(9)

Here ft denotes the tensile strength, Gf is the fracture
energy and d is the shear stiffness.

3 Discretization

For the finite element formulation it proves convenient to
distinguish between standard continuous elements and
discontinuous elements which are crossed by the discon-
tinuity surface. For the continuous elements, we apply a
bi-linear isoparametric interpolation leading to the fol-
lowing discretized sets of the node point coordinates X,
the displacement field ϕ, the test functions δϕ and their
gradients F and δF .

X |Be
=

nen∑
i=1

N iXi

ϕ|Be
=

nen∑
i=1

N i ϕi δϕ|Be
=

nen∑
i=1

N i δϕi

F |Be
=

nen∑
i=1

ϕi ⊗∇XN i δF |Be
=

nen∑
i=1

δϕi ⊗∇XN i

(10)
Here Ni are the standard shape functions for tetrahe-
dral elements and nen is the number of element nodes.
Theoretically, for the discontinuous elements, the dis-
placement field ϕ(+,−) and its gradient F (+,−) are only
defined in the corresponding part B(+,−). Computation-
ally, however, they are interpolated over the entire ele-
ment through the nodal values in terms of the standard
basis functions N i. We therefore introduce two copies
of the standard basis functions with n+

en nodes for the
interpolation on one side of the discontinuity and n−

en

nodes for the other side. Technically speaking, the inter-
polated fields are set to zero on one side of the discon-
tinuity, while they take their usual values on the other
side. Accordingly, the jumps in the displacement field
(2) and in the test function can then be expressed as the
difference of the two continuous fields evaluated at the
internal boundary Γ .

[[ϕ]]|Γ =
n+

en∑
i=1

N i|Γ ϕ+
i −

n−

en∑
i=1

N i|Γ ϕ−
i =

n+
en+n−

en∑
i=1

N̄ i ϕi

[[δϕ]]|Γ =
n+

en∑
i=1

N i|Γ δϕ+
i −

n−

en∑
i=1

N i|Γ δϕ−
i =

n+
en+n−

en∑
i=1

N̄ i δϕi

(11)
Here the newly introduced sets N̄ consist of the element
shape functions N̄ evaluated at Γ multiplied by the cor-
responding algebraic sign. Finally we discretize the av-

erage deformation gradient F̄

F̄ |Γ = 1
2 [

n+
en∑

i=1

ϕ+
i ⊗∇XN i|Γ +

n−

en∑
i=1

ϕ−
i ⊗∇XN i|Γ ]

=
n+

en+n−

en∑
i=1

ϕi ⊗∇XN̄ i

(12)
With the help of the above introduced discretizations,
the weak form of the governing equations (7) can be
cast into the following discrete residual statement

RI = R
int
I + R

coh
I − R

ext
I = 0 (13)

in terms of internal, cohesive and external contributions.

R
int
I =

nel

A
e=1

∫

Se∪S+,−

d

∇xN i · σ dv

R
coh
I =

nel

A
e=1

∫
γ̄

N̄ it̄([[ϕ]]) da

R
ext
I =

nel

A
e=1

∫
∂Ste

N itp da

(14)

Herein, the operator
nel

A
e=1

denotes the assembly of all ele-

ment contributions, i.e., the continuous and the discon-
tinuous ones. By using an incremental iterative Newton-
Raphson scheme to solve the nonlinear set of equations
(13) we arrive at the following linearized system of equa-
tions

R
k+1
I = R

k
I + dRI = 0 dRI =

nnp∑

J=1

KIJ dϕJ (15)

to be solved for the incremental update of the vector of
unknowns dϕJ . Here nnp is the number of global node
points consisting of the standard nodes and the dupli-
cated node points introduced in an elementwise fashion
at the onset of crack propagation. Finally, we specify the
incremental stiffness matrix

