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Consistent formulation of the growth process at the kinematic and constitutive level for soft
tissues composed of multiple constituents

H. Schmida*, L. Paulia, A. Paulusa, E. Kuhlb and M. Itskova

aDepartment of Continuum Mechanics, RWTH Aachen University, Eilfschornsteinstrasse 18, 56062 Aachen, Germany; bDepartment of
Mechanical Engineering, Stanford University, 496 Lomita Mall, Durand 217, Stanford, CA, USA

(Received 1 July 2010; final version received 13 December 2010)

Previous studies have investigated the possibilities of modelling the change in volume and change in density of biomaterials.
This can be modelled at the constitutive or the kinematic level. This work introduces a consistent formulation at the
kinematic and constitutive level for growth processes. Most biomaterials consist of many constituents and can be
approximated as being incompressible. These two conditions (many constituents and incompressibility) suggest a
straightforward implementation in the context of the finite element (FE) method which could now be validated more easily
against histological measurements. Its key characteristic variable is the normalised partial mass change. Using the concept of
homeostatic equilibrium, we suggest two complementary growth laws in which the evolution of the normalised partial mass
change is governed by an ordinary differential equation in terms of either the Piola–Kirchhoff stress or the Green–Lagrange
strain. We combine this approach with the classical incompatibility condition and illustrate its algorithmic implementation
within a fully nonlinear FE approach. This approach is first illustrated for a simple uniaxial tension and extension test for
pure volume change and pure density change and is validated against previous numerical results. Finally, a physiologically
based example of a two-phase model is presented which is a combination of volume and density changes. It can be concluded
that the effect of hyper-restoration may be due to the systemic effect of degradation and adaptation of given constituents.

Keywords: volume growth; density change; incompressibility; growth and remodelling; adaptation; homeostatic equilibrium

Nomenclature

F t(t) deformation gradient tensor at time (t, t)

Ft
eðtÞ elastic part of the deformation gradient tensor at

time (t, t)

Ft
gðtÞ growth part of the deformation gradient tensor at

time (t, t)

J t determinant of Ft(t)

Jte determinant of Ft
eðtÞ

Jtg determinant of Ft
gðtÞ

C t(t) total right Cauchy–Green tensor at time (t, t)

Ct
eðtÞ elastic right Cauchy–Green tensor at time (t, t)

E t(t) Green–Lagrange strain tensor at time (t, t)

P t(t) 1st Piola–Kirchhoff stress tensor at time (t, t)

S t(t) 2nd Piola–Kirchhoff stress tensor at time (t, t)

s t(t) Cauchy stress tensor at time (t, t)

Ct(t) free energy at time (t, t)

x t material point at time (t, t)

X material point at time (0, 0)

utg normalised density of constituent g at time t

rtg density of constituent g at time t

rtg partial density of constituent g at time t

ft
g partial volume fraction of constituent g at time t

f tg normalised partial mass change of constituent g at

time t

6tg normalised partial density change of constituent g

at time t

ntg normalised partial volume change of constituent g

at time t

n t normalised tissue volume change at time t

d infinitesimal

d differential

C number of constituents

Note that time t is being omitted in most cases,

because it is clear from the context

1. Introduction

The objective of this contribution is the introduction of a

novel formulation for growth and remodelling. Biological

materials, in particular, commonly adapt their mass and their

structure to environmental stimuli like stress or inflam-

mation. For the modelling of biological materials with

changing mass, two different approaches can be distin-

guished: the coupling of mass changes at the constitutive

level and at the kinematic level. The given formulation is

particularly attractive for incompressible tissues, because it

utilises the fact that growth and remodelling are a large
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timescale effects, whereas incompressibility can be

considered as a short timescale phenomenon.

A change in mass can be characterised via a

multiplicative decomposition of the deformation gradient

tensor into a growth part and an elastic part. The

decomposition was first introduced in the context of

plasticity by Lee (1969). This approach is utilised for the

kinematic coupling and was introduced by Rodriguez et al.

(1994) to model soft biological tissues such as the arterial

wall and the heart by assuming that the material response is

described by one constitutive equation. Growth can be

described as isotropically or more generally as transversely

isotropic or orthotropically, see, e.g. Taber (1995), Menzel

(2005, 2007), Himpel (2007) and Garikipati (2009). One of

the prominent features is that the evolution equation for the

internal variables (e.g. the isotropic growth stretch ratio

(Himpel et al. 2005)) is derived on the basis of

thermodynamic considerations. Most of these descriptions

are able to represent volume growth by assuming a constant

density; thus, mass change is realised by adding volume.

