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Abstract The present contribution is dedicated to the
computational modeling of growth phenomena typically
encountered in modern biomechanical applications. We set
the basis by critically reviewing the relevant literature and
classifying the existing models. Next, we introduce a geo-
metrically exact continuum model of growth which is not a
priori restricted to applications in hard tissue biomecha-
nics. The initial boundary value problem of biomechanics is
primarily governed by the density and the deformation
problem which render a nonlinear coupled system of
equations in terms of the balance of mass and momentum.
To ensure unconditional stability of the required time
integration procedure, we apply the classical implicit Euler
backward method. For the spatial discretization, we suggest
two alternative strategies, a node-based and an integration
point–based approach. While for the former, the discrete
balance of mass and momentum are solved simultaneously
on the global level, the latter is typically related to a stag-
gered solution with the density treated as internal variable.
The resulting algorithms of the alternative solution tech-
niques are compared in terms of stability, uniqueness,
efficiency and robustness. To illustrate their basic features,
we elaborate two academic model problems and a typical
benchmark example from the field of biomechanics.

Keywords Growth, Bone remodeling, Finite element
technologies, Stability, Convergence

1
Introduction
Since the formulation of the first continuum model of
growth which was presented more than a quarter of a
century ago by Cowin and Hegedus [8], the modeling and
simulation of biomechanical processes has experienced an
enormously growing interest. In contrast to traditional
engineering materials, biomaterials, in particular hard and
soft tissues, show the ability to adapt not only their
external shape but also their internal microstructure to
environmental changes. The functional adaption of hard
tissues to changes in the mechanical loading situation has
been known for more than a century and is often referred
to as Wolff’s law of bone remodeling [53]. Comprehensive

overviews on the experimental findings of growth phe-
nomena can be found e.g. in the monographs of Pauwels
[45], Fung [12, 13], Taber [48], Carter and Beaupré [2] and
Humphrey [27].

The first continuum theory of growth for hard tissues
has been presented under the name of theory of adaptive
elasticity by Cowin and Hegedus [8]. Within their theory,
the biological structure is considered as an open system
which is allowed to constantly exchange mass, momentum,
energy and entropy with its environment. While this
exchange is accounted for exclusively in terms of volume
source terms in the original model, the more enhanced
model by Epstein and Maugin [10] additionally allows for
an exchange in terms of surface fluxes, see also Kuhl and
Steinmann [31]. Thereby, the flux of mass is typically
attributed to the migration of cells while mass sources
stem from cell growth and shrinkage, cell death, cell
division or cell enlargement. A completely different ap-
proach to hard and soft tissue mechanics falls within the
framework of the theory of porous media, see e.g. Ehlers
and Markert [9], Kühn and Hauger [36], Humphrey and
Rajagopal [27] or Steeb and Diebels [47]. Thereby, the
exchange of mass, momentum, energy and entropy takes
place between the individual constituents of the mixture,
while the mass, momentum, energy and entropy of the
overall mixture remain constant. Nevertheless, since the
mechanical behavior of hard tissues is primarily governed
by the response of the calcified bone matrix, we shall
confine attention to the solid phase alone and make use of
the open system framework in the sequel.

Driven by the development of modern computer tech-
nologies, the newly derived theories of growth were soon
supplemented by finite element based numerical simula-
tions. Although the initial class of models suffered from
numerical instabilities, the first results in the area of bone
remodeling were quite encouraging, see e.g. Huiskes et al.
[24, 26], Carter et al. [4], Beaupré et al. [1], Weinans et al.
[49, 50] or Harrigan and Hamilton [17, 18] or the recent
overview by Hart [21]. However, these first models were
basically restricted to the mechanics of hard tissues such
as bones. In contrast to hard tissues, which are typically
not subjected to large strains, the modeling of soft tissues
requires a geometrically nonlinear kinematic description,
see e.g. the first publication by Rodriguez et al. [46] or the
recent works of Cowin [6], Holzapfel et al. [22], Chen and
Hoger [5], Gasser and Holzapfel [14] and Lubarda and
Hoger [40].

The first attempts of our own group to simulate bio-
logical growth processes within the geometrically exact
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framework are documented in Kuhl and Steinmann [31–
35]. In the present work, we focus on the comparison of
different finite element techniques for biomechanical
growth processes. In particular, two alternative classes of
models will be derived and elaborated: a node-based and
an integration point–based approach. While the former is
based on the monolithic solution of the balance of mass
and momentum for open systems and offers the potential
to incorporate a mass flux, the latter is based on a
staggered solution strategy by introducing the density as
internal variable on the quadrature point level. In view of
modern finite element technologies, both approaches will
be combined with a fully implicit Euler backward time
integration scheme and are embedded in an incremental
iterative Newton-Raphson solution technique supple-
mented by a consistent linearization of the governing
equations. Rather than analyzing the features of the sug-
gested approaches in fully three-dimensional applications
as done by Kuhl and Steinmann [34], we shall focus on the
systematic study of one-dimensional model problems
and on the analysis of the classical two-dimensional
benchmark problem of the proxima femur in the present
contribution.

This contribution is organized as follows. We set the
stage by reviewing the existing literature on finite element
based numerical modeling of growth in Chapter 2. Chapter
3 then introduces the basic equations of growth within the
framework of finite strain kinematics. The corresponding
finite element formulation is derived in Chapters 4 and 5,
whereby the former focuses on a node-based approach
while the latter is characterized through an integration
point–based treatment of the density. Both finite element
chapters incorporate the spatial discretization, the con-
sistent linearization, a characteristic flow-chart of the
algorithm and the discussion of two academic model
problems. The applicability of the two different classes of
solution strategies to a classical example from biome-
chanics is studied in Chapter 6. Chapter 7 presents a final
discussion of the derived results.

2
Different remodeling algorithms revised
We begin our study with a review of the existing literature
on the computational modeling of growth which dates
back to the mid eighties. Surprisingly, an enormous body
of literature is related to the analysis of stability and
uniqueness of the suggested models. Often, these proper-
ties are attributed to the final finite element solution al-
though they typically originate from the ill-posedness of
the underlying continuous problem. To clarify the notions
of stability and uniqueness, we shall make a clear
distinction between the continuous problem, the time-
discrete problem and the fully discrete finite element
problem.

2.1
Stability and uniqueness of continuous model
The modeling of growth is basically characterized through
two fundamental equations: the balance of mass and the
balance of momentum. While the computational treatment
of the balance of momentum, i.e. the deformation

problem, is rather standard in modern finite element
technologies, the numerical solution of the balance of
mass, i.e. the density problem, can be carried out in var-
ious different ways. Conceptually speaking, the evolution
of the material density has to be calculated according to
some driving force, the so-called biological stimulus. After
analyzing different mechanically induced stimuli, e.g.
based on the current strain [8], the actual stress state [4] or
the dissipated energy in the form of damage [39], it was
agreed upon, that the free energy density of the calcified
tissue represented the most reasonable candidate. [29, 30,
49, 50]. However, it soon turned out, that the use of the
free energy density alone resulted in instabilities due to the
positive feedback effect it had on the remodeling process.
As documented by Carter et al. [4], Harrigan and Hamil-
ton [16–19], Harrigan et al. [20] and Weinans et al. [49] it
produced unstable 0–1-type solutions of either no bone or
fully dense calcified bone which were physically mean-
ingless. Several different remedies were suggested, e.g. the
introduction of a so-called dead-zone [1, 2, 50], the non-
local averaging based on spatial influence functions [41,
42], the a posteriori smoothing of either the mechanical
stimulus or the solution itself [11, 28, 43, 44] or the use of
more sophisticated micromechanically motivated models
[23, 25]. Nevertheless, the simplest and maybe also most
efficient modification was motivated by pure mathematical
reasoning. In a rigorous analysis on stability and unique-
ness, Harrigan and Hamilton [17, 18] derived a modified
remodeling rate equation which a priori guaranteed stable,
unique and path-independent solutions for a particular
choice of parameters. We shall thus apply a biomechanical
stimulus in the sense of Harrigan and Hamilton in the
sequel.

