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ABSTRACT
A common but serious side effect of many drugs is torsades de pointes, a rhythm disorder that
can have fatal consequences. Torsadogenic risk has traditionally been associated with blockage of a
specific potassium channel and an increased recovery period in the electrocardiogram. However, the
mechanisms that trigger torsades de pointes remain incompletely understood. Here we establish a
computational model to explore how drug-induced effects propagate from the single channel, via
the single cell, to the whole heart level. Our mechanistic exposure–response simulator translates
block-concentration characteristics for arbitrary drugs into three-dimensional excitation profiles and
electrocardiogram recordings to rapidly assess torsadogenic risk. For the drug of dofetilide, we show
that this risk is highly dose-dependent: at a concentration of 1x, QT prolongation is 55% but the heart
maintains its regular sinus rhythm; at 5.7x, QT prolongation is 102% and the heart spontaneously
transitions into torsades de points; at 30x, QT prolongation is 132% and the heart adapts a quasi-
depolarized state with numerous rapidly flickering local excitations. Our simulations suggest that
neither potassium channel blockage nor QT interval prolongation alone trigger torsades de pointes.
The underlying mechanism predicted by our model is early afterdepolarization, which translates
into pronounced U waves in the electrocardiogram, a signature that is correctly predicted by our
model. Beyond the risk assessment of existing drugs, our exposure–response simulator can become
a powerful tool to optimize the co-administration of drugs and, ultimately, guide the design of new
drugs toward reducing life threatening drug-induced rhythm disorders in the heart.
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1. Introduction

In October 1999, a new class III antiarrhythmic drug,
dofetilide, was approved for treatment of atrial fibrilla-
tion in the United States (Pfizer 2011). Atrial fibrilla-
tion, the most common sustained cardiac arrhythmia,
affects more than 6 million people in the United States
(American Heart Association 2015) and 33 million
worldwide (Chugh et al. 2014). Dofetilide cardioverts
persistent atrial fibrillation to sinus rhythm by selectively
blocking the rapid delayed rectifier potassium current,
which slows the efflux of potassium ions, reduces the
repolarization rate of the cell, and widens the plateau
of the action potential (Mirams et al. 2011). However,
on the whole heart level, this controlled widening of the
action potential induces a pronounced prolongation of
the QT interval, a signature that has been associated
with a high risk of torsades de pointes (Bohnen et al.
2017). Torsades de pointes is a special form of ventricular
tachycardia characterized by a rapid twisting of QRS
complexes around the electrocardiogram baseline that
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can lead to sudden cardiac death (Dessertenne 1966).
The reporting rate of torsades de pointes increased ex-
ponentially in the early 1990s when numerous drugs–not
just cardiac drugs–were recognized to trigger QT inter-
val prolongation and increase proarrhythmic potential
(Stockbridge et al. 2013). In response, 14 drugs were
removed from the market, among them dofetilide, the
first oral antiarrhythmic agent approved for treatment of
atrial arrhythmias in almost a decade (Allen LaPointe et
al. 2002) and the only drug that was approved after the
implementation of new the regulatory guidelines (Stock-
bridge et al. 2013).

Dofetilide, or by its chemical formula C19H27N3O5S2,
remains a controversial drug. It continues to be unavail-
able in Europe and Australia (Stockbridge et al. 2013).
In the United States, it marketed under the trade name
Tikosyn by Pfizer, available in three dosage strengths,
0.125mg in orage/white, 0.250mg in peach, and 0.500mg
in peach/white. It is well known that the QT interval
and torsades de pointes risk increase linearly with the
dose and concentration of dofetilide (Pfizer 2011). To
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no surprise, the use of dofetilide is tightly regulated by
a mandated risk management program that restricts dis-
tribution of the drug, requires prescriber education on
the drug, and recommends at least three days of hospi-
talization to monitor correct dosing of the drug (Allen
LaPointe et al. 2003). In a study of n = 1346 arrhyth-
mia patients, the incidence of torsades de pointes was
0.8% overall, but increased with increasing dose, with no
incidence for doses below 0.250mg, 0.3% for 0.250mg,
0.9% between 0.250 and 0.500mg, and 10.5% for doses
above 0.500mg (Pfizer 2011). The risk of dofetilide mis-
management is high and the mechanisms that contribute
to dofetilide-induced arrhythmias remain incompletely
understood (Briceno and Supple 2017).

Several initiatives are underway to develop and vali-
date new paradigms for cardiac safety evaluation using a
more accurate and comprehensivemechanistic-based as-
sessment of proarrhythmetic potential (Sager et al. 2014;
Colatsky et al. 2016; Vicente et al. 2016). Motivated by
these objectives, this study presents the first mechanistic-
based computationalmodel to predict how drug-induced
fractional current block on the ion channel level trans-
lates into action potential profiles on the single-cell level
and into electrocardiograms on the whole heart level
(Sahli Costabal et al. 2018). Our model is broadly appli-
cable to any drug for which the blockage-concentration
relation is known from single-cell experiments (Crumb et
al. 2016). Here we focus exclusively on the drug dofetilide
because of its high clinical relevance, its management
controversies, and its high specificity towards a single
channel (Johannesen et al. 2016).

We hypothesize that low concentrations of dofetilide
will moderately prolong of the QT interval without af-
fecting the overall sinus rhythm, whereas high concen-
trations of dofetilide will significantly prolong the QT
interval and trigger the spontaneous development of ven-
tricular arrhythmias. We test this hypothesis at dofetilide
concentrations of 0x, 1x, 5.7x, and 30x of the effective
free therapeutic plasma concentration.We illustrate how
dofetilide-induced alterations in potassium channel dy-
namics propagate across the spatial and temporal scales
to modify the action potential duration on the cellular
level, the QT interval on the whole organ level, and the
excitation pattern across the heart. This will allows us
to visualize and explore how different cell types in the
heart, endcardial, midwall, epicardial, and Purkinje cells,
respond and interact under the action of dofetilide. We
anticipate that our multiscale computational model will
become a useful tool to better understand the mecha-
nisms of drug-induced arrhythmias with a view toward a
more mechanistic drug dosing and risk management.