Mass change at the constitutive level, on the other

hand, may be realised in a single-constituent setting by a

weighting of the free energy function with respect to the

density field as experimentally motivated (Cowin and

Hegedus 1976; Carter and Hayes 1977). In this setting, the

evolution equation for the internal variable (e.g. the mass

source (Himpel et al. 2005)) is also thermodynamically

consistent. These descriptions tend to describe density

growth by assuming that volume stays constant, and thus

the mass change happens by a change in density.

Most soft biological tissues, however, may be

modelled as composites consisting of a number of

constituents, either isotropic or anisotropic. Mixture theory

is one of the possible approaches to model this. Humphrey

and Rajagopal (2002) have been among the first to propose

a constrained mixture theory formulation. In this descrip-

tion, they assumed that each constituent had a separate

natural configuration. Klisch et al. (2003) used a similar

formulation for describing cartilage tissue, although they

referred each constituent back to one configuration, which

makes the treatment easier. Furthermore, they used growth

equations derived earlier (Klisch et al. 2001) from

thermodynamic considerations. Other studies like Machy-

shyn et al. (2010) used a similar approach for arterial

tissue. Biological tissues are thermodynamically open

systems and it may be more useful to formulate growth and

remodelling in a way (1) that the formulation is consistent

on the kinematic and constitutive level and (2) that the

evolution equations are still phenomenological, yet based

on direct experimental observations. This is the focus of

this work. This may be particularly useful because the

appropriate choice and quantitative validation of the

growth tensor may prove to be difficult, whereas

histological measurements of individual mass fractions or

volume fractions are feasible (Fisher and Llaurado 1966;

Rizzo et al. 1989; Gleason and Humphrey 2004).

To characterise tissue anisotropy, the mathematical

framework on the basis of generalised invariants is used.

One of the first to introduce this concept was Spencer

(1984) followed by Weiss et al. (1996) in the context of

living tissues. It was established subsequently by

Holzapfel et al. (2000). For example, the medial layer of

the arterial wall may be considered as a composite of

ground matrix, elastin, collagen and vascular smooth

muscle cells (Watton et al. 2004; Itskov et al. 2006; Ehret

and Itskov 2007; Schmid et al. 2010).

The property of incompressibility can be used in the

context of growth and remodelling as will be briefly

highlighted in the sequel and in more detail in Section 2.

Incompressible materials can, on the one hand, be

modelled as nearly incompressible by splitting the

deformation gradient tensor into a volumetric part and an

isochoric part and formulating the free energy as depending

on those two parts, usually by introducing a sum of two free

energies. The volumetric part is then chosen to be very stiff

which results in a nearly incompressible behaviour (Peng

and Chang 1997). On the other hand, the resulting

hydrostatic pressure field may be, e.g., split off as an

independent field in the finite element (FE) approach (so-

called hybrid formulations) via the variational principle of

Hu–Washizu. The incompressibility is then enforced on an

element basis (e.g. Bathe 1982; Nash and Hunter 2000).

The timescale of the momentum balance is usually

considered in the order of seconds. Yet, growth and

remodelling take place in the order of days to weeks if not

months. Thus, it has become a common practice to neglect

the convective term in the continuity equation.1 Although

on the short timescale the material remains incompres-

sible, the element volume, which is used in the FE context

to enforce incompressibility, may then change as a

consequence of a change in mass on the long timescale.

In this work, we give a brief overview of the relevant

theoretical background of continuum mechanics as well as

of the growth and remodelling theory. We demonstrate

how this new approach compares with the previous ones for

the case of uniaxial tension and extension for pure volume

change and pure density change, respectively. Finally, an

example of a two-phase material is shown to demonstrate

the versatility of this approach. The results are validated

against previously published data by Himpel et al. (2005).

2. Methods

2.1 Kinematics

The standard deformation gradient F t is defined as

FtðtÞ ¼
›xtðX; tÞ

›X
; ð1Þ

where xt ¼ xtðX; tÞ : Bð0;0Þ ! Bðt;tÞ is used to describe the

H. Schmid et al.2
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deformation between the reference configuration Bð0;0Þ and

the deformed configuration Bðt;tÞ at a given time t. See

Figure 1 for an illustration of the various configurations

and timescales. Growth and remodelling and the

mechanical equilibrium happen on two different time-

scales. The timescale t represents the short timescale of

seconds (mechanical equilibrium), whereas t represents

the long timescale in the order of days to months (growth

and remodelling or material equilibrium), see Figure 1.