2.2
Stability and uniqueness of semi-discrete model
The resulting set of equations defines the continuous
initial boundary value problem which has to be discretized
in time and space. Traditionally, finite difference schemes
are applied for the temporal discretization. Motivated by
the computational efficiency of explicit time integration
schemes, the first models were based on the classical ex-
plicit Euler forward method, see e.g. [1, 4, 26, 49, 50]. In
contrast to the unconditionally stable implicit Euler
backward scheme, the Euler forward method is only con-
ditionally stable and poses restrictions on the time step
size. These were discussed in detail by Levenston [37, 38]
and Cowin et al. [7]. However, we do not believe, that the
use of an explicit time marching scheme is the source,
at least not the only one, for the particular instabilities
reported in the literature. Nevertheless, to avoid this
potential drawback of explicit schemes, Harrigan and
Hamilton [17] suggested the use of the Euler backward
method which was also applied by Nackenhorst [43, 44]
and will be the method of choice for our further
deviations.

2.3
Stability and uniqueness of fully discrete model
The temporal discretization renders a highly nonlinear
semi-discrete coupled system of equations. Its spatial
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discretization is usually embedded in the finite element
framework. Upon all the existing finite element solution
strategies, we can basically distinguish three different ap-
proaches to evaluate the balance of mass and momentum:
a partitioned sequential solution, the partitioned staggered
solution and the monolithic simultaneous solution. Most
of the pioneering work falls within the first category, see
e.g. Huiskes et al. [24, 26], Carter et al. [4], Beaupré et al.
[1] or Weinans et al. [49, 50]. Driven by the need for
computational efficiency that was a relevant issue in the
mid eighties, the solution was traditionally carried out in a
two-step-strategy. First, the balance of momentum was
solved in the classical way. Only then, the density was
determined in a mere post-processing step. The constitu-
tive properties were adjusted according to the current
density and a new set of material parameters was assigned
to each element before the next iteration step was carried
out. The structure of the applied commercial finite element
codes basically prescribed the algorithmic setup. Since the
density was assumed to be elementwise constant within
this algorithm, this first strategy has been termed element-
based approach in the literature.

Unfortunately, most of the simulations of the element-
based approach produced unphysical checkerboard-type
solutions which were attributed to the fact that the density
was interpolated in a C�1-continuous fashion. This defi-
ciency of the original models led to the reconsideration of
the finite element realization in the mid nineties. In a
systematic case study, Jacobs et al. [28] compared the early
element-based approach with an integration point-based
approach and a node-based approach. For the integration
point-based approach, the balance of mass and momen-
tum are still elaborated in a partitioned way, however,
their evaluation is carried out in a staggered sense, see also
Weng [52]. In the integration point-based approach, which
originates back to the computational modeling of inelas-
ticity, the density is introduced as an internal variable on
the integration point level. Nevertheless, since the inte-
gration point-based approach is still based on a discrete
pointwise representation of the density field, it did not
yield any remarkable improvements.

If the density field is assumed to be at least C0-con-
tinuous within the entire domain of consideration, the
density has to be introduced as nodal degree of freedom
on the global level. According to Jacobs et al. [28] and
Fischer et al. [11], only this node-based approach could
guarantee a physically meaningful solution. In complete
analogy to the temperature field in thermo-elastic prob-
lems, the density is treated as an independent field which
can be determined simultaneously with the deformation
field. The monolithic solution of the balance of mass and
momentum is computationally more expensive; thus it is
not surprising that this solution strategy only became
prominent after sufficient computational facilities had
become available.

Within the present work, we shall derive a class of node-
based and integration point-based finite element formu-
lations, which are based on a monolithic simultaneous and
on a partitioned staggered solution strategy, respectively.
However, it will turn out, that the approach that had been
termed element-based in the literature can be understood

as a special case of either of the two categories. We will
illustrate, that, provided that the spatial discretization is
carried out in a consistent way, neither of the three ap-
proaches leads to unstable solutions if the underlying
continuous problem is stable and unique in the sense of
Harrigan and Hamilton [16–18].

3
Theory of growth
Within the present chapter, we introduce the basic equa-
tions of the continuum theory of growth: the fundamental
kinematics, the relevant balance equations and the con-
stitutive assumptions. To lay the basis for the finite ele-
ment formulations derived in the following chapters, we
cast the governing equations into their weak format which
is then discretized in time.

3.1
Kinematics
To set the stage, we briefly summarize the underlying
kinematics of geometrically nonlinear continuum
mechanics. Let B0 and Bt denote the reference and cur-
rent configuration occupied by the body of interest at time
t0 and t 2 R, respectively. The kinematic description is
basically characterized through the deformation map u
mapping the material placement x of a physical particle in
the material configuration B0 to its spatial placement X in
the spatial configuration Bt.

x ¼ uðX; tÞ : B0 � R! Bt ð1Þ
The corresponding deformation gradient F defines the
linear tangent map from the material tangent space TB0 to
the spatial tangent space TBt.

F ¼ ruðX; tÞ : TB0 ! TBt ð2Þ
Its determinant defines the related Jacobian J as
J ¼ det F > 0. Moreover, we introduce the left Cauchy–
Green tensor b ¼ F � Ft as a characteristic spatial strain
measure. In what follows, Dt ¼ otf�gjX will denote the
material time derivative of a quantity f�g at fixed material
placement X. Accordingly, the spatial velocity
v ¼ DtuðX; tÞ can be understood as the material time
derivative of the deformation map u. Recall, that its
material gradient rv is identical to the material time
derivative of the deformation gradient F as DtF ¼ rv. In
the sequel, we shall apply a formulation which is entirely
related to the material frame of reference. Thus, rf�g and
Divf�g denote the gradient and the divergence of any field
f�g with respect to the material placement X.

3.2
Balance equations
Having introduced the basic kinematic quantities, we now
turn to the discussion of the balance equations for the
mechanics of growth. While in classical continuum
mechanics the amount of matter contained in a fixed ref-
erence volume B0 typically does not change no matter how
the body is moved, deformed or accelerated, the density q0

of the reference body no longer represents a conservation
property within the theory of growth. Rather, its rate of
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change is determined by a possible in- or outflux of mass
R and an amount of locally created material R0.

Dtq0 ¼ Div RþR0 ð3Þ
In a similar way, the balance of momentum balances the
weighted rate of change of the mass-specific momentum
density p which is nothing but the spatial velocity
p ¼ DtuðX; tÞ ¼ v with the reduced momentum flux �PPt

and the reduced momentum source �bb0.

q0Dtp ¼ Div �PPt þ �bb0 ð4Þ
Note, that the above equation represents the so-called
‘mass-specific’ version of the balance of momentum which
is particularly useful in the context of growth since it
contains no explicit dependence on changes in mass. The
nature of growth thus manifests itself exclusively in terms
of the Neumann boundary conditions for the reduced
momentum flux �PPt � N ¼ tclosed þ�ttopen and the definition
of the reduced momentum source �bb0 ¼ bclosed

0 þ �bb
open
0 in

which the additional growth-dependent contributions �ttopen

and �bb
open
0 are taken into account. A detailed derivation of

the balance equations for the mechanics of growth within
the framework of open system thermodynamics can be
found in Kuhl and Steinmann [31, 35].