2. Methods

2.1. Modeling cardiac electrophysiology

Our model represents the electrical excitation of the my-
ocardium through the classical monodomain model pa-
rameterized in terms of the transmembrane potential
φ. The spatio-temporal evolution of the transmembrane
potential follows a reaction–diffusion equation,

φ̇ = div(D · ∇φ) + f φ . (1)

For the flux term, div(D ·∇φ), we assume an anisotropic
conductivity D with a fast contributionD‖ parallel to the
myocardial fiber direction f and a slow contributionD⊥
perpendicular to it (Sahli Costabal et al. 2017),

D = D‖ f ⊗ f + D⊥ [ I − f ⊗ f ] . (2)

For the source term, we use different ionicmodels for dif-
ferent cell types and introduce the source, f φ = −Iion/Cm,
as the ionic current Iion scaled by the membrane capac-
itance Cm (Nordsletten et al. 2011). The ionic current is
a function of the transmembrane potential φ and a set of
states variables q(φ) (Göktepe et al. 2010; Lee et al. 2016),

Iion = Iion(φ, q(φ); t) . (3)

The state variables obey ordinary differential equations
as functions of the transmembrane potential φ and their
current values q,

q̇ = g(φ, q(φ); t) . (4)

The number of ionic currents Iion and state variables
q determines the complexity of the model and varies
for different cell types (Wong et al. 2012, 2013). Here
we select different cell models for ventricular cells and
Purkinje cells.

To model the cells in the ventricular wall, we
follow the guidelines proposed by the CiPA initiative
(Dutta et al. 2017) and adopt theO’Hara–Rudymodel for
human ventricular cardiomyocytes (O’Hara et al. 2011).
Figure 1, left, illustrates the 15 ionic currents of the the
O’Hara–Rudy model,

Iion = ICaL + INa + ICaNa + ICaK + ICab + INab + IKb
+ IKr + IKs + IK1 + Ito + INaK + IpCa
+ INaCa,i + INaCa,ss , (5)
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Figure 1. Single-cell action potential for human ventricular cardiomyocytes, left, and Purkinje fiber cells, right. The ventricular cell model
distinguishes between endocardial, midwall, and epicardial cells and is based on the modified O’Hara Rudy model with 15 ionic currents
and 39 state variables (O’Hara et al. 2011). The Purkinje cell model displays inherent automaticity and is based on the Stewart model
with 14 ionic currents and 20 state variables (Stewart et al. 2009).

the L-type calcium current ICaL, the fast and late sodium
currents INa, the calcium sodium and calcium potas-
sium currents ICaNa and ICaK, the background calcium,
sodium, and potassium currents ICab, INab, and IKb, the
rapid and slow delayed rectifier potassium currents IKr
and IKs, the inward rectifier potassium current IK1, the
transient outwardpotassiumcurrent Ito, the sodiumpotas-
sium pump current INaK, the sarcolemmal calcium pump
current IpCa, and the sodium calcium exchange currents
INaCa,i and INaCa,ss. To appropriately model signal prop-
agation in real heart scale simulations (Priest et al. 2016),
we replaced the fast sodium current INa of the original
O’Hara–Rudymodel with amodified fast sodium current
of the ten Tusscher model (ten Tusscher et al. 2004).
The 15 currents are defined through a total of 39 state
variables. To account for regional specificity, theO’Hara–
Rudy model has been parameterized for three different
cell types, endocardial, midwall, and epicardial cells. Fig-
ure 1, left, illustrates the single-cell action potential of the
O’Hara–Rudymodel for endocardial,mid, and epicardial
human ventricular cardiomyocytes. Figure 2 shows the
distribution of these three cell types across the ventric-
ular wall. To model cells of the Purkinje fiber network,
we choose the Stewart model for human Purkinje fiber
cells (Stewart et al. 2009). A distinguishing feature of
this model is its automaticity, which enables the cells to
self-excite without an external stimulus. Figure 1, right,
illustrates the 14 ionic currents of the Stewart model,

Iion = ICaL + INa + ICab + INab + IKr + IKs + IK1 + Ito
+ If + Isus + INaK + IpCa + IpK + INaCa , (6)

the L-type calcium current ICaL, the fast and late sodium
currents INa, the background calcium and sodium cur-
rents ICab and INab, the rapid and slow delayed rectifier
potassium currents IKr and IKs, the inward rectifier potas-
sium current IK1, the transient outward potassium cur-
rent Ito, the hyperpolarization-activated current If , the
sustained potassium current Isus, the sodium potassium
pump current INaK, the calcium and potassium pump
currents IpCa and IpK, and the sodium calcium exchange
current INaCa. The 14 currents are defined through 20
state variables. Figure 1, right, illustrates the single-cell
action potential for human Purkinje cells. Figure 2 shows
the distribution of the Purkinje fiber network across the
endocardial wall.