KIJ =
∂RI

∂ϕJ

= K
int
IJ + K

coh
IJ − K

ext
IJ (16)

in terms of its internal and cohesive contributions

K
int
IJ =

nel

A
e=1

∫

Se∪S+,−

d

∇xN i · e · ∇xN j dv

+
∫

Se∪S+,−

d

∇xN i · σ · ∇xN jI dv

K
coh
IJ =

nel

A
e=1

∫
γ̄

N̄ i T ϕ N̄ i da

+
∫
γ̄

N̄ i T n · G · ∇XN̄ j da

+
∫
γ̄

N̄ i t̄ ⊗ [A · ∇XN̄ j ] da

(17)

by assuming that K
ext
IJ = 0 vanishes identically. The

fourth order tensor e denotes the spatial elastic tangent
moduli defined through the linearization of the Cauchy
stress of equation (8.3) as

e = 1
J λ I ⊗ I + 1

J [ 2µ − 2λ ln(J) ] i (18)
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where i is the fourth order identity tensor. With the con-
stitutive definition of the cohesive tractions (9), we can
further specify the incremental relation between trac-
tions and discontinuities through the derivative of t̄ with
respect to [[ϕ]] and n̄. These derivatives introduce the
tangent operators T n and T ϕ,

T ϕ =
∂t̄

∂[[ϕn]]
· [n̄ ⊗ n̄] +

∂t̄

∂[[ϕm]]
· [I − n̄ ⊗ n̄] (19)

T n =

[
∂t̄

∂[[ϕn]]
− ∂t̄

∂[[ϕm]]

]
· [n̄ ⊗ [[ϕ]] + [[[ϕ]] · n̄] I]

whereby the derivatives with respect to [[ϕn]] and [[ϕm]]
results in the following equations,

∂t̄

∂[[ϕn]]
=

−f2
t

Gf
exp

(
ft

Gf
[[ϕn]] · n̄

)
n̄ ⊗ n̄ (20)

∂t̄

∂[[ϕm]]
= d I

see, e.g., Mergheim [17, 20] for a detailed derivation of
the above relations. Moreover, we have introduced the

second order tensor A := [I − n̄⊗ n̄] · F̄−t
and the third

order tensor G := −n̄ · [I⊗̄F̄
−t

] + n̄ ⊗ n̄ ⊗ n̄ · F̄
−t

,
the latter being the derivative of the normal vector n̄

with respect to the deformation gradient F . Herein ⊗̄
denotes the non-standard dyadic product according to

the following componentwise representation I⊗̄F̄
−t

=
δik Flj ei ⊗ ej ⊗ ek ⊗ el.

4 Implementation

For the spatial discretization, we suggest linear tetra-
hedral elements despite their well-known accuracy de-
ficiencies. Linear elements allow an efficient implemen-
tation, especially for the integration over the fictitious
discontinuity surface which, due to the use of linear in-
terpolations, is typically assumed to be flat within each
element. In what follows, we focus on the computational
issues related to crack initiation, crack propagation and
crack tracking.

4.1 Crack initiation

One of the most critical tasks during a crack propagation
simulation is the determination of the direction in which
the discontinuity is extending. We choose to apply the
principal stress based Rankine criterion for which a crack
is initiated in an element as soon as the critical strength
σcrit is reached. Recall that the crack tip of a discon-
tinuity does not necessarily need to be located right at
the integration point at which the Rankine criterion is
evaluated. It is thus quite established in the literature
to asume a smeared nonlocal process zone and apply
the nonlocal stress σ̃ or related nonlocal strain variables
as driving forces for crack initiation, see, e.g., [15, 23]

rσ

r
ip
i

crack tip

|rσ| = rσ = radius of the sphere

|rip
i | = r

ip
i = distance between

the ith integration point in

the sphere and the crack tip

Fig. 5 Stress averaging sphere around the crack tip element
introducing the set Iσ of nσ integration points within the
sphere

for size effects, [17, 28, 29] for two-dimensional problems
and [9, 10] for three-dimensional applications. Hence we
account for the nonlocal average stress in a sphere within
radius rσ around the crack tip. Typically, rσ is chosen
to be two to four times the characteristic element size
lel = V

1/3
el with Vel being the entire element volume. We

then denote the distance between the i-th integration
point and the discontinuity tip with rip

i . Furthermore
we define Vip the element volume related to the i-th in-
tegration point and introduce the set I of all integration
points within the nonlocal averaging sphere.

I =
{

i ∈
{
1, ..., nip

}
| rip

i < rσ

}
(21)

Then we divide the set I into two disjoint subsets I =
Iσ ∪ In where Iσ contains the integration points of the
uncracked elements and In the integration points of the
cracked elements in I. Furthermore we define the total
number of the respective subsets with nσ = dim (Iσ)
and nn = dim (In). We then compute the nonlocal stress
tensor σ̃ as

σ̃ =
1

∑
j∈Iσ V j

ip

∑

j∈Iσ

V j
ip σj (22)

and solve its eigenvalue problem.