Remark 3.1 Within the classical literature of biome-
chanics, the balance of mass (3) is typically referred to as
‘biological’ or ‘homeostatic equilibrium’ while the balance
of momentum (4) represents the equation of ‘mechanical
equilibrium’.

3.3
Constitutive equations
Finally, the set of governing equations has to be closed by
introducing appropriate constitutive assumptions for the
mass flux R, the mass source R0, the reduced momentum
flux �PPt and the reduced momentum source �bb0. Paralleling
the definition of the flux of concentrations according to
Fick’s law, the mass flux R

R ¼ R0rq0 ð5Þ
is related to the gradient of the density rq0 weighted by a
mass conduction coefficient R0 whereby the latter has the
unit of a length squared divided by the time. Following
Harrigan and Hamilton [17, 18], we propose a constitutive
equation for the mass source R0 which is governed by the
free energy W0 ¼ q0W.

R0 ¼ c
q0

q�0

� ��m

W0 �W�0

� �
ð6Þ

Herein, q�0 and W�0 denote the reference value of the den-
sity and of the free energy, respectively, while m is an
additional material parameter. Moreover, the additional
parameter c, which is of the unit time divided by the length
squared, basically governs the speed of the adaption pro-
cess. In the context of hard tissue mechanics, the free
energy W0 is typically characterized through the elastic
free energy, e.g. of Neo-Hooke type
Wneo

0 ¼ k ln2 J þ l½b : 1� 3� 2 ln J�
� �

=2, weighted by the
relative density ½q0=q

�
0�

n such that W0 ¼ q0=q
�
0

� �n
Wneo

0 , see
e.g. Carter and Hayes [3] or Gibson and Ashby [15].

Herein, k and l are the classical Lamé constants. More-
over, the exponent n typically varies between 1 � n � 3:5
according to the actual porosity of the open-pored ground
substance. This particular choice of the free energy defines
the reduces momentum flux as �PPt ¼ q0DFW.

�PPt ¼ q0

q�0

� �n

�PPneot ð7Þ

with �PPneot ¼ lFþ ½k ln J � l�F�t½ �. The reduced momen-
tum flux �PPt can thus be interpreted as the classical Neo-
Hookean first Piola Kirchhoff stress tensor �PPneot weighted
by the actual relative density ½q0=q

�
0�

n. For the sake of
simplicity, the reduced momentum source �bb0 is assumed
to vanish identically.

�bb0 ¼ 0 ð8Þ

Remark 3.2 The introduction of a mass flux has
been studied in detail by Kuhl and Steinmann [33].
Note, however, that the incorporation of a mass
flux which essentially smoothes sharp solutions and
enables the simulation of size effects requires at least a
C0-continuous interpolation of the density correspond-
ing to its discretization as global unknown on the nodal
level.

Remark 3.3 In the context of biomechanics, the driving
force of the evolution of mass is classically referred to
as ‘biological stimulus’. Herein, we have suggested a
free-energy based stimulus of the form ½q0=q

�
0�
�mW0.

Correspondingly, the reference free energy W�0 can be
understood as ‘attractor stimulus’. However, alternative
stress- or strain based stimuli as discussed e.g. by Weinans
and Prendergast [51]. Even energy-dissipation based
stimuli can be found in the recent literature, see e.g.
Levenston and Carter [39].

Remark 3.4 The choice of the exponent m determines the
stability of the resulting algorithm. With m ¼ 1 we obtain
the classical model of Beaupré et al. [1]. Nevertheless,
Harrigan and Hamilton [17, 18] choose m > n to guar-
antee uniqueness and stability of the solution.

3.4
Strong form
The reference density q0 and the deformation u furnish
the primary unknowns of the mechanics of growth. They
are governed by the scalar-valued balance of mass (3)
and by the vector-valued mass-specific balance of
momentum (4) which can be cast into the residual
statements

Rqðq0;uÞ ¼ 0 in B0

Ruðq0;uÞ ¼ 0 in B0
ð9Þ

with the residuals Rq and Ru defined in the following form.

Rq ¼ Dtq0 � Div R �R0

Ru ¼ q0Dtp� Div �PPt � �bb0

ð10Þ

Herein, the boundary oB0 of the material domain can be
decomposed into disjoint parts oBq

0 and oBr
0 for the

74



density problem and equivalently into oBu
0 and oBt

0 for
the deformation problem. While Dirichlet boundary
conditions are prescribed on oBq

0 and oBu
0 ,

q0� qpresc
0 ¼ 0 on oBq

0

u� upresc ¼ 0 on oBu
0

ð11Þ

Neumann boundary conditions can be given for the mass
flux and the tractions on oBr

0 and oBt
0,

R � N� ½rclosed þ �rropen� ¼ 0 on oBr
0

�PPt � N� ½tclosed þ�ttopen� ¼ 0 on oBt
0

ð12Þ

with N denoting the outward normal to oB0.

3.5
Weak form
As a prerequisite for the finite element discretization, the
coupled set of equations has to be reformulated in weak
form. To this end, the residual statements of the balance of
mass and momentum (9) and the corresponding Neumann
boundary conditions (12) are tested by the scalar- and
vector-valued test function dq and du, respectively.

Gqðdq; q0;uÞ ¼ 0 8dq in H0
1ðB0Þ

Guðdu; q0;uÞ ¼ 0 8du in H0
1ðB0Þ

ð13Þ

The weak forms Gq and Gu expand into the following
expressions.

Gq ¼
Z
B0

dqDtq0 dV þ
Z
B0

rdq � R dV

�
Z

oBr
0

dq½rclosed þ �rropen�dA�
Z
B0

dqR dV

Gu ¼
Z
B0

du � q0Dtp dV þ
Z
B0

rdu : �PPt dV

�
Z

oBt
0

du � ½tclosed þ�ttopen�dA�
Z
B0

du � �bb0 dV

ð14Þ

3.6
Temporal discretization
For the temporal discretization of the governing equations
(13), we partition the time interval of interest T into nstep

subintervals ½tn; tnþ1� as

T ¼
[nstep�1

n¼0

½tn; tnþ1� ð15Þ

and focus on a typical time slab ½tn; tnþ1� for which
Dt :¼ tnþ1 � tn > 0 denotes the actual time increment.
Assume, that the primary unknowns q0n and un and all
derivable quantities are known at the beginning of the ac-
tual subinterval tn. In the spirit of implicit time marching
schemes, we now reformulate the set of governing equa-
tions in terms of the unknowns q0nþ1 and unþ1.

Gq
nþ1ðdq; q0nþ1;unþ1Þ ¼ 0 8 dq in H0

1ðB0Þ
Gu

nþ1ðdu; q0nþ1;unþ1Þ ¼ 0 8 du in H0
1ðB0Þ

ð16Þ

Without loss of generality, we shall apply the classical
Euler backward time integration scheme in the sequel. In
combination with the following approximations of the first
order material time derivatives Dtq0 and Dtp as

Dtq0 ¼
1

Dt
½q0nþ1 � q0n�

Dtp ¼
1

Dt
½pnþ1 � pn�

ð17Þ

we obtain the following semi-discrete weak forms of the
balance of mass and momentum.