2.2. Modeling the human heart

We discretize the set of continuum Equations (1)–(6)
in space using finite elements and in time using finite
differences (Sahli Costabal et al. 2018). To solve the re-
sulting system of equations, we adopt the finite element
software packageAbaqus (Dassault Systèmes 2017). Since
the governing equations of cardiac electrophysiology are
structurally similar to the classical heat transfer problem,
we adopt finite elements designed for heat transfer with a
nonlinear heat source. We discretize the transmembrane
potential as nodal degree of freedom and the ionic cur-
rents and gating variables as internal variables (Göktepe
and Kuhl 2009). Motivated by the small time step size
to resolve the fast dynamics during the upstroke of the
action potential, we adopt an explicit time integration
scheme.
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Figure 2. Human heart model created from high resolution magnetic resonance images of a healthy male adult (Zygote Media Group
2014). The ventricular wall is discretized with 6,878,459 regular linear hexagonal finite elements with an edge length of 0.3mm, a
total number of 7,519,918 nodes, and 268,259,901 internal variables. The Purkinje fiber network is discretized with 39,772 linear cable
elements, a total number of 39,842 nodes, and 795,440 internal variables. It is connected to the ventricles at its terminals through 3545
resistor elements. Endocardial, midwall, and epicardial cells are marked in yellow, orange, and red; Purkinje cells are shown in black.

Figure 2 illustrates our finite element model of the
left and right ventricles with endocardial, midwall, and
epicardial cells are marked in yellow, orange, and red.
The Living Heart model, an anatomically accurate four-
chamber model of the healthy human heart, forms the
basis of our heart geometry (Baillargeon et al. 2014). The
Living Heart model was initially created as a tetrahedral
mesh from magnetic resonance images of a healthy, 21-
year-old, 50th percentile U.S. male (ZygoteMedia Group
2014). Motivated by the relationship between element
size and critical time step size in explicit methods, we
convert this initial geometry (Rausch et al. 2017) into
a regular discretization of cube elements with a constant
edge lengthof 0.3mmacross the entire heart (SahliCosta-
bal et al. 2018). This results in a discretization with a
total of 6,878,459 regular linear hexagonal finite elements,
7,519,918 nodes, and 268,259,901 internal variables. For
the flux term, we assume a faster conduction along the
fiber direction f (Baillargeon et al. 2014) with the con-
ductivities parallel and perpendicular to the fiber direc-
tion as D‖ = 0.090mm2/ms and D⊥ = 0.012mm2/ms
(Niederer et al. 2011). For the source term, we employ
a body flux subroutine to incorporate the ionic currents

Iion in the finite element formulation (Dassault Systèmes
2017). To account for regional variations in cell type, we
simulate a series of Laplace problems using our finite ele-
ment mesh with different essential boundary conditions
(Perotti et al. 2015). Figure 2 shows the resulting cell-
type distribution across the ventricular wall with 20%
endocardial cells, 30% midwall cells, and 50% epicardial
cells. This arrangement ensures positive T waves (Hur-
tado and Kuhl 2014) to simulate the healthy baseline
electrocardiogram (Okada et al. 2011).

Figure 2 illustrates our finite element model of the
Purkinje fibers as a dense black network covering the
endocarial wall. Including the Purkinje network is critical
to accuratelymodel cardiac excitation and drive a regular
baseline beat.We generate the Purkinje network as fractal
tree that grows on the endocardial surface of the heart
(Sahli Costabal et al. 2016). We initialize tree growth
at four anatomical locations, the right bundle branch,
the left bundle branch, and the anterior and posterior
fascicles of the left ventricle. To tightly cover the endo-
cardial surface, every newly created branch repels existing
branches and follows the gradient of the distance of all
existing branches. This results in a discretization with
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39,772 linear cable elements, 39,842 nodes, and 795,440
internal variables. For these Purkinje elements, we imple-
ment a user element with a discrete one-dimensional ver-
sion of Equations (1)–(6). At the terminals of the fractal
tree, we connect the Purkinje network to the neighboring
myocardium (Ponnaluri et al. 2016). At these connec-
tions, we use 3545 resistor elements with a resistance of
1.78 �m (Niederer et al. 2011) between each endpoint
of the network and the closest node of the ventricular
mesh (Bordas et al. 2011). The resistor elements allow
us to adopt distinct cellular models with different resting
potentials for ventricular and Purkinje cells and ensure a
bidirectional conduction between the Purkinje network
and the surrounding tissue. For the flux term, we choose
a conductivity of D‖ = 3.0mm2/ms. Figure 2 illustrates
how densely our discrete Purkinje fiber network covers
the endocardium of the left and right ventricles.

2.3. Modeling the effect of drugs

We model the effect of drugs on the single-cell action
potential by selectively blocking the relevant ionic cur-
rents. The fractional blockage of individual ion channels
at varying drug concentrations can be measured using
patch clamp electrophysiology (Crumb et al. 2016). To
estimate the fractional blockβ at arbitrary concentrations
C, we can fit a Hill-type equation to the discrete data
points,

β = Ch

ICh
50 + Ch

. (7)

The Hill-type equation has two parameters, the expo-
nent h and the concentration IC50 required to achieve
a 50% current block. Figure 3 illustrates the effect of
dofetilide, which selectively blocks the rapid delayed rec-
tifier potassium current IKr. The graph highlights the
fractional block of IKr for varying concentrations C, log-
normalized with respect to the free plasma concentration
of dofetilide,Cmax = 2.1 nM.The dots and error bars sum-
marize the experimentally measured fractional blockage
(Crumb et al. 2016) and the solid line represents the fitted
Hill model with h = 0.6 and IC50 = 1.0 nM. To apply the
drug, we select a desired concentration C, calculate the
fractional blockageβ , and scale the rapid delayed rectifier
potassium current IKr by the fractional blockage [ 1−β ],

IdrugKr = [ 1 − β ] IKr . (8)

Figure 4 illustrates the effects of dofetilide on the single-
cell action potential of endocardial, midwall, epicardial,
and Purkinje cells. The black lines highlight the baseline
action potential without drugs and the yellow to red
lines represent the modified action potential for drug
concentrations of 1x, 5.7x, and 30x, where a dose of 1x