σ̃ =

3∑

i=1

λeσ
i neσ

i ⊗ neσ
i (23)

We allow for crack propagation if the largest eigenvalue
λeσmax

i exceeds the critical failure stress, i.e., λeσmax

i >

σcrit. The eigenvector neσmax

i related to this maximum
eigenvalue defines the normal to the crack propagation
direction n̄ = neσmax

i in the spatial configuration. Fol-
lowing common practise in the literature, we restrict the
cosine of the crack deviation angle α to avoid unphys-
ical crack bifurcation and to ensure uniqueness in case
of multiple equal eigenvalues. Technically speaking, we
determine the new crack direction n̄ according to the
crack deviation angle condition

n̄ =

{
neσmax

i if α ≥ αcrit

ñ if α < αcrit with α = ñ · neσmax

i

(24)
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Fig. 6 Unique connecting point P for the two-dimensional
case and averaged connecting points Pi depending on the
adjacent cracked elements for the three-dimensional case

where ñ = 1/nn
∑

i∈In n̄i is the average of all unit nor-
mal vectors of the existing crack surfaces in the sphere.
The cricial crack deviation angle αcrit is typically chosen
to αcrit=1/2 or αcrit =

√
2/2. Since we elaborate crack

propagation in the reference configuration, we determine
the material crack plane normal

N = J̄−1 F̄
t · n̄ (25)

from the pull back of n̄ via the deformation gradient F̄ .

4.2 Crack propagation

Once the direction of crack propagation is known from
the evaluation of the failure criterion, an appropriate
geometrical representation of the crack surface in three
dimensions is needed. Since we apply a linear approxi-
mation of the deformation field the crack surface is rep-
resented by piecewise planar triangles and quadrilaterals
in the reference configuration.
In a three-dimensional setting, the orientation of an el-
ement discontinuity is defined by its reference normal
vector N and a single point P̃ to characterize the con-
nection to the next element discontinuity. In contrast
to two-dimensional problems where this point P̃ is al-
ways uniquely defined this is not the case for three-
dimensional problems, see Figure 6. Therefore we fol-
low [9] and define the new point P̃ = 1/ne

∑
i P i as the

average of the pictured crack points P i, i.e. the mid-
points of all adjacent cracked element edges i = 1, ..., ne.

4.3 Crack tracking

The application of nonlocally averaged crack propaga-
tion criteria results in crack surfaces that are in general
non-smooth. For practically relevant applications non-
smooth failure surfaces are undesirable because of po-
tential crack bifurcations for large crack deviation an-
gles. Therefore we essentially need to identify powerful
tracking algorithms to obtain a smooth representation
of the crack surface. The main goal of this paper is to

formulate and compare two fundamentally different lo-
cal crack tracking methods and to elaborate their ma-
jor advantages and disadvantages. Recall, however, that
promising first attempts towards global crack surface
representation have been presented recently in terms of
global tracking algorithms [5, 21, 22] or level set func-
tions [11, 12, 27], see Gasser & Holzapfel [10] for an ex-
cellent overview of the algorithmic treatment of discon-
tinuity surfaces in three dimensions.

4.3.1 Method I – the Belytschko method The following
local tracking method was initially proposed by Areias
& Belytschko [1]. It is based on a modification of the
discontinuity direction depending on cracked neighbor-
ing elements. For this method we denote the intersection
points of the existing edges from the cracked neighbor
elements with Ci. The number of cracked neighbor ele-
ments can vary between one and four, i.e., i ∈ {1, 2, 3, 4},
one edge is the minimum number and four is the maxi-
mum edge number for the case of a quadrilateral plane,
compare the solid lines in figure 7. Furthermore this
method introduces a unique labeling for the nodes, edges
and faces of the tetrahedra. The six cases illustrated in
figure 7 represent all possible configurations of the crack
in the considered element. Case I only occurs during
crack initiation, case II can either generate a trianglular
or a quadrilateral crack surface from one cracked neigh-
bor element and cases III-VI are completely specified
by the given intersection points of the cracked neigh-

bors. The averaged crack plane normal Ñ in the newly
cracked element can then be calculated as follows

◦ case I

Ñ = N

◦ case II

Ñ ∝ N − N ·[C1−C2]

|C1 − C2|2
[C1 − C2]

◦ case III - VI

Ñ =
[C1−C2]×[C3−C2]

|[C1 − C2] × [C3 − C2]|

(26)

whereby N is the crack plane normal resulting from
the eigenvalue problem as introduced in subsection 4.1.
The major drawback of this method is that it is ex-
tremely restrictive by construction since C4 is required
to lie in the C1, C2, C3 plane. Provided this restriction is
not violated, however, the algorithm generates perfectly
smooth discontinuity surfaces at low computational cost.
Note that during a standard crack propagation simula-
tion cases II and III occur most frequently.