Gq
nþ1 ¼

Z
B0

dq
q0nþ1 � q0n

Dt
þrdq � Rnþ1 dV

�
Z

oBr
0

dq½rclosed
nþ1 þ �rr

open
nþ1 �dA�

Z
B0

dqR0nþ1dV

Gu
nþ1 ¼

Z
B0

du � q0

pnþ1 � pn

Dt
þrdu : �PPt

nþ1 dV

�
Z

oBt
0

du � ½tclosed
nþ1 þ�tt

open
nþ1 �dA�

Z
B0

du � �bb0nþ1dV

ð18Þ
We now turn to the spatial discretization of the above set
of equations. To this end, we suggest two alternative finite
element techniques which differ by the treatment of the
balance of mass. While the balance of mass is evaluated
globally in the node-based approach, it is solved locally on
the integration point-level in the second approach.

4
Node-based approach
The node-based approach derived in the present chapter is
essentially characterized through a C0-continuous
interpolation of the density field q0 in combination with
the standard C0-continuous interpolation of the defor-
mation field u. Just like the displacements in classical
finite element approaches, the density is introduced as a
nodal degree of freedom which is solved for on the global
level. This can either be done in a partitioned way by
solving the balance of mass and momentum sequentially
as proposed in the related literature or in a monolithic way
by evaluating both balance equations simultaneously. We
suggest the latter approach which is believed to be the
most consistent strategy within a modern finite element
context. Note, that C0-continuity of the density field is
mandatory, if density gradients are incorporated in the
formulation, e.g. through the constitutive equation of the
mass flux.

4.1
Spatial discretization
In the spirit of the finite element method, the domain of
interest B0 is discretized into nel elements Be

0.
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B0 ¼
[nel

e¼1

Be
0 ð19Þ

The geometry Xh of each subset is interpolated element-
wise in terms of the local basis functions NX and the dis-
crete node point positions Xj of all j ¼ 1; . . . ; neX element
nodes as XhjBe

0
¼
PneX

j¼1 N
j
XXj. According to the isopara-

metric concept, the trial function uh is interpolated on the
element level with the same basis function Nu as the ele-
ment geometry. Following the Bubnov–Galerkin approach,
similar basis functions are applied to interpolate the test
functions dqh and duh.

dqhjBe
0
¼
Xneq

i¼1

Ni
q dqi 2 H0

1ðB0Þ

duhjBe
0
¼
Xneu

j¼1

Nj
u duj 2 H0

1ðB0Þ

q0
hjBe

0
¼
Xneq

k¼1

Nk
q qk 2 H1ðB0Þ

uhjBe
0
¼
Xneu

l¼1

Nl
u ul 2 H1ðB0Þ

ð20Þ

While the element set of deformation nodes j ¼ 1; . . . ; neu

typically corresponds to the set of node point positions
j ¼ 1; . . . ; neX , the element set of density nodes
i ¼ 1; . . . ; neq can generally be chosen independently. The
discretization of the gradients of the test functions rdqh

and rduh and the gradients of the trial functions rqh and
ruh is straightforward and results in the following
expressions.

rdqhjBe
0
¼
Xneq

i¼1

dqirNi
q

rduhjBe
0
¼
Xneu

j¼1

duj �rNj
u

rqh
0jBe

0
¼
Xneq

k¼1

qkrNk
q

ruhjBe
0
¼
Xneu

l¼1

ul �rNl
u

ð21Þ

With the above discretizations, the discrete algorithmic
balance of mass and momentum can be rewritten as

Rq
I ðq0h

nþ1
;uh

nþ1Þ ¼ 0 8 I ¼ 1; . . . ; nnq

Ru
J ðq0

h
nþ1;u

h
nþ1Þ ¼ 0 8 J ¼ 1; . . . ; nnu

ð22Þ

whereby the discrete residua Rq
I and Ru

J expand into the
following forms.

Rq
I ¼ A

nel

e¼1

Z
Be

0

Ni
q
q0nþ1 � q0n

Dt
þrNi

q � Rnþ1 dV

�
Z

oBer
0

Ni
q½rclosed

nþ1 þ �rr
open
nþ1 �dA�

Z
Be

0

Ni
qR0nþ1dV

Ru
J ¼ A

nel

e¼1

Z
Be

0

Nj
uq0

pnþ1 � pn

Dt
þrNj

u � �PPnþ1 dV

�
Z

oBte
0

Nj
u½tclosed

nþ1 þ�tt
open
nþ1 � dA�

Z
Be

0

Nj
u
�bb0nþ1 dV

ð23Þ
Therein, the operator A symbolizes the assembly of
all element contributions at the element density nodes
i ¼ 1; . . . ; neq and the element deformation nodes
j ¼ 1; . . . ; neu to the overall residuals at the global
density and deformation node points I ¼ 1; . . . ; nnq and
J ¼ 1; . . . ; nnu.

4.2
Linearization
The discrete residual statements characterizing the
mechanics of growth (22) represent a highly nonlinear
coupled system of equations which can be solved effi-
ciently within the framework of a monolithic incremental
iterative Newton-Raphson solution strategy. To this end,
we perform a consistent linearization of the governing
equations at time tnþ1

Rq
I

kþ1
nþ1 ¼ Rq

I
k
nþ1 þ dRq

I¼
:

0 8 I ¼ 1; . . . ; nnq

Ru
J

kþ1
nþ1 ¼ Ru

J
k
nþ1 þ dRu

J ¼
:

0 8 J ¼ 1; . . . ; nnu

ð24Þ

whereby the iterative residua dRq
I and dRu

J take the
following format.

dRq
I ¼

Xnnq

K¼1

Kqq
IK dqK

þ
Xnnu

L¼1

Kqu
IL � duL

dRu
J ¼

Xnnq

K¼1

Kuq
JK dqK

þ
Xnnu

L¼1

Kuu
JL � duL

ð25Þ

In the above definitions, we have introduced the iteration
matrices

Kqq
IK ¼

oRq
I

oqK

Kqu
IL ¼

oRq
I

ouL

Kuq
JK ¼

oRu
J

oqK

Kuu
JL ¼

oRu
J

ouL

ð26Þ

which take the following abstract representations.

Kqq
IK ¼ A

nel

e¼1

Z
Be

0

Ni
q

1

Dt
Nk

q dV �
Z
Be

0

Ni
qoq0

R0Nk
q dV

þ
Z
Be

0

rNi
q� R0rNk

q dV

Kqu
IL ¼ A

nel

e¼1
�
Z
Be

0

Ni
qoFR0�rNl

u dV
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Kuq
JK ¼ A

nel

e¼1

Z
Be

0

rNj
u�oq0

�PPtNk
q dV

Kuu
JL ¼ A

nel

e¼1

Z
Be

0

Nj
uq0

1

Dt2
INl

u dV

þ
Z
Be

0

rNj
u�oF

�PPt�rNl
udV

ð27Þ

Note, that the specification of the partial derivatives of the
mass source R0 and the reduced momentum flux �PPt with
respect to the primary unknowns q0 and u depends on the
particular choice of the constitutive equations. For the
constitutive equations suggested in Sect. 3.3, we obtain the
following expressions,

oq0
R0 ¼ c½n�m� q0

q�0

� ��m 1

q0

W0

oFR0 ¼ c
q0

q�0

� ��m

�PPt

oq0
�PPt ¼ n

1

q0

�PPt

oF
�PPt ¼ q0

q�0

� �n

½lI ���Iþ kF�t � F�t � ½k ln J � l�F�t�F�1�

ð28Þ
whereby the component representations of the non-stan-
dard dyadic products read f��	gijkl ¼ f�gik � f	gjl and
f��	gijkl ¼ f�gil � f	gjk. Finally, the solution of the sys-
tem of equations (24) renders the iterative update for the
increments of the global unknowns qI and uJ .