Figure 3. Effect of dofetilide on ionic current. Dofetilide selectively
blocks the rapid delayed rectifier potassium current IKr . The
concentration is normalized with respect to the free plasma
concentration of Dofetilde, Cmax = 2.1 nM. The solid line
represents the fitted Hill model, β = Ch / [ ICh50 + Ch ], with h
= 0.6 and IC50 = 1.0 nM; the error bars represent the standard
error mean (Crumb et al. 2016).

corresponds to an equivalent plasma concentration of
2.65 ng/mL. In all four cell types, dofetilide prolongs the
plateau of the action potential and increases the over-
all action potential duration. This effect increases with
increasing concentration. In endocardial cells, dofetilide
concentrations of 30x trigger early afterdepolarizations
in every second beat, red lines. In midwall cells, early
afterdepolarizations are present at every beat and already
occur at dofetilide concentrations of 5.7x, orange lines; at
concentrations of 30x, the action potential oscillates even
more tightly around the neutral state with a transmem-
brane potential of zero, red lines. Epicardial cells experi-
ence amarked increase in the actionpotential plateau, but
show no signs of early afterdepolarizations in response
to dofetilide. Purkinje cells remain almost unaffected by
dofetilide, even at concentrations of 30x.

To explore howdrug-induced alterations in the single-
cell action potential affect the excitation profile of the
entire heart, we excite the heart through the automaticity
of the Purkinje network and post-process the resulting
transmembrane profile to calculate pseudo electrocardio-
grams (Kotikanyadanam et al. 2010). At every point of
the heart, we project the gradient of the transmembrane
potential, ∇φ, onto the direction vector, ∇(1/||r||), and
integrate this projection across the entire cardiac domain,
φe(xe) = − ∫

B ∇φ ·∇(1/||r||)dV. The vector r = ‖xe−
x‖ points from current point x to the position of the
virtual electrode xe (Sahli Costabal et al. 2018). Tomodel
a pre-cordial lead in the clinical electrocardiogram, we
place the electrode 2 cm away from the left ventricular
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wall. This pre-cordial lead is commonly used to study
T waves and QT intervals (Hii et al. 1992), which are
critical signatures to quantify the risk of drug toxicity
(Sadrieh et al. 2014).

3. Results

Figure 5 shows the baseline excitation profile for the
simulation without drugs. The eight snapshots illustrate
the state of the left and right ventricles between the be-
ginning of theQRS complex at 50ms and the end of the T
wave at 450ms. During depolarization, from 0 to 100ms,
the Purkinje network drives the excitation from apex
to base with a sharp depolarization front propagating
rapidly across the heart. At 100ms, both ventricles are
fully excited. During repolarization, from 100 to 450ms,
the heart gradually returns to its resting state. At 450ms,
both ventricles are fully repolarized. The self-exciting
Purkinje cells determine the heart rate to 60.15 beats per
minute. This implies that the displayed excitation pattern
repeats itself identically every 1000ms, five times within
the simulated time window of 5000ms.

Figure 6 shows the excitation profile for the simula-
tion with dofetilide at a concentration of 1x. The eight
snapshots illustrate the state of the left and right ven-
tricles between the beginning of the QRS complex at
50ms and the end of the T wave at 640ms. During de-
polarization, from 0 to 100ms, the Purkinje network
drives the excitation from apex to base with a sharp
depolarization front propagating rapidly across the heart.
Since dofetilide primarily affects the rapid delayed recti-
fier potassium current IKr, which is not involved in the
upstroke of the action potential, the depolarization pat-
tern looks virtually identical to the baseline case without
drugs in Figure 5. At 100ms, both ventricles are fully
excited. During repolarization, from 100 to 640ms, the
heart gradually returns to its resting state. Since dofetilide
prolongs the action potential plateau as illustrated in Fig-
ure 4, repolarization is delayed compared to the baseline
case without drugs. At 640ms, 190ms later than for the
baseline case, both ventricles are fully repolarized. The
Purkinje cells are only marginally affected by dofetilide
as illustrated in Figure 4. Accordingly, their self-exciting
automaticity determines the heart rate to 60.15 beats
per minute, similar to the baseline case. The displayed
excitation pattern repeats itself identically every 1000ms,
five times within the simulated time window of 5000ms.
This suggests that dofetilide is safe at concentrations of
1x: the heart maintains its regular rhythm and displays
no signs of fibrillation.

Figure 7 shows the excitation profile for the simula-
tion with dofetilide at a concentration of 5.7x. The eight
snapshots are taken at the beginning of the QRS complex

at 50ms, at the end of depolarization at 100ms, and at
selected points within the simulationwindow of 5000ms.
During the initial depolarization, from 0 to 100ms, the
Purkinje network drives the excitation from apex to base,
virtually unaffected by dofetilide. At 100ms, similar to
the baseline case and the dofetilide concentration of 1x
in Figures 5 and 6, both ventricles are fully excited. After
a significantly prolonged ST segment, the heart sponta-
neously transitions into ventricular fibrillation. Figure 4
suggests that at a dofetilide concentration of 5.7x, cells in
the midwall experience early afterdepolarizations. They
become self-oscillatory and their transmembrane poten-
tial alternates rapidly around the neutral state with a zero
transmembrane potential. Figure 2 shows that the base
of our heart model consists primarily of orange midwall
cells. These regionsof themodel spontaneously transition
from the initially negatively charged state into the neutral
state with a zero transmembrane potential highlighted in
green. The base of the heart rapidly oscillates around this
neutral state throughout the entire simulation window
of 5000ms. Excitation of the remaining myocardium is
no longer driven by the Purkinje network, but by large
re-entrant waves that excite the heart in chaotic patterns,
from base to apex, from base to apex, from right to left,
from front to back, and from right to left. These rotating
spiral waves are characteristic features of torsades de
pointes. This suggests that dofetilide is associated with
a high torsadogenic risk at a concentration of 5.7x: the
heart spontaneously transitions from regular excitation
into ventricular fibrillation with classical hallmarks of
torsades de pointes including large spiral waves that orig-
inate from different locations across the heart.