4.3.2 Method II – the Holzapfel method An alternative
strategy that circumvents the above limitations has been
introduced recently by Gasser & Holzapfel [10]. It essen-
tially consists of two steps. The predictor step is applied
to compute the normal vector N from the chosen fail-
ure criterion as suggested in 4.1 and the point P̃ from
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case I case II case III

case IV case V case VI

fN aligned fN conditioned

fN conditionedfN conditionedfN conditioned

N initiation

C1C1

C1C1C1

C2
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C2C2C2

C3

C3C3C3

C4

Fig. 7 Resulting crack planes and points Ci from cracked
neighboring elements for cases I-VI

the procedure described in 4.2. However, for many situ-
ations, the newly calculated element crack surface does
not match the previously existing discontinuity. In many
cases it is geometrically impossible to close a crack sur-
face if the element has been approached by cracks from
different sides. Therefore a corrector step is introduced
to close the existing crack surface as smoothly as pos-
sible. During the corrector step, the crack plane normal

N is changed to the adapted normal Ñ that accounts
for additional information of the neighboring elements.
In general the existing crack surface is represented by
ncr nodes. These are the elementwise intersection points
Ci of the element discontinuities and the element edges.
As such, they represent elementwise the corners of the
involved triangular or quadrilateral discontinuity plane
as illustrated in figure 8. We assume that their posi-
tion vectors Ci for i = 1, ..., ncr are given relative to a
global cartesian coordinate system {X, Y, Z} with the
orthonormal base vectors E1, E2, E3. We then intro-
duce a sphere with the radius rc around the center P̃

of the currently analyzed element. Its radius rc can just
be chosen equivalent to the sphere’s radius rσ from the
computation of the average stress tensor but this is not
imperative. Let us introduce the set of all intersection
points Ci within this sphere

Ic = {i ∈ {1, ..., ncr} | rcr
i < rc} with nc = dim (Ic)

(27)

where rcr
i =

∣∣∣Ci − P̃
∣∣∣ obviously denotes the distance

of the i−th crack intersection point from the current
element center P̃ and nc is the total number of points
within the sphere. The set of points Ic is essential for
the smoothing strategy. It forms a point cloud with the
center Cc.

Cc =
1

nc

∑

i∈Ic

Ci (28)

X Y

Z

E1

E2

E3

rc

eP

C i

Fig. 8 Normal averaging sphere around the crack tip in-
troducing the set Ic of nc crack intersection points within
the sphere. Elementwise planar crack surface of triangles and
quadrilaterals

The orientation of this point cloud is given through a
second cartesian coordinate system {X̄, Ȳ , Z̄} which is
characterized by a second set of orthonormal bases vec-
tors Ē1, Ē2, Ē3. These orthonormal base vectors are the
principal axes of the point cloud Ic which are character-
ized in terms of the covariance tensor Σ.

Σ =
∑

i∈Ic

[Ci − Cc] ⊗ [Ci − Cc] (29)

The set of base vectors Ē1, Ē2, Ē3 then follows straight-
forwardly from the corresponding eigenvalue problem

Σ =
3∑

i=1

λΣ
i Ēi ⊗ Ēi (30)

Next we compute the corner points C̄i = Ci−Cc related
to the point Cc and transform the components of the
corner points

[
C̄i

]
from the global coordinate system

{X, Y, Z} to the local coordinate system {X̄, Ȳ , Z̄} with
the help of the orthogonal transformation tensor Q.

Q =

3∑

i=1

Ēi ⊗ Ei (31)

The main idea of the corrector step is now to assume that
the crack surface can be represented by either a linear
or a quadratic function in the local coordinate system.

Z̄ =

{
a0 + a1X̄ + a2Ȳ linear
a0 + a1X̄ + a2Ȳ + a3X̄

2 + a4Ȳ
2 + a5X̄Ȳ quadr

(32)
The j = 0, ..., 5 coefficients aj in the local coordinate sys-
tem follow from solving the corresponding least square’s
problem.