Note that in most cases, the dependency on the short

timescale t is omitted for the sake of simplicity. The

deformation gradient may be split into a growth part and

an elastic part Ft ¼ Ft
eF

t
g with J t ¼ detFt . 0; Jte ¼

detFt
e ¼ 1 and Jtg ¼ detFt

g . 0, ensuring the invertibility

of those three tensors and the incompressibility of the

ground substance. Ft
g describes the effect of finite growth

(Himpel 2007).

The total right Cauchy–Green tensor C t and the total

Green–Lagrange strain tensor E t are defined as follows:

Ct ¼ ðFtÞTFt Et ¼
1

2
ððFtÞTFt 2 IÞ: ð2Þ

Similarly, the elastic right Cauchy–Green tensor Ct
e

and the elastic Green–Lagrange strain tensor Et
e are

defined as follows:

Ct
e ¼ Ft

e

� �T
Ft

e Et
e ¼

1

2
ðFt

eÞ
TFt

e 2 I
� �

: ð3Þ

2.2 Free energy and stress–strain relationship

The second Piola–Kirchhoff stress tensor St and its

relations to the first Piola–Kirchhoff stress tensor P t and

to the Cauchy–stress tensor s t are given as follows:

St ¼ J tðFtÞ21stðFtÞ2T ¼ ðFtÞ21Pt: ð4Þ

Other authors (Himpel et al. 2005) also introduced the

Mandel stresses in the intermediate configuration B(t, 0),

which drive the evolution equation for mass change. In our

approach, we will show that utilising the second Piola–

Kirchhoff stress tensor gives qualitatively similar results.

Following the principle of material objectivity, the free

energy function Ct per unit reference volume may be

written as follows:

Ct ¼ Ct Ct
e

� �
: ð5Þ

For the convenient description of growth and remodel-

ling phenomena, we introduce the density prior to growth

and remodelling at time t ¼ 0 as r ð0;0Þ in the reference

configuration and r ð0;tÞ in the current configuration, whereas

the densities at later times t ¼ t are given as r (t, 0) in the

reference configuration and r (t,t) in the current configur-

ation. Note that, due to incompressibility, r ðt;tÞ ¼ r ðt;0Þ,

which will be used subsequently. By using those definitions,

one can introduce a normalised density and hence a

weighted free energy at time t, with respect to the volume in

the reference configuration (Himpel et al. 2005):

Ct ¼
r ðt;0Þ

r ð0;0Þ
C0 Ct

e

� �
¼ utC0 Ct

e

� �
; ð6Þ

where u t represents the normalised density at time t, and we

omit the superscript t ¼ 0 since u t does not change with t.

C0 represents the free energy before any growth and

remodelling has occurred. The stress–strain relationship for

an incompressible material then follows as

S ¼ 2
›Ct

›Ct
2 pðCtÞ21 ¼ Ft

g

� �21

Ste Ft
g

� �2T

¼ 2 Ft
g

� �21 ›Ct

›Ct
e

2
p

2
ðCt

eÞ
21

� �
Ft

g

� �2T

:

ð7Þ

As mentioned in the introduction, biological tissues may be

represented as a composite of g ¼ 1, . . . ,C constituents, and

thus the free energy may be written as the sum of the energy

of its constituents g:

Ct ¼
XC
g¼1

utgC
0
g with u0

g ¼ 1; ;g: ð8Þ

This assumption was motivated by Humphrey and

Rajagopal (2002) in the context of a constrained mixture

theory. The strain for each constituent is assumed to be the

same, and thus the stress–strain relationship for a biological

Possible
change

in mass &
volume

B(0,0)
B(0,t)

B(τ,0) B(τ,t)

t

Fτ
g

Fτ
e

Fτ

F0
e

τ

Figure 1. Growth and remodelling and the mechanical
equilibrium happen on two different timescales. The timescale
t represents the short timescale of seconds, whereas t represents
the long timescale in the order of days to months.
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tissue consisting of C constituents reads

S ¼ 2 Ft
g

� �21›Ct

›Ct
e

Ft
g

� �2T

2pðCtÞ21

¼ 2
XC
g¼1

utg Ft
g

� �21›C0
g

›Ct
e

Ft
g

� �2T

2pðCtÞ21: ð9Þ

Cross-coupling terms for the interaction of different

constituents may also be considered. They are omitted in

this context, because studies up to date have consistently

been able to approximate the complex mechanical response

of the composite by neglecting the cross-coupling terms

(Gleason and Humphrey 2004; Watton et al. 2004;

Holzapfel 2006; Schmid et al. 2010). Refined molecular

imaging techniques and mechanical testing procedures may

help to improve these descriptions.