Figure 8 shows the excitation profile for the simula-
tion with dofetilide at a concentration of 30x. The eight
snapshots are taken at the beginning of the QRS complex
at 50ms, at the end of depolarization at 100ms, and at
selected points within the simulationwindow of 5000ms.
During the initial depolarization, from 0 to 100ms, the
Purkinje network drives the excitation from apex to base,
virtually unaffected by dofetilide. At 100ms, similar to
all previous cases in Figures 5–7, both ventricles are fully
excited. After a significantly prolonged ST segment, the
heart spontaneously transitions into ventricular fibril-
lation. Figure 4 suggests that at a dofetilide concentra-
tion of 30x, both endocardical cells and midwall cells
experience early afterdepolarizations. While endocardial
cells only display early afterdepolarizations in every other
heart beat, midwall cells become self-oscillatory and their
transmembrane potential alternates rapidly around the
neutral state with a zero transmembrane potential. Fig-
ure 2 shows that at a dofetilide concentration of 30x,
50% of cells lose their natural rhythm, 20% in the en-
docardium, shown in yellow, and 30% in the midwall,
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Figure 4. Effect of dofetilide on the single-cell action potential of different cell types. Black lines represent the baseline action potential
of endocardial, midwall, epicardial, and Purkinje cells without drugs, yellow to red lines represent the modified action potential at drug
concentrations of 1x, 5.7x, and 30x. By blocking the rapid delayed rectifier potassium current IKr , dofetilide prolongs the plateau of the
action potential and increases the overall action potential duration. This effect increases with increasing concentration, from yellow to
red. Beyond a critical concentration, endocardial and midwall cells experience early afterdepolarizations and become self-oscillatory,
orange and red lines. Epicardial and Purkinje cells display no signs of early afterdepolarizations within the simulated concentration
range.

shown in orange. This implies that half of the ventricular
myocardium spontaneously transitions from the initially
negatively charged state into the neutral state with a
zero transmembrane potential highlighted in green. Ex-
citation of the entire myocardium is no longer driven
by global excitation waves, neither from the Purkinje
network as in Figures 5 and 6, nor from the neutral
midwall cells at the base as in Figure 7. Rather, early
afterdepolarizations of the endocardial and midwall cells
overwrite the natural rhythm. The ventricles excite lo-
cally by numerous small re-entrant waves that flicker
around the heart and excite it in uncoordinated chaotic
patterns. The heart is largely frozen at the neutral state
at a zero transmembrane potential with several local self-
oscillatory regions. This suggests that dofetilide is asso-

ciated with an extremely high arrhythmogenic risk at a
concentration of 30x: the heart spontaneously transitions
from regular excitation into ventricular fibrillation with
a complete loss of a global excitation and numerous lo-
cal small spiral waves that flicker around the heart and
oscillate tightly around the neutral state.

Figure 9 summarizes the electrocardiogram record-
ings for the baseline case at 0x in Figure 5 and drug treat-
mentwith dofetilide at concentrations of 1x, 5.7x, and 30x
in Figures 6–8. The baseline electrocardiogram displays
a regular periodic activation pattern with characteristic
QRS complexes and T waves, which repeat themselves
identically every 1000ms at a heart rate of 60.15 beats
per minute. The dofetilide 1x electrocardiogram displays
a regular periodic activation pattern similar to the base-
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Figure 5. Evolution of the transmembrane potential at baseline without drugs. Snapshots are taken between the beginning of the
QRS complex at 50ms and the end of the T wave at 450ms. During depolarization, from 0 to 100ms, the Purkinje network drives the
excitation from apex to base with a sharp depolarization front propagating across the heart. During repolarization, from 100 to 450ms,
both ventricles gradually return to their resting state. The Purkinje network determines the heart rate to 60.15 beats per minute. The
displayed excitation pattern repeats itself identically every 1000ms, five times within the simulated time window of 5000ms.

line case. A dofetilide concentration of 1x moderately
prolongs the plateau of the single-cell action potential
in Figure 4, which translates into a prolongation of the
QT interval of 55% compared to baseline. This agrees
well with the delayed repolarization patterns in Figure
6. Although this is a quite significant prolongation, the
heart maintains its normal sinus rhythm, which repeats
itself identically every 1000ms at a similar heart rate
as the baseline case. The dofetilide 5.7x electrocardio-
gram displays a regular depolarization during the first
50ms. With increasing drug concentration, the plateau
of the single-cell action potential in Figure 4 increases,
which translates into an increase of the QT interval in
the electrocardiogram. A concentration of 5.7x prolongs
the initial QT interval by 102% compared to baseline.
This significantly prolonged QT interval makes the heart
vulnerable to the spontaneous formation of ventricular
fibrillation. During the first and second cycle, the T wave
is followed by a marked U wave, a classical indicator
for early afterdepolarizations or prolonged repolariza-
tion of myocardial midwall cells. After the first two cy-
cles, at about 1500ms, the dofetilide 5.7x electrocardio-
gram spontaneously transitions into a sequence of rapid,
widened irregular QRS complexes, a characteristic hall-
mark of torsades de pointes, which agrees well with the

observed excitation patterns in Figures 7. The dofetilide
30x electrocardiogram displays a regular depolarization
during the first 50ms. A concentration of 30x prolongs
the initial QT interval by 132% compared to baseline.
After the first T wave, the electrocardiogram shows a
complete loss of coordinated excitationwith irregular un-
coordinated patterns that bear no resemblance with the
regular sinus rhythmof the baseline case. This agrees well
with the uncoordinated small local excitation patterns in
Figures 8.