Φ(aj) =

ncr∑

i=1

[
Z̄i − Z̄(aj ; X̄i, Ȳi)

]2 → min (33)

Its solution introduces a symmetric system of linear
equations for both cases, the linear and the quadratic
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X

Y

Z

C̄ i

C̄j

Cc

X̄

ȲZ̄

fN
T̄X̄

T̄Ȳ

ncrnodes

Ci

Cj

E1

E2

E3

Ē1

Ē2Ē3

fitted crack surface

Fig. 9 Fitted three-dimensional crack surface

approach.

ncrX

i=1

2
6666664

1 X̄i Ȳi X̄2
i Ȳ 2

i X̄iȲi

X̄2
i X̄iȲi X̄3

i X̄iȲ
2
i X̄2

i Ȳi

Ȳ 2
i X̄2

i Ȳi Ȳ 3
i X̄iȲ

2
i

X̄4
i X̄2

i Ȳ 2
i X̄3

i Ȳi

Ȳ 4
i X̄iȲ

3
i

X̄2
i Ȳ 2

i

3
7777775

2
6666664

a0

a1

a2

a3

a4

a5

3
7777775

=

ncrX

i=1

2
6666664

Z̄i

X̄iZ̄i

ȲiZ̄i

X̄2
i Z̄i

Ȳ 2
i Z̄i

X̄iȲiZ̄i

3
7777775

(34)

By construction, this element crack surface fits the exist-
ing corner nodes C̄i of the triangular and quadrilateral
crack planes in a least-square sense. The coefficients aj

uniquely determine a smooth parametric representation
of the crack surface and therefore we obtain the two tan-
gent vectors T̄X̄ = Ē1 + ∂Z̄

∂X̄
Ē3 and T̄Ȳ = Ē2 + ∂Z̄

∂Ȳ
Ē3 at

an arbitrary point on the crack surface since Z̄ is always
perpendicular to that surface. With these tangent vec-
tors T̄X̄ and T̄ Ȳ , we compute the local representation of

the crack plane normal Ñ

Ñ = T̄X̄ × T̄Ȳ (35)

and transform the components
[
Ñ

]
to the global coor-

dinate system. Note that in case of a linear surface de-

scription the normal vector Ñ is patchwise constant. In
case of a quadratic surface description this vector would
be evaluated at P̃ .
To complete this section we would like to point out two
important facts. At first the corrector step can only be
applied if a previous crack surface exist. Furthermore,
this corrector step particularly violates the local failure
criterion which is subject to the sphere’s radius rc. The
radius rc can be interpreted as a numerical weighting
parameter between the geometry and the chosen failure
criterion to overcome the difficulties with respect to the
crack path tracking in three dimensions.

5 Examples

For practical applications it is of major interest whether
the two proposed strategies are independent of the spa-
tial discretization. The following numerical applications
examine the two methods with respect to the load-
displacement response, the resulting crack path surfaces
and the smoothness of the resulting crack surfaces.

5.1 Rectangular block under tension

The first example consists of a simple mode I failure
problem of a rectangular block subjected to a homoge-
neous tensile loading. The block has a square cross sec-
tion of 1mm2 and a height of 2mm. The block is fixed on
the bottom and loaded by a prescribed incremental dis-
placement of 0.01mm on its entire top, load case A, or on
a single edge, load case B, see figure 10. For load case A,
failure is initiated on both sides of the specimen, whereas
for load case B failure is only initiated on the loaded side.
The material parameters are chosen to E=1000 N/mm2,
ν = 0.3, Gf = 100 N/mm, ft = 200 N/mm2, rσ = 2 lel,
rn = 2 lel. In order to compare the prescribed track-
ing strategies the computation is carried out with two
different structured meshes, containing 4410 and 10501
elements.
First we discuss the results of load case A. As soon as
the critical stress state is reached, the crack propagates
through the specimen perpendicular to the loading di-
rection. The complete separation of the block into two
parts is slowed down by the cohesive tractions. The de-
formed configuration of the 10501 element specimen an-
alyzed with method I is shown in figure 12. As expected,
the specimen exhibits unloading with an increasing crack
opening. An initially elastic behavior can be observed be-
fore the critical stress value is reached and the load de-
creases exponentially with increased crack opening. This
result is in good agreement with [19], where this example
is computed with a prescribed crack plane normal. Ob-
viously, the solutions are independent of the discretiza-
tion and independent of the applied tracking method.
Nevertheless, this equivalence holds only for the load-
displacement relation and not for the smoothness of the
crack surface. Here, the first method provides a smooth
crack surface whereas the crack surface computed with
method II displays jumps at the inter-element bound-
aries. Note that for the computation with method II,
only a linear approximation of the crack surface has been
applied.
Next we discuss the results for load case B which has
been applied to initiate a curved crack surface. Note that
for method II it is necessary that an initial crack surface
exist when the algorithm starts. Accordingly, we fixed
the crack plane normal N for the first row of initially
cracked elements. For the sake of comparison, this crack
initiation is applied for both methods. After the crack
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2