2.3 Numerical implementation of incompressibility

If a material does not change its volume under

deformation, it is said to be incompressible. This property

can be captured by the following equation:

det Ft
eðtÞ

� �
¼ 1 throughout the deformation; i:e:

;t with 0 , t ! t:
ð10Þ

Numerically, this is considered via two independent fields

in the FE formulation: the nodal displacements and the

hydrostatic pressure field, e.g. Bathe (1982) and Nash and

Hunter (2000). These are the so-called hybrid or u 2 p

formulations. Care should be taken to underintegrate the

hydrostatic pressure field to avoid locking phenomena

(Oden 1972). To reflect that, volume does not change; the

kinematic constraint (Equation (10)) is incorporated over

each element with volume Velem into the global system

(Nash and Hunter 2000):ð
Velem

ðdet Ft
e

� �
2 1ÞdV ; ð11Þ

where det Ft
e

� �
is the standard Jacobian of the deformation

gradient tensor on the short timescale when no volume or

mass change occurs. Equation (11) offers the opportunity

for seemlessly enforcing the changing volume.

2.4 Growth and remodelling

Growth and remodelling describe the biological process of

adaptation as illustratively summarised by Taber (1995).

For example, in an aneurysm – a pathological dilatation of

the arterial wall – apoptosis2 of vascular smooth muscle

cells in the medial layer is accompanied by a substantial

loss of elastin and collagen (Anidjar and Kieffer 1992;

Kondo et al. 1997). To be able to describe such phenomena

within the same FE environment, we briefly introduce

some basic notions of density, volume and volume

fractions ensuring a consistent handling of these proper-

ties, see also Ateshian et al. (2009) and Ehlers et al. (2009).

This is done first for one constituent and subsequently

generalised to several constituents.

2.4.1 One constituent

For one constituent, we introduce the infinitesimal3 mass

m, the infinitesimal volume dV and the infinitesimal

density r ¼ m=dV. Those measures may, of course,

depend on time and differ for t ¼ 0 and t ¼ t:

r0;m0; dV 0 and rt;m t; dV t: ð12Þ

Next, we introduce the normalised mass change:

f t ¼
m t

m0
¼

rtdV t

r0dV 0
¼ utnt; ð13Þ

where ut ¼ ðrt=r0Þ and nt ¼ ðdV t=dV 0Þ are the normal-

ised density change and normalised volume change,4

respectively. Note that the word ‘normalised’ refers to the

fact that for t ¼ 0, all normalised variables have value 1. It

can be considered as a normalisation with respect to a time

when no density or volume change has occurred, i.e. the

tissue is in a virgin state one wants to refer to. Additionally,

the normalised volume change v t (defined on the

timescale t) is not the volume change usually defined by

the determinant of the elastic deformation gradient det(Fe)

which is determined by the short timescale t.

2.4.1.1 Pure volume change. For pure volume change,

ut ¼ 1;;t and f t ¼ v t. This is used to govern the

incompressibility condition:

detðFtÞ2 nt ¼ 0; ð14Þ

which yields an adapted volume according to the mass

change at time t. The constitutive Equation (6) remains

unaffected, since u t ¼ 1,;t.

2.4.1.2 Pure density change. For pure density change,

v t ¼ 1;;t and f t ¼ ut. Thus, the incompressibility

condition remains unchanged, whereas the constitutive

equation changes over time as defined in Equation (6).

2.4.1.3 Evolution equations. In pure volume change and

pure density change, the mass changes due to different

mechanisms. In pure volume change, the evolution

equation for f t thus represents a change in volume,

whereas for pure density change, f t represents a change in

density. Thus, the same variable has different meanings in

those differing contexts. Those mechanisms are the

representatives for the different types of biological tissue.

H. Schmid et al.4
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Density changes tend to happen predominantly in hard

tissues like bone (Wolff 1892; Huiskes et al. 1987; Kuhl

et al. 2003; Taylor et al. 2009), whereas volume change

tends to happen predominantly for soft tissues like

connective tissue and muscles (Richter and Kellner 1963;

Humphrey 2002; Hu et al. 2007).