4. Discussion

Many drugs–not just cardiac drugs–can have serious un-
desired side effects. Prominent side effects that play a
central role in several regulatory guidelines are lethal
cardiac arrhythmias in the form of tosardes de pointes
(Stockbridge et al. 2013). Historically, drug-induced
tosardes de pointes has been explained by a fractional
blockage of the rapid delayed rectifying potassium chan-
nel IKr, which increases the action potential duration
in individual cells and prolongs the QT interval in the
electrocardiogram (Mirams et al. 2011). Existing guide-
lines therefore focus on monitoring two torsadogenic
risk factors: potassium channel block and QT interval
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Figure 6. Evolution of the transmembrane potential with dofetilide at a concentration of 1x. Snapshots are taken between the beginning
of the QRS complex at 50ms and the end of the T wave at 640ms. During depolarization, from 0 to 100ms, the Purkinje network drives
the excitation from apex to base with a sharp depolarization front propagating across the heart, almost identical to the baseline case
without drugs. During repolarization, from 100 to 640ms, both ventricles gradually return to their resting state, however, with a delayed
repolarization compared to the baseline case. The Purkinje network determines the heart rate to 60.15 beats per minute. The displayed
excitation pattern repeats itself identically every 1000ms, five times within the simulated time window of 5000ms.

prologation (Vicente et al. 2016). This strategy has been
successful in the sense of torsade risk management; yet,
its broad definition comes at the cost of low specificity
(Colatsky et al. 2016): many drugs that affect potassium
channel block and QT interval length are not torsado-
genic in practice, but never make it to the market under
the current conservative regulatory paradigm (Vicente et
al. 2016). The major challenge is to understand how and
to which extent potassium channel block andQT interval
length increase the proarrhythmic risk of the heart.

Here we propose to correlate potassium channel block
and QT interval length to electrocardiogram recordings
viamechanisticmultiscalemodeling.We establish a com-
putational model that uses drug-induced current block
signatures fromsingle-cell electrophysiology as input and
generates action potential profiles, cardiac excitation pat-
terns, and electrocardiograms as output. By design, out
model allows us to characterize the interaction of differ-
ent channel blocks (Sahli Costabal et al. 2018), the inter-
action of different drugs (Johannesen et al. 2016), and the
interaction of different cell types across the heart.Herewe
focus on the spatio-temporal interaction of different cell
types in response to a single-channel blocker at different
concentrations. Because of its known dose-sensitive risk

of torsades de pointes, we choose the drug dofetilide, a
pure strong rapid delayed rectifying potassium channel
blocker (Vicente et al. 2015), and quantify its effects at
concentrations of 1x, 5.7x, and 30x, in comparison to the
baseline case without drugs.

Our drug-modulated action potential profiles in
Figure 4 agree well with the common understanding
that–by design–through blocking the rapid delayed recti-
fying potassium current IKr, dofetilide prolongs the
plateau of the action potential and increases action
potential duration (Pfizer 2011). Beyond a critical con-
centration, midwall cells begin to display early afterdepo-
larizations (Antzelevitch and Sicouri 1994). While their
action potential profiles in Figure 4 nicely capture the
underlying characteristic oscillatory potential, the ionic
basis for the development of early afterdepolarizations
remains unclear (Pugsley et al. 2015).

As a class III antiarrhythmic agent, dofetilide increases
the refractory period of atrial, ventricular, and Purkije
cells, but, in contrast to class I agents, it maintains the
overall conduction velocity (Ibrahim and Bhimji 2017)
and heart rate (Pfizer 2011). Because of its high specificity
and a low side effect profile, dofetilide has advanced
as one of the most effective antiarrhythmic agents
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Figure 7. Evolution of the transmembrane potential with dofetilide at a concentration of 5.7x. Snapshots are taken at the beginning
of the QRS complex at 50ms, at the end of depolarization at 100ms, and at selected points within the simulation window of 5000ms.
During the first 100ms, the Purkinje network drives the excitation from apex to base with a sharp depolarization front propagating
across the heart, almost identical to the baseline case without drugs. After a prolonged QT interval, the propagation of the excitation
wave becomes irregular and asynchronous. Excitation is no longer driven by the Purkinje network, but by large re-entrant waves that
excite the heart in chaotic patterns, from base to apex, from right to left, from front to back, and from right to left. These are characteristic
hallmarks of torsades de pointes.

(Briceno and Supple 2017). Figure 4 supports the general
notion that its effects are strongly dose-dependent: action
potential durations increase with increasing dose up to a
critical dose beyond which dofetilide triggers early after-
depolarizations. The dose–response effects of dofetilide
are highly cell-specific with midwall cells being most
sensitive to the drug followed by endocardial, epicardial,
and Purkinje cells (Antzelevitch and Sicouri 1994).

Our baseline excitation profile of the left and right
ventricles in Figure 5 agrees well with the excitation se-
quence in healthy human hearts. Critical to this sequence
is the Purkinje fiber network that quickly and reliably
transmits the signal from the atrioventricular node down
to the apex of the heart to excite the heart from the
bottom up (Sahli Costabal et al. 2016). There is a general
agreement that, within the healthy activation sequence,
the posterior basal region of the right ventricle is the
last region to activate (Durrer et al. 1970), which agrees
well with our predicted excitation profile at 60ms. The
timing of repolarization and depolarization also agree
well with those of healthy human hearts, where complete
the activation takes between 62 and 80ms (Durrer et al.
1970), compared to 72ms in our model.