F 1, u1

F 2, u2

crack
initialization

Fig. 10 Application: rectangular block under tension
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Fig. 11 Load-displacement relation for the different meth-
ods and load case A

has propagated about two thirds of the block, the limit
criterion of method I is met, i.e., the intersection points
of the adjacent elements no longer lie within one plane,
see the discussion in section 4.3.1. This failure of method
I was observed for both structured meshes.
We therefore turn to the analysis of method II, see fig-
ure 13, for the linear case of equation (32). Although
this averaging approach promises to be more general,
we encounter algorithmic difficulties as the crack is sit-
uated close to an element edge or face. Unlike the clas-
sical extended finite element method [1, 2], the Hansbo
method [13, 14] we apply herein does not allow for dis-
continuities at element edges or faces. In detail the main
problem occurs as the crack surface approaches the vinic-
ity of a node and the jump at the element edge impedes
the classification of this node with respect to the orien-
tation of the node B− and B+. Evidently, this essential
drawback of the Hansbo method is even more likely to
occur as the mesh is refined.

SIG3

280

240

200

160

120

80

40

0

Fig. 12 Cauchy stress in loading direction for method I, load
case A, a displacement of 0.1mm and the discretization with
10501 elements

SIG3

400

350

300

250

200

150

100

50

0

− 50

Fig. 13 Cauchy stress in loading direction for method II,
load case B, a displacement of 0.6mm and the discretization
with 4410 elements

5.2 Three point bending

The second example is the classical three point bending
test. A simply supported beam is loaded by an imposed
displacement at the center of its top, see figure 14. The
material parameters are chosen to E = 100 N/mm 2,
ν = 0, Gf = 0.1 N/mm, ft = 1 N/mm2, rσ = 3 lel,
rn = 3 lel and α =

√
2/2. Furthermore, the crack shear

stiffness is set to zero. Three different structured meshes
with 8400, 16875 and 31860 elements are analyzed. Fail-
ure is initialized at the center of the lower face of the
beam. As expected, due to the symmetric setup the
crack path propagates straight upwards. Note that as the
discontinuity propagates, we typically observe a change
from mode I to mixed mode failure. To overcome this
problem we choose the parameter α to α =

√
2/2 and

bound the crack deviation angle to 45◦. Let us now
further elaborate the load displacement response. Due
to the proposed failure criterion which depends on the
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Fig. 14 Application: three point bending beam
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Fig. 15 Cauchy stress in loading direction for method II,
a displacement of 0.25mm and the discretization with 16875
elements

SIG1

1.2

0.8

0.4

0

− 0.4

− 0.8

− 1.2

− 1.6

− 2

− 2.4

− 2.8

− 3.2

Fig. 16 Cauchy stress in loading direction for method II,
a displacement of 0.5mm and the discretization with 16875
elements

Fig. 17 Load-displacement relation for method I

maximum tensile strength inside the elements and the
parameter rσ, the larger elements of the coarse mesh
fail later. Accordingly, the peak load is slightly overes-
timated for the coarse discretization, see figure 17 and
18. Apart from this effect, the good agreement of the
two load displacement curves confirms the objectivity
of the method with respect to the discretization. A re-
markably similar behavior is observed for both tracking
strategies which are shown in figure 19. Furthermore,
these results are in good agreement with the solutions
of the three point bending beam analyzed in two di-
mensions, see e.g. [6, 20, 28]. Even though the resulting
load displacement curves are nearly similar for the two
different tracking strategies, the resulting crack surfaces
show the same remarkable differences as the first exam-
ple. They are free of jumps for method I whereas small
jumps at the inter-element boundaries are displayed for
method II.
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Fig. 18 Load-displacement relation for method II
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Fig. 19 Load-displacement relation for the different meth-
ods