Equation (15) introduces the general form of an

evolution equation for the mass change or equivalently for

the normalised mass change:

dm t

dt
¼ F ða;E; SÞ or equivalently

df t

dt
¼ ~F ða;E; SÞ;

ð15Þ

where a, E and S are some time constants, kinematic

variables or stress variables, respectively. It is not clear

which mechanical quantity is driving changes in growth

and remodelling. An excellent review about what cells

actually sense: ‘Stress or strain?’ can be found in

Humphrey (2001). For example, fibre realignment is

thought to be driven by either stress or strain (Driessen

et al. 2003, 2004, 2005; Alastrue et al. 2009; Menzel and

Waffenschmidt 2009; Grytz and Meschke 2010; Grytz

et al. 2010). Previous theoretical investigations which use

the split of the deformation gradient into a growth part

and elastic part (Cowin 1996; Kuhl et al. 2006; Himpel

2007; Himpel et al. 2005, 2007; Kuhl and Holzapfel

2007; Menzel 2007) suggest the Mandel stress in the

intermediate configuration to drive the evolution

equation. However, other authors have used the Cauchy

stress (Driessen et al. 2003) or the Green strain (Watton

et al. 2004, 2009; Schmid et al. 2010) to drive the

evolution equation. As noted in Equation (15), the

functional form of the evolution equation may thus, in

general, depend on both stress and strain. The specific

functional form is usually phenomenological, and

different linear and nonlinear forms have been suggested

and investigated (Taber 2008; Watton et al. 2009;

Göktepe et al. 2010).

2.4.2 Several constituents: illustrative examples

For several constituents, the equations for mass, volume

and density have to be considered for the whole tissue as

well as for each constituent (Humphrey and Rajagopal

2002; Garikipati et al. 2004; Ehlers et al. 2009). Based on

the previous section, they can be readily derived as

follows. Assuming that a material consists of g ¼ 1, . . . ,C

constituents, the total density r, the partial density of a

constituent rg and the true or individual density of a

constituent rg are defined as follows:

r ¼
m

dV
;

m : total mass; dV : total volume

rg ¼
mg

dV
;

mg : partial mass of constituent g

rg ¼
mg

dVg

;

dVg : partial volume of constituent g:

ð16Þ

Furthermore, we define the volume fraction fg of a

constituent g as follows:

fg ¼
dVg

dV
; ð17Þ

which combined with Equation (16) implies that

rg ¼ fgrg: ð18Þ

Introducing the large timescale t as a superscript indicates

that the above quantities may be changing over time.

Although it is easy to distinguish the two cases of

volume change and density change for one constituent, it is

reasonable to assume that in reality both mechanisms are

observed on a tissue level for composite materials. On a

constituent level for soft tissues, it is more likely that

volume change is dominant as, for example in myocardial

hypertrophy and hyperplasia, muscle mass increases

substantially via a change in volume (Taber 2001).

Nevertheless, it may be possible for soft tissues to change

true densities as well. However, large changes seem to be

unlikely because, for example for collagen, an increase in

fibril diameter is associated with a decrease in fibril

density (Sanders and Goldstein 2001; Sturgis et al. 2002).

The true density thus seems to remain nearly constant.

Similarly in pathological arterial adaptation like aneurysm

formation, the medial elastin tends to completely

disappear and with it all other relevant constituents

(Kondo et al. 1997). Thus, for the sequel, we assume that

for composite materials, the true densities of each

constituent remain unchanged ðrtg ¼ r0
gÞÞ, whereas volume

fractions are allowed to adapt.

Motivated by the concepts introduced by other authors

such as Watton et al. (2004, 2009), Kim et al. (2009) and

Schmid et al. (2010), we introduce a new variable: the

normalised partial mass change of constituent g:

f tg ¼
mt

g

m0
g

¼
rtgdVt

g

r0
gdV0

g

¼ ztg
¼1

ntg ¼ ntg with

f 0
g ¼ 1;;g;

ð19Þ

where ztg and ntg are the normalised true density change

(which is unity) and the normalised partial volume change,

respectively. With this, we define the normalised tissue

Computer Methods in Biomechanics and Biomedical Engineering 5
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volume change v t as follows:

nt ¼
dV t

dV 0
¼

1

dV 0

XC
g¼1

dVt
g ¼

XC
g¼1

dVt
g

dV 0

¼
XC
g¼1

dVt
g

dV0
g

dV0
g

dV 0
¼

XC
g¼1

ntgf
0
g ¼

XC
g¼1

f tgf
0
g:

ð20Þ

Note that v t does not need to remain unity over time t. It is

now possible to compute the changing normalised density

from Equation (6) with the help of Equation (19) as follows:

utg ¼
rtg

r0
g

¼
rtg

r0
g

ft
g

f0
g

¼
ft
g

f0
g

¼
dVt

g

dV0
g

dV 0

dV t
¼ ntg

1

nt

¼ f tg
1

nt
:

ð21Þ

For the sake of clarity, the important Equations (8,14,20,21)

are displayed in a table. Note that the normalised partial

mass change f tg connects the kinematic with the

constitutive level.

When several constituents are present in a tissue and

the assumption holds that the true density remains

constant, one may, nevertheless, observe pure volume or

pure density change as well as volume and density change

on the tissue level. This depends on the evolution

equations and the choice of parameters. Table 1 depicts the

initial configuration at time t ¼ 0 and three different cases

illustrating the effect on the above-introduced variables.

2.5 Numerical implementation

The introduced formalism for modelling adaptation in the

FE environment was implemented in the FE code CMISS

(www.cmiss.org) as introduced in detail by Nash and Hunter

(2000). The code handles arbitrary biomechanical problems

in three dimensions for large deformation mechanics.

2.6 Evolution equations

The derivations of the evolution equations in Himpel et al.

(2005) are based on thermodynamic considerations for

internal variables. Biological tissues, however, are

thermodynamically open systems, and thus phenomen-

ological evolution equations for the normalised mass

change f tg may also be based on experimental obser-

vations. This has the possible advantage that variables for

the evolution equations and thus the related quantities

mass fraction or volume fractions may be traced

experimentally over time (Fisher and Llaurado 1966;

Rizzo et al. 1989; Gleason and Humphrey 2004).

For a conceptual proof of our model, we utilise the

following evolution concept motivated by previous

experimental observations (Takamizawa and Hayashi

1987, 1988). In this approach, we apply the concept of

‘homeostatic equilibrium’ and express the evolution of the

normalised partial mass change through an ordinary

differential equation. First, a so-called homeostatic stress

Kinematic level
Ð
V

detðFtÞ2 ntð ÞdV ¼ 0 nt ¼
PC

g¼1 f
t
gf

0
g

Constitutive level Ct ¼
PC

g¼1 u
t
gC

t
g utg ¼ f tg1/n t

Table 1. This table depicts a tissue originally consisting of two constituents A and B which have the same volume fraction. Three
different cases are shown and the corresponding values of the above-introduced relevant parameters for adaptation are given.

Reference cube

A B t ¼ 0 fg Vg fg mg rg rg ug
V 0 ¼ 1 g ¼ A 1 1/2 1/2 2 2 4 1
n 0 ¼ 1 g ¼ B 1 1/2 1/2 3 3 6 1

(1) Volume change

A B t ¼ t * fg Vg fg mg rg rg ug
V t

*

¼ 2 g ¼ A 2 1 1/2 4 2 4 1
nt

*

¼ 2 g ¼ B 2 1 1/2 6 3 6 1

(2) Density change

A B t ¼ t * fg Vg fg mg rg rg ug
V t

*

¼ 1 g ¼ A 4/3 2/3 2/3 8/3 8/3 4 4/3
nt

*

¼ 1 g ¼ B 2/3 1/3 1/3 2 2 6 2/3

(3) General case

A B t ¼ t * fg Vg fg mg rg rg ug
V t

*

¼ 2 g ¼ A 8/3 4/3 2/3 16/3 8/3 4 4/3
nt

*

¼ 2 g ¼ B 4/3 2/3 1/3 4 2 6 2/3

Note that it is very likely for a soft tissue to observe the general case, because for case (1) and case (2) rate equations and thus the change in the partial volumes need to have very
specific values.

H. Schmid et al.6
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(Sh) or strain (Eh) under a given load is being determined

before any adaptation takes place (t ¼ 0). Second, this is

used as a ‘target stress’ tr(Sh) or ‘target strain’ tr(Eh) for the

rest of the adaptation 5 and leads, in the simplest case, to

the following equations:

df tg

dt
¼ aS

trðScurÞ2 trðShÞ

trðShÞ
or similarly

df tg

dt
¼ aE

trðEcurÞ2 trðEhÞ

trðEhÞ
:

ð22Þ

The variables aE and aS are the respective rate constants