DqI ¼ DqI þ dqI 8 I ¼ 1; . . . ; nnq

DuJ ¼ DuJ þ duJ 8 J ¼ 1; . . . ; nnu
ð29Þ

Remark 4.1 Within the node–based approach, we typically
solve the balance of mass and momentum simultaneously
on the global level assuming a C0–continuous interpola-
tion of the density q0 and the deformation u. The only
node-based finite element formulation that relaxes this
continuity requirement is the Q1P0 element, which is
based on an element-wise constant and thus C�1-con-
tinuous density interpolation. Recall, that for this element,
which is classically applied for constrained problems
arising in computational fluid dynamics or in in-
compressible elastodynamics, the constantly interpolated
degree of freedom, in our case the density, can be elimi-
nated locally on the element level. This procedure, which
bares strong resemblance to the classical static condensa-
tion, results in the modified residual ~RRu

J and the modified
stiffness matrix ~KKuu

JL .

~RRu
J ¼ Ru

J � Kuq
JK Kqq

IK½ ��1
Rq

I

~KKuu
JL ¼ Kuu

JL � Kuq
JK Kqq

IK½ ��1
Kqu

IL

In the biomechanical literature, the algorithm resulting
from an element-wise constant density distribution has
been termed ‘‘element-based approach’’.

Remark 4.2 Within the biomechanical context, the evo-
lution of the density q0 and the deformation u induces
time scales which typically differ by orders of magnitude.
To avoid the related numerical difficulties caused by the
resulting ill–conditioned system matrices, the balance of
momentum is usually evaluated in a quasi–static sense, i.e.
the mechanical forces are interpreted as an average daily
loading on the biological structure. Consequently, the first
terms in the discrete momentum residual
N

j
uq0½p0nþ1 � p0n�Dt and in the tangent operator

N
j
uq0=Dt2INl

u in Eqs. (23)2 and (27)4 vanish identically.

Remark 4.3 When consistent dynamic matrices are ap-
plied to interpolate the time-dependent contributions, i.e.
the Ni

q½q0nþ1 � q0n�Dt and the Ni
q1=DtNk

q terms in Eqs.
(23)1 and (27)1, the numerical solution might tend to de-
velop spurious oscillations near sharp fronts. The use of
lumped dynamic matrices typically reduces these numer-
ical artifacts.

4.3
Algorithmic flowchart
A typical finite element-based solution algorithm resulting
from the node-based approach is sketched in the flowchart
in Table 1. It illustrates that the balance of mass and the
balance of momentum are solved simultaneously on the
global level.

Remark 4.4 It is worth noting that the numerical com-
putation of the Q1P0 element with an elementwise con-
stant density distribution requires some modifications in
the algorithmic realization. In this particular case, the
balance of mass and momentum are evaluated sequen-
tially. First the midpoint density is advanced in time by
performing a local Newton iteration on the element level.
Only then, the balance of momentum is evaluated at each
integration point with the element density given. Since the
deformation unþ1 is now the only unknown on the global
level, the related residual and the tangential stiffness have
to be modified according to Remark 4.1. Note, that within
the Q1P0 approach the evolution of the element density is
driven by the average element mass source.

q0nþ1 � q0n

Dt
¼ 1

V

Z
Be

0

R0ðq0nþ1;unþ1ÞdV

Table 1. Algorithm of node-based approach
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Since the driving force R0 is a nonlinear function of the
deformation unþ1, it has to be evaluated numerically by an
appropriate numerical integration before the element
density can be determined through the suggested local
Newton iteration.

4.4
Illustration in terms of model problem
To illustrate the features of the node-based approach, we
shall now elaborate its behavior with respect to two aca-
demic model problems upon which the first relates to a
discontinuous solution whereas the solution of the second
is supposed to be continuous. These two examples some-
how represent the extreme cases we assume to encounter
in realistic biomechanical applications. In both cases, we
analyze a similar tension specimen of unit length with a
length to width ratio of 1%. The elastic material parame-
ters are chosen to E ¼ 1 and m ¼ 0:2, which correspond to
k ¼ 0:2778 and l ¼ 0:4167. The growth–related parame-
ters take values of q�0 ¼ 1, W�0 ¼ 2, c ¼ 1, n ¼ 2 and m ¼ 3,
whereby stability is guaranteed as m > n. A unit tensile
load is applied to both ends of the specimen. In combi-
nation with the chosen set of parameters, this load gen-
erates stretches of about 250%. To guarantee convergence
within the global Newton iteration, the load has to be
applied incrementally in ten steps of 0.1 each. After the
loading phase, the load is held constant for another 50
time steps of Dt ¼ 0:1 while the solution converges
towards the biological equilibrium state.

Figure 1 depicts the four applied finite element formu-
lations as typical representatives of the node–based ap-
proach, whereby the white circles characterize the density
nodes whereas the dark circles mark the deformation
nodes. While the classical Q1Q1 and Q2Q2 element are
based on an equal order interpolation of the density and
the deformation field, the Q1P0 element and the S2Q1
element interpolate the density one order lower than the
deformation. All elements except for the Q2Q2 element
which is evaluated numerically at 3 � 3 integration points
make use of a Gauss–Legendre quadrature based on 2 � 2
integration points.

The resulting number of degrees of freedom and the
number of integration points as characteristic measures of
computational efficiency are given in Table 2. Thereby, the
individual columns are related to a discretization with 10,

40 and 100 elements, thus representing a typical
h-refinement. The rows which correspond to the different
element formulations can be interpreted as a sort of
p-refinement.

4.4.1
Discontinuous model problem
First, we trigger a discontinuous solution by varying the
value of the attractor stimulus W�0 from W�0 ¼ 2:0 at both
ends in discrete steps of DW�0 ¼ �0:25 towards W�0 ¼ 1:0
in the middle of the specimen. Obviously, the local
reduction of the attractor stimulus has a direct influence
on the creation of new material. The decrease of its value is
compensated by a considerable local increase in density, as
illustrated in Fig. 2. The quantitative results of the dis-
continuous model problem are summarized in Tables 3
and 4, which show the relative change in density
½q0 � q�0�=q�0 in the center of the specimen and the end-
point displacement u, respectively. The depicted density
distributions illustrate that the Q1Q1 element produces
spurious oscillations close to sharp fronts. It converges to
the discontinuous solution upon mesh refinement, how-
ever, the artificial overshoots in the solution remain. The
element of highest order, the Q2Q2 element, performs
worst upon all elements, compare also Tables 3 and 4. The
corresponding density distribution is too smooth by far
and the results are only valuable upon a considerable mesh
refinement. Since the Q2Q2 element is the most expensive
element from a computational point of view, it can be
classified as non-reasonable for practical use. For this
particular discontinuous type of solution, the Q1P0
element with a C�1-continuous density interpolation
performs best upon all elements tested. With an
elementwise constant density distribution, it is able to
capture sharp fronts by construction. The S2Q1 element
shows a less oscillatory behavior than the Q1Q1 element.
Unlike the Q2Q2 element, it is able to capture disconti-
nuities in a reasonable way. It converges fast upon
refinement and is also not too expensive from a
computational point of view.