6 Discussion

Unlike two-dimensional crack simulations, three-
dimensional simulations of discontinuities heavily rely
on robust and efficient crack algorithms. While crack
initiation criteria do not change significantly when
increasing the number of spatial dimensions from two
to three, crack tracking typically requires severe algo-
rithmic reconsiderations related to a drastic increase of
computational complexity and cost. In two dimensions,
an elementwise linear crack is uniquely determined in
terms of one crack normal per element once an initial
crack initiation point is given. In three dimensions,
however, the representation of the crack is non-unique.
The representation of choice can thus be understood
as a compromise between a perfectly smooth crack
surface which is usually too restrictive or rather too stiff
from a mechanical point of view and a more flexible
discontinuity which might exhibit jumps across the
inter-element boundaries. In the present manuscript we
provided a systematic comparison of representatives
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of both strategies, the smooth but stiff Belytschko
method [1] and the flexible but non-smooth Holzapfel
method [10]. Moreover, it was felt that it would be
convenient to provide some implementational details
and comments.
In summary, both methods have been shown capable to
model planar cracks in three dimensions and simulate
examples for which tracking algorithms are necessary.
The Belytschko method was demonstrated to provide
an entirely smooth crack surface. It is computationally
cheap and extremely efficient since it requires only local
modifications on the element level. However, unfortu-
nately, it is inherently uncapable of representing highly
kinked or curved discontinutities. The Holzapfel method
allows patchwise linear or quadratic representations of
the crack. It requires global algorithmic modifications
beyond the element level and eventually introduces
inter-element jumps in the crack surface representation.
In general, it is able to capture arbitrarily shaped crack
sufaces in three dimensions.
Due to our particular discontinuity discretization based
on the Hansbo method [13, 14] rather than on the
classical extended finite element method [1, 2], our
algorithm encounters algorithmic problems as soon as
the crack surface approaches the vinicity of a node
or edge. In the extended finite element method, these
special cases are covered by a special treatment in the
form of an enrichment of the particular node or edge.
Unfortunately, a special enrichment of nodes or edges
is not straightforward in the Hansbo method which
exclusively introduces displacement degrees of freedom.
In general, it seems that for the simulation of highly
kinked or curved discontinuities in three dimensions, a
crack tracking method which essentially circumvents
the particular deficiencies of the Hansbo method and at
the same time allows for a perfectly smooth crack repre-
sentation is highly desirable. The semi-global Holzapfel
method is a first step in this direction. Based on the
systematic studies of this contribution, we conclude
that a global crack tracking strategy as suggested e.g.
by Chaves [5] and Oliver and Huespe [21] might be
the ultimate solution of choice. Within this research
project, we are currently analyzing the potential of
global crack tracking strategies. The results which are
indeed very promising will be presented in a follow up
publication in the near future.
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4. Belytschko T, Moës M, Usui S. Parimi C. Arbitrary dis-
continuities in finite elements. Int. J. Numer. Meth. Engng
50(4), (2001) 993-1013.

5. Chaves EWV. Tracking 3D Crack Path. Proceeding of the
International Conference on Mathematical and Statistical
Modeling in Honor of Enrique Castillo ICMSM, Ciudad
Real, Spain, (2006).

6. de Borst R. Numerical aspects of cohesive-zone models.
Engng. Fract. Mech. 70(14), (2003) 1743–1757.

7. de Borst R, Guitiérrez MA, Wells GN, Remmers JC, Askes
H. Cohesive-zone models, higher-order continuum theories
and reliability methods for computational failure analysis.
Int. J. Numer. Meth. Engng. 60(1), (2004) 289–315.

8. Gasser TC, Holzapfel GA. Geometrically non-linear and
consistently linearized embedded strong discontinuity mod-
els for 3D problems with an application to the dissection
analysis of soft biological tissues. Comput. Methods Appl.
Mech. Engrg. 192(47-48), (2003) 5059–5098.

9. Gasser TC, Holzapfel GA. Modeling 3D crack propagation
in unreinforced concrete using PUFEM. Comput. Methods
Appl. Mech. Engrg. 194(25-26), (2005) 2859–2896.

10. Gasser TC, Holzapfel GA. 3D Crack propagation in
unreinforced concrete. A two-step algorithm for tracking
3D crack paths. Comput. Methods Appl. Mech. Engrg.
195(37-40), (2006) 5198–5219.
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