Our simulated effects of dofetilide on cardiac excita-
tion in Figures 6–8 agree well with the label of Pfizer
(2011) and with the results of clinical studies in patients
(Abraham et al. 2015). Our simulations support the com-
mon notion that, at low doses, dofetilide is a safe drug
and effective drug with low pro-arrhythmic risk (Pfizer
2011). For a dofetilide concentration of 1x in Figure 6, it
takes our simulation 640ms to return to the resting state,
compared to 450ms for the baseline case with no drugs in
Figure 5. Similar to a recent clinical study, which reported
a QT prolongation of 78ms (Johannesen et al. 2014),
our simulation predicts a substantial but safe prolonga-
tion of the effective refractory period. This agrees well
with the general notion that dofetilide can have dramatic
consequences if not dosed correctly (Briceno and Supple
2017): in a retrospective cohort study of 1404 patients
loaded on dofetilide for a five-year period, dofetilide was
stopped in 105 patients because of QT prologation. A
total of 17 patients developed torsades de pointes; of
those, 10 had an episode of cardiac arrest and one resulted
in death. In agreement with our simulations, the study
found a dose-related increase in torsades de pointes, with
a higher incidence when taking the 0.500mg dose twice
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Figure 8. Evolution of the transmembrane potential with dofetilide at a concentration of 30x. Snapshots are taken at the beginning of
the QRS complex at 50ms, at the end of depolarization at 100ms, and at selected points within the simulation window of 5000ms.
During the first 100ms, the Purkinje network drives the excitation from apex to base with a sharp depolarization front propagating
across the heart, almost identical to the baseline case without drugs. After a markedly prolonged QT interval, the global excitation
disappears. Excitation is no longer driven by the Purkinje network, but by numerous small re-entrant waves that flicker around the heart
and excite it in chaotic patterns. The heart is largely frozen at the neutral state at a transmembrane potential of zero with several local
self-oscillatory regions.

per day (Abraham et al. 2015). According to the label, the
maximum single dose for dofetilide is 0.500mg (Vicente
et al. 2015).

For a dofetilide concentration of 5.7x in Figure 7,
our simulation predicts a spontaneous transitions from
a sharp but smoothly propagating excitation pattern into
rapid, irregular, asynchronous activation patterns of tor-
sades de pointes type. Our model inherently captures the
regional specificity of the ventricular myocardium and
probes the dynamic interplay of its endocardial, mid-
wall, epicardial, and Purkinje cells. A closer look at our
activation sequences can help us identify the onset of
torsadogenesis both in space and time: our activation
profiles in Figure 7 suggest that the mechanisms that
triggers torsades de pointes are early afterdepolarizations
(Antzelevitch and Sicouri 1994) andnot prolonged action
potential duration. It is well known that a variety of drugs
that block sodium and potassium channels can induce
early afterdepolarizations, whichmay ultimately result in
torsades de pointes; yet, the genesis and maintainance
of early afterdepolarization-induced arrhythmias remain
unclear (Pugsley et al. 2015).At a dofetilide concentration
of 5.7x, according to the input to our model in Figure 4,

only midwall cells experience early afterdepolarizations
(Antzelevitch and Sicouri 1994), while endocardial, epi-
cardial andPurkinje cells display a regular, yet prolonged,
action potential profile. In the thin layer of midwall cells
in the ventricular wall, endocardial and epicardial cells
can overwrite this early afterdepolarization, as evidenced
by the global excitation pattern of large re-entrant waves,
highlighted by the orange and blue colors. In the region
near the great vessels, which we have represented by
midwall cells, early afterdepolarizations freezes the trans-
membrane potential close to the neutral state, highlighted
by the green color. This region overwrites the activation
of the Purkije fiber network and excites the heart in
chaotic twisting patterns, a classical hallmark of torsades
de pointes (Dessertenne 1966).

For a dofetilide concentration of 30x in Figure 8, our
simulationpredicts a spontaneous transitions froma sharp
but smoothly propagating excitation pattern into numer-
ous small re-entrant waves that flicker around the heart
and excite it in chaotic patterns. This agrees well with
clinical observations in response to overdosing: a patient
who received twodoses of 0.500mgof dofetilide one hour
apart developed ventricular fibrillation and cardiac arrest
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Figure 9. Electrocardiogram recordings for the baseline case and drug treatment with dofetilide at concentrations of 1x, 5.7x, and 30x.
The baseline and dofetilide 1x electrocardiograms display regular periodic activation patterns at a heart rate of 60.15 beats per minute
determined by the Purkinje fiber network. Dofetilide 1x prolongs the QT interval by 55% compared to baseline. The dofetilide 5.7x and
30x electrocardiograms display a regular depolarization during the first 50ms, followed by a significant prolongation of the QT interval
by 102% and 132%. Dofetilide 5.7x triggers the formation of U waves during the first two cycles, followed by a spontaneous transition
into a sequence of rapid, widened irregular QRS complexes, a characteristic feature of torsades de pointes. Dofetilide 30x causes a
complete loss of coordinated excitation.

(Ibrahim and Bhimji 2017). At a dofetilide concentration
of 30x, according to the input to our model in Figure 4,
both midwall and endocardial cells display early afterde-
polarizations. A majority of the ventricular wall has now
lost its regular action potential profile. Unlike in Figure
7, the irregular region is now large enough to entirely
overwrite any form of globally coordinated excitation
(Antzelevitch and Sicouri 1994). With the exception of
small flickering wave fonts, the heart is frozen at the
neurtal state with a transmembrane potential of zero.