4.4.2
Continuous model problem
The second example is based upon a continuous solution
which is generated by smoothly varying the width of the
specimen from 1% of the specimen length at both ends to-
wards 0.5% in the middle of the bar. Thereby, the material
parameters are kept constant throughout the specimen. The
characteristics of the different elements for a continuous
solution can be concluded from Fig. 3 and Tables 5 and 6.
Obviously, the local reduction of the cross section is directly
compensated by the creation of material in the center of the
specimen. Remarkably, all node-based formulations of aC0-
continuous density interpolation perform equally well for
this sufficiently smooth problem. Already for the discreti-
zation with 40 elements, the results of the Q1Q1 element, the
Q2Q2 element and the S2Q1 element have converged to a
reasonable extend, since their continuous density interpo-
lations are typically designed to capture continuous solu-
tions. While the Q1P0 element yields useless results for the
coarsest mesh, it converges rapidly upon mesh refinement

Fig. 1. Different finite elements – node-based approach

Table 2. Degrees of freedom and integration points

nel = 10 nel = 40 nel = 100

Q1Q1 66ð40Þ 246ð160Þ 606ð400Þ

Q2Q2 189ð90Þ 729ð360Þ 1809ð900Þ

Q1P0 44ð90Þ 164ð360Þ 404ð900Þ

S2Q1 128ð40Þ 488ð160Þ 1208ð400Þ
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even though it applies only a C�1-continuous density
interpolation, see also Tables 5 and 6.

5
Integration point–based approach
In contrast to the previous approach, we shall now relax the
assumption of C0 continuity for the density field q0 and
allow for a discrete pointwise density representation while
the deformation field u is, of course, still required to be C0-
continuous. Consequently, the balance of mass can be
evaluated locally on the integration point level, whereas the
global system of equations is expressed in terms of
the deformation only. By introducing the density as internal
variable on the integration point level, we solve the balance
of mass and momentum in a staggered sense. Recall, that by

Fig. 2. Discontinuous model problem – density distribution of node–based approach – Q1Q1, Q2Q2, Q1P0 and S2Q1 elements

Table 3. Discontinuous model problem – relative change in
density ½q0 � q�0�=q�0 at midpoint

nel = 10 nel = 40 nel = 100

Q1Q1 0.321502 0.297437 0.305828
Q2Q2 0.256541 0.302062 0.306116
Q1P0 0.300028 0.306185 0.306171
S2Q1 0.318560 0.305875 0.306171

Table 4. Discontinuous model problem – endpoint displacement u

nel = 10 nel = 40 nel = 100

Q1Q1 2.32251 2.37135 2.36629
Q2Q2 2.37124 2.37151 2.37156
Q1P0 2.32239 2.37122 2.36624
S2Q1 2.37221 2.37181 2.37166

Fig. 3. Continuous model problem – density distribution of node-based approach – Q1Q1, Q2Q2, Q1P0 and S2Q1 elements
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relaxing the continuity requirement for the density, we a
priori exclude the possibility of incorporating a mass flux.

5.1
Spatial discretization
In complete analogy to the previous section, the spatial
discretization is based on the partition of the domain of
interest B0 into nel elements Be

0

B0 ¼
[nel

e¼1

Be
0 ð30Þ

on which the element geometry Xh is interpolated as
XhjBe

0
¼
PneX

i¼1 Ni
XXi. According to the isoparametric con-

cept in combination with the Bubnov–Galerkin technique,
similar basis functions N are applied for the interpolation
of the test and trial functions duh and uh.

duhjBe
0
¼
Xneu

j¼1

Nj
uduj 2 H0

1ðB0Þ

uhjBe
0
¼
Xneu

l¼1

Nl
uul 2 H1ðB0Þ

ð31Þ

Consequently, the spatial gradients of the test and trial
functions rduh and ruh can be expressed in the follow-
ing form.

rduhjBe
0
¼
Xneu

j¼1

duj �rNj
u

ruhjBe
0
¼
Xneu

l¼1

ul �rNl
u

ð32Þ

The algorithmic balance of momentum can thus be stated
as

Ru
J ðuh

nþ1Þ ¼ 0 8 J ¼ 1; . . . ; nnu ð33Þ

whereby the discrete residual Ru
J is defined in the following

form.

Ru
J ¼ A

nel

e¼1

Z
Be

0

Nj
uq0

pnþ1 � pn

Dt
þrNj

u � �PPnþ1 dV

�
Z

oBte
0

Nj
u½tclosed

nþ1 þ�tt
open
nþ1 �dA�

Z
Be

0

Nj
u
�bb0nþ1dV

ð34Þ

5.2
Linearization
Similar to the previous chapter, the nonlinear equilibrium
equation (33) is solved within the incremental iterative
Newton–Raphson iteration scheme requiring a consistent
linearization at time tnþ1.

Ru
J

kþ1

nþ1
¼ Ru

J
k

nþ1
þ dRu

J ¼
:

0 8 J ¼ 1; . . . ; nnu ð35Þ
The iterative residual dRu

J

dRu
J ¼

Xnnu

L¼1

Kuu
JL �duL ð36Þ

can be expressed in terms of the iteration matrix

Kuu
JL ¼

oRu
J

ouL

ð37Þ

which takes the interpretation of the global tangential
stiffness matrix.

Kuu
JL ¼ A

nel

e¼1

Z
B0

Njq0

1

Dt
INl dV þ

Z
B0

rNj � dF
�PPt � rNl dV

ð38Þ
Therein, dF

�PPt denotes the consistent tangent operator

dF
�PPt ¼ oF

�PPt � oq0
�PPt oq0

R0

� ��1
oFR0 ð39Þ

whereby oF
�PPt, oq0

�PPt and oFR0 were already given in Eq.
(28), while oq0

R0 can be expressed in the following form.

oq0
R0 ¼ c½n�m� 1

q0

q0

q�0

� ��m

W0Dt � 1 ð40Þ

The iterative update for the incrementals of the global
unknowns uJ

DuJ ¼ DuJ þ duJ 8 J ¼ 1; . . . ; nnu ð41Þ
can finally be determined in terms of the solution duJ of
the linearized system of equations (35).

Remark 5.1 Note, that the structure of the consistent
tangent operator introduced in Eq. (39) resembles the
structure of the modified element stiffness matrix after
static condensation defined in Remark 4.1.

dF
�PPt ¼ oF

�PPt � oq0
�PP t oq0

R0

h i�1
oFR0

~KKuu
JL ¼ Kuu

JL � Kuq
JK ½Kqq

IK �
�1

Kqu
IL

The difference between the terms oq0
R0 and oq0

R0

somehow reflects the influence of the algorithmic

Table 5. Continuous model problem – relative change in density
½q0 � q�0�=q�0 at midpoint

nel = 10 nel = 40 nel = 100

Q1Q1 0.509938 0.525144 0.527496
Q2Q2 0.527441 0.527699 0.534161
Q1P0 0.470753 0.513734 0.522864
S2Q1 0.526425 0.528890 0.529023

Table 6. Continuous model problem – endpoint displacement u

nel = 10 nel = 40 nel = 100

Q1Q1 2.92605 2.92755 2.92780
Q2Q2 2.92732 2.92785 2.92793
Q1P0 2.92554 2.92752 2.92780
S2Q1 2.92792 2.92794 2.92794
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treatment. By replacing the continuous term oq0
R0 with its

algorithmic counterpart oq0
R0 we ensure the consistent

linearization of the discrete constitutive equations.

5.3
Algorithmic flowchart
Table 7 illustrates a typical flowchart resulting from the
integration point-based approach. The balance equations
are solved in a staggered way, characterized through a
local Newton iteration for the actual integration point
density embedded in the global Newton iteration for the
deformation field.

Remark 5.2 Similar to the node-based approach, the reali-
zation of an elementwise constant density distribution
based on a selective reduced integration of the scalar field
requires some algorithmic modifications. In this case, the
balance of mass and momentum are solved sequentially.
Just like for the Q1P0 element, the actual midpoint density
has to be determined in a local Newton iteration before the
balance of momentum is evaluated on the integration point
level. In contrast to the Q1P0 element, however, the density
evolution is now driven by the midpoint mass source.

q0nþ1 � q0n

Dt
¼ R0ðq0nþ1;unþ1Þ

��
n¼0

As the mass source R0 is a nonlinear function of the
deformation unþ1, its midpoint value generally differs
from its element average. Consequently, the Q1P0
element and the Q1sri element generally render different
results. The significance of this difference strongly
depends on the inhomogeneity of the discrete deforma-
tion field unþ1 and vanishes identically for a homoge-
neous deformation.

5.4
Illustration in terms of model problem
We now turn to the illustration of the integration point–
based approach in terms of the discontinuous and the

continuous model problem defined in chapter 4. The
analyzed element formulations are depicted in Fig. 4.

While the Q1 and the Q2 element are classically inte-
grated with 2 � 2 and 3 � 3 quadrature points, respec-
tively, the Q1sri element is based on a selective reduced
one–point–integration of the density part in combination
with a 2 � 2 integration of the deformation part. The S2fri

element, however, applies a fully reduced 2 � 2 integra-
tion of both contributions.

The number of degrees of freedom and integration
points, which is considerably lower than in the previous
node-based approach, is depicted in Table 8.

5.4.1
Discontinuous model problem
The resulting density distribution, the relative change in
density ½q0 � q�0�=q�0 in the middle of the specimen and the
endpoint displacement u are given in Fig. 5 and Tables 9
and 10, respectively. Note, that in order to illustrate the
typical features of the integration point–based approach,
the integration point values are plotted in a non-smoothed
discontinuous fashion. Unlike in classical finite element
post–processing, where the integration point values are
typically extrapolated to the nodes and then averaged, we
plot the actual constant integration point value in the
entire area that is assigned to the particular quadrature
point. As expected, all elements with the density as
internal variable perform excellent for this particular
discontinuous problem. By construction, the integration
point–based approach is ideally suited for discontinuous
solutions with sharp fronts.

5.4.2
Continuous model problem
Even for the continuous problem, the integration point–
based elements perform remarkably well. Not only the
classical Q1 element and the Q2 element but also the Q1sri

element and the S2fri element converge fast upon mesh
refinement, compare also Fig. 6 and Tables 11 and 12.
Thereby, the computationally cheapest approaches,
namely the Q1 element and the selective reduced inte-
grated Q1sri element show only minor differences. Both of
them can thus be classified as extremely fast and efficient

Table 7. Algorithm of integration point-based approach

Fig. 4. Different elements – integration point-based approach

Table 8. Degrees of freedom and integration points

nel = 10 nel = 40 nel = 100

Q1 44ð40Þ 164ð160Þ 404ð400Þ

Q2 126ð90Þ 486ð360Þ 1206ð900Þ

Q1sri 44ð10=40Þ 164ð40=160Þ 404ð100=400Þ

S2fri 106ð40Þ 406ð160Þ 1006ð400Þ
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for practical use. Nevertheless, due to the standard com-
putational structure of the related numerical algorithm, we
prefer the classical Q1 element over the Q1sri element for
practical applications.

Remark 5.3 This particular model problem still shows a
rather homogeneous deformation in each element. Thus,
the difference between the Q1P0 element and the Q1sri

element is only of minor nature. However, by comparing
the resulting maximum density and the endpoint
displacements, slight deviations of both approaches can
be detected.

6
Representative example
Finally, the derived classes of algorithms shall be com-
pared in terms of a representative example from biome-

Fig. 5. Discontinuous model problem – density distribution of integration point-based approach – Q1, Q2, Q1sri and S2fri elements

Table 9. Discontinuous model problem – relative change in
density ½q0 � q�0�=q�0 at midpoint

nel = 10 nel = 40 nel = 100

Q1 0.300028 0.306185 0.306418
Q2 0.306443 0.306186 0.306188
Q1sri 0.300028 0.306168 0.306171
S2fri 0.306504 0.306282 0.306171

Table 10. Discontinuous model problem – endpoint displace-
ment u

nel = 10 nel = 40 nel = 100

Q1 2.32239 2.37122 2.36624
Q2 2.37095 2.37146 2.37154
Q1sri 2.32239 2.37135 2.36630
S2fri 2.37156 2.37155 2.37155

Fig. 6. Continuous model problem – density distribution of integration point-based approach – Q1, Q2, Q1sri and S2fri elements
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chanics. To this end, we study the classical benchmark
problem of bone remodeling of the proxima femur sub-
jected to an average daily loading situation. A detailed
specification of the problem is given by Carter and Beau-
pré [2]. For the model suggested herein, we chose the
elastic parameters to E ¼ 500 and m ¼ 0:2 corresponding
to k ¼ 138; 8889 and l ¼ 208; 3333. while the additional
growth-related parameters are chosen to q�0 ¼ 1:2,
W�0 ¼ 0:01, c ¼ 1, n ¼ 2 and m ¼ 3. The geometry and
the loading conditions are depicted in Fig. 7. Typically,
three different loading situations can be identified. Load
case 1 corresponds to the load condition for the midstance
phase of gait, while load cases 2 and 3 represent the
extreme cases of abduction and adduction defined in
Table 13.

The different elements and the corresponding number
of degrees of freedom and integration points as a
typical measure for the computational efficiency is given in
Table 14. Figures 8–11 illustrate the distribution of the
relative changes in density ½q0 � q�0�=q�0 as a result of the
different spatial discretization techniques. The first set of

Fig. 8 illustrates the behavior of the Q1Q1 element with
respect to h-refinement. The results do not differ consid-
erably upon refinement of the mesh. Remarkably, already
the coarsest mesh with 658 elements seems to be sufficient
to capture the typical biomechanical characteristics of the
solution: the development of a dense system of compres-
sive trabeculae carrying the stress from the superior
contact surface to the calcar region of the medial cortex, a
secondary arc system of trabeculae through the infero-
medial joint surface into the lateral metaphyseal region,
the formation of Ward’s triangle and the development of a
dense cortical shaft around the medullary core. Conse-
quently, we shall restrict our further analyses to the
coarsest 658-element mesh.

Figure 9 contrasts the results of the different node-based
finite element formulations. Remarkably, the Q1Q1 element,
the Q2Q2 element, the Q1P0 element and the S2Q1 element
render nearly identical results. Unlike reported in the re-
lated literature, the Q1P0 formulation with an elementwise
constant density interpolation does not show any spatial
instabilities. Due to the choice of a well–posed continuum
formulation in combination with an implicit time integra-
tion scheme, all finite element formulations, even the one
based on an elementwise constant density interpolation,
render stable and unique results.