Our simulated electrocardiograms in Figure 9 pro-
vide a simple zero-dimensional summary of the com-
plex three-dimensional activation profiles in Figures 5–
8.While electrocardiograms help us to quickly categorize
rhythm disorders (Dubin 1996), the mechanistic origin
of these disturbances can only be uniquely assessed in
combination with three-dimensional activation profiles.
Our simulations accurately reproduce the common no-
tion that dofetilide causes a dose- and concentration-

dependent increase in the QT interval (Vicente et al.
2016), with predicted QT interval prolongations of 55%,
102%, and 132% compared to baseline. Our predicted
QT interval prolongation is in excellent agreement with
clinical observations: for the 1x case, we apply an equiv-
alent plasma concentration of 2.65 ng/mL and record a
QT prolongation of 55%. This value compares closely to
the projected value of 56% reported by a recent prospec-
tive clinical trial (Johannesen et al. 2016). Our QT al-
terations are slightly larger than the reported increase of
15–25ms/ng/mL after the first dose and 10–15ms/ng/mL
after day 23 (Pfizer 2011), which might be caused by
fact that our simulated QT interval prolongations are
highly sensitive to the block-concentration characteris-
tics (Crumb et al. 2016) summarized in Figure 3.

Recent studies have challenged the focus on the
QT interval alone and suggest that more information
may be present in electrocardiogram including T
wave morphology, flatness, asymmetry, and notching
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(Vicente et al. 2015). The T wave of our dofetilide 1x
electrocardiogram clearly differs in flatness and asym-
metry from the T wave of the baseline electrocardiogram
in Figure 9. Another characteristic feature that has been
largely overlooked in the risk assessment of torsades de
pointes is the U wave. Our simulated electrocardiograms
only display two pronounced U waves, both during the
first two cycles of the dofetilide 5.7x electrocardiogram.
The appearance of pronounced U waves in the electro-
cariogram is known to be a potential indicator of early af-
terdepolarizations, particularly inmidwall cells (Antzele-
vitch and Sicouri 1994). This common notion agrees well
with theUwaves in our dofetilide 5.7x electrocardiogram
in Figure 9, which coincide with the early afterdepolar-
izations of our midwall cells in Figure 4. Pronounced U
waves are a common side effect of antiarrythmic drugs
(Antzelevitch and Sicouri 1994) and closely associated
with the formation of torsades de pointes (Pugsley et
al. 2015). This agrees well with our simulation, which,
after the first two cycles, at about 1500ms, spontaneously
transitions into a sequence of rapid, widened irregular
QRS complexes, a distinguishing feature of torsades de
pointes (Dessertenne 1966).

Although our study provides valuable insight into the
mechanistic origin of ventricular tachycardia and tor-
sades de pointes, it has several important limitations that
we need to keep in mind when interpreting its results:
first, the major unknowns in arrhythmogenic risk assess-
ment are pharmacodynamic variability caused by vari-
ability in drug action at the cellular, tissue, whole-organ,
andwhole organism levels and pharmacokinetic variabil-
ity caused by variability in concentration at the target site
of action (Roden 2016). Both are essentially inputs to our
model (Crumb et al. 2016), summarized in Figure 3, and
can be easily generalized to include more variability once
this information becomes available. For example, by per-
sonalizing the block-concentration response, we could
use our model for personalized drug screening. Second,
ideally, we would also personalize the cellular hetero-
geneity across the ventricular wall. Here for simplicity,
we have assumed a generic distribution of endocardial,
midwall, and epicardial cells. Our simulations suggest
torsadogenic risk assessment is particularly sensitive to
the regional distribution of midwall cells, which display
the highest dose–response sensitivity of all cell types,
and are most closely associated with early afterdepo-
larizations and torsadogenesis (Antzelevitch and Sicouri
1994).However, evenwithout personalizedpharmacody-
namics, pharmacokinetics, and personalized heart mod-
els (Chabiniok et al. 2016), we can already use our current
model to perform uncertainty quantification and predict
an arrhythmogenic risk regime rather than a single quan-
tifier (Chang et al. 2017). Third, while our current study

is limited to a single drug that selectively blocks a single
channel, ourmodel can be equally used to study the effect
of drugs that block several interacting channels (Sahli
Costabal et al. 2018) or the effect of co-administration of
several compensatory drugs (Johannesen et al. 2016).

5. Conclusion

Various drugs display undesired side effects in the form
of torsades de pointes, an abnormal heart rhythm that
can lead to sudden cardiac death. The initiation of tor-
sades de pointes has traditionally been associated with
potassium channel blockage and QT interval prolon-
gation; yet, the underlying mechanisms of torsades de
pointes remain poorly understood. Here, we present a
multiscale computational model to explore the effects
of drugs on the single-channel, single-cell, and whole
heart levels. Our mechanistic exposure–response sim-
ulator translates block-concentration characteristics of
arbitrary drugs into three-dimensional excitation pro-
files and electrocardiogram recordings to provide a rapid
assessment of torsadogenic risk. A typical input to our
model could come from the block-concentration pro-
files generated and recommended by the CiPA initiative.
Here, we illustrate the features of our exposure–response
simulator for the drug dofetilide, a controversial drug
with high specificity to block a single channel, the rapid
delayed rectifier potassium current IKr.We show that the
proarrhythmic risk of dofetilide is highly dose-dependent
with a low torsadogenic risk at and below concentrations
of 1x and a high torsadogenic risk at and above concen-
trations of 5.7x. Our exposure–response simulator can
identify the mechanistic origin of torsadogenesis, both
in space and time, and provide a more accurate and
comprehensive mechanistic assessment of proarrhyth-
meic potential. For the example of dofetilide, our sim-
ulations suggest that neither potassium channel blockage
nor QT interval prolongation alone trigger torsades de
pointes. Rather, the underlying mechanism predicted by
our model are early afterdepolarizations, which trans-
late into pronounced U waves in the electrocardiogram,
a signature that is correctly predicted by our simula-
tion. Beyond the risk assessment of existing drugs, our
exposure–response simulator can serve as a powerful tool
for cardiologists, drug design companies, and regulatory
agencies to optimize the co-administration of existing
drugs and, ultimately, guide the design of new drugs with
potentially compensatory effects.
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