Figures 10 and 11 show the integration point-based
counterpart of the solution which result from the classical
Q1 element, the Q2 element, the selectively reduced inte-
grated Q1sri element and the fully reduced integrated S2fri

element. While Fig. 10 depicts the discrete values of the
internal variables for each area assigned to the
corresponding quadrature point, Fig. 11 illustrates the
classical post-processing result that is obtained by an
extrapolation of the integration point values to the nodes
in combination with an averaging of these nodal values.
The Q1 element and the S2fri element apply the same
number of integration points per element. However, the

Fig. 7. Proxima femur – loading conditions

Table 13. Proxima femur – loading conditions

Load case Value (N) Direction (	) Value (N) Direction (	)

1 2317 24 703 28
2 1158 )15 351 )8
3 1548 56 468 35

Table 14. Number of elements, degrees of freedom and integra-
tion points

nel ndof nip

Q1Q1 658 2175 2632
Q1Q1 2632 8295 10528
Q1Q1 5922 18363 23688
Q2Q2 658 8295 5922
Q1P0 658 1450 2632
S2Q1 658 4939 2632
Q1 658 1450 2632
Q2 658 5530 5922
Q1sri 658 1450 658/2632
S2fri 658 4214 2632

Table 11. Continuous model problem – relative change in den-
sity ½q0 � q�0�=q�0 at midpoint

nel = 10 nel = 40 nel = 100

Q1 0.470754 0.513734 0.522864
Q2 0.514584 0.526201 0.529164
Q1sri 0.470753 0.513734 0.522864
S2fri 0.503670 0.522526 0.526427

Table 12. Continuous model problem – endpoint displacement u

nel = 10 nel = 40 nel = 100

Q1 2.92548 2.92751 2.92780
Q2 2.92732 2.92785 2.92793
Q1sri 2.92599 2.92765 2.92786
S2fri 2.92789 2.92794 2.92794
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solution of the classical Q1 element seems to be slightly
oscillatory while the S2fri solution is rather smooth due to
its quadratic interpolation of the deformation field. Since
the solution is rather homogeneous within each element,

the integration point-based Q1sri element renders nearly
identical results as the node-based Q1P0 element. The
differences of the individual integration point-based
elements vanish upon smoothing as illustrated in Fig. 11.

Fig. 9. Proxima femur –
density distribution of node-
based approach – 658 Q1Q1,
Q2Q2, Q1P0 and S2Q1 ele-
ments

Fig. 8. Proxima femur – density distri-
bution of node-based approach – 658,
2632 and 5922 Q1Q1 elements
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By making use of the traditional post-processing step as
typically applied for the graphic representation of internal
variables, all results of the integration point-based

approach are nearly alike. Moreover, they all roughly
correspond to the results of the node-based approach
depicted in Fig. 9.

Fig. 10. Proxima femur –
density distribution of inte-
gration point-based approach
– 658 Q1, Q2, Q1sri and S2fri

elements

Fig. 11. Proxima femur –
density distribution
integration point-based
approach – 658 Q1, Q2, Q1sri

and S2fri elements-smoothed
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Remark 6.1 Within the present approach, neither the
node-based Q1P0 element nor the integration point-based
Q1sri element tend to develop the spatial instabilities re-
ported in the literature. To document the fact, that these
spatial instabilities are already introduced on the contin-
uum level and then, of course, carry over to the temporally
and spatially discrete problem, we analyzed the similar
problem described above, only now with the parameters
n ¼ 2 and m ¼ 0. According to Harrigan and Hamilton
[17, 19], this set of parameters is supposed to produce a
non-unique and unstable solution. The numerical result
depicted in Fig. 12 shows the typical discontinuous 0–1
type of solution with the classical tendency towards
checker-boarding. The given density distribution corre-
sponds to the last converged state within the simulation;
the calculation stopped after half of the prescribed
time period because of the loss of convergence within
the global Newton iteration caused by ill-conditioned
system matrices.

7
Discussion
The basic concern of the present work was the comparison
of different computational strategies to model growth
processes typically encountered in modern biomechanical
applications. Motivated by the huge body of literature on
this highly active branch of research, we began by com-
paring the existing formulations in terms of appropriated
classifications. It turned out, that the notions of stability
and uniqueness were often attributed to the temporal or to
the spatial discretization although the cause of instability
actually originated back to the ill-posedness of the
underlying continuous problem. We thus presented a well-
posed continuum model embedded in the framework of
finite deformations. Unlike the existing small strain for-
mulations, the derived geometrically exact model is not a
priori restricted to hard tissue mechanics but is potentially
able to simulate the behavior of soft tissues. In contrast to
most existing formulations in the literature, we suggested

the use of an implicit time stepping scheme which is
unconditionally stable and thus poses no additional
restrictions on the choice of the time step size.

The analysis of different spatial discretization tech-
niques constituted the main part of this contribution.
While the deformation field is treated in the classical way,
we suggested two alternative discretization strategies for
the density field, a node-based and an integration point-
based approach. For the former, the density is introduced
as a global unknown on the nodal level, whereas it is
treated as an internal variable on the integration point
level in the latter approach. The traditional element-based
approach can then be classified as a special case of either
the node-based or the integration point-based approach.
For the geometrically exact formulation analyzed herein,
the corresponding finite element formulations, namely the
Q1P0 element and the Q1sri element, showed a slightly
different behavior, while for the linear elastic model ap-
plied in the literature, both formulations should be abso-
lutely identical. In the context of modern finite element
technologies, the discretized equations were linearized
consistently and their solution was embedded in an
incremental iterative Newton-Raphson procedure.

Both alternative discretization strategies were finally
compared numerically in terms of a discontinuous and a
continuous model problem and the classical application of
bone remodeling in the proxima femur. As expected, the
node-based elements performed better for continuous
smooth solutions while the integration point-based ele-
ments proved advantageous for discontinuous problems
with sharp fronts. Despite of this difference, both strate-
gies yielded remarkably similar results upon mesh
refinement. In most of the cases, the analyzed lower order
elements, i.e. the Q1P0 element, the classical Q1 element
and the Q1sri element, were superior over the higher order
elements. They proved computationally cheap, i.e. cheap
in memory, storage and computer time, and thus turned
out to be extremely fast. Especially the computationally
most expensive Q2Q2 element performed poor close to
sharp fronts and is thus not recommended for further
practical use.

Another remarkable difference between the two alter-
native discretization techniques is the size of the overall
problem, which is directly related to the computer time
required for the solution. For small scale problems, both
strategies needed approximately the same calculation time.
While the node-based approach basically suffers from
larger system matrices, the integration point-based ap-
proach requires a local Newton iteration at the integration
point level. Nevertheless, the influence of the former
becomes more and more pronounced upon mesh refine-
ment. Provided that both strategies give similar results,
this lack of computational efficiency of the node-based
approach might be an important drawback for realistic
large scale simulations. However, one has to keep in mind,
that the node-based approach becomes unavoidable, if
higher order gradients of the density are to be incorpo-
rated, e.g. by the incorporation of a mass flux or by the
need to reproduce the classical size effect.

Finally, we would like to conclude by pointing out,
that the results of the present study are not necessarily

Fig. 12. Proxima femur – density distribution of node-based
approach – Q1P0 element – unstable continuum model with
n ¼ 2 and m ¼ 0
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restricted to the modeling of growth but rather hold in a
more general sense. Any multi-field problem in continuum
mechanics, e.g. convection–diffusion in chemo-mechani-
cal applications, the classical thermo-elasticity or prob-
lems arising in inelasticity such as damage or plasticity,
can be treated in an analogous way. As long as no gradi-
ents of the additional field, e.g. the concentration, the
temperature, the damage variable or the plastic multiplier,
are incorporated in the formulation, one is free to choose
either a C0-continuous node-based approach or a discrete
pointwise representation within the integration point-
based approach. Upon mesh refinement, both strategies
should converge to the same solution, provided that the
different interpolation orders of the individual fields are
chosen appropriately. As soon as higher order spatial
gradients enter the formulation, e.g. through diffusion,
heat conduction, gradient damage or gradient plasticity,
the node-based C0-continuous approach becomes man-
datory. In this sense, the present work is believed not only
to yield a contribution to the computational modeling of
growth in particular but also to the numerical simulation
of multi-field problems in general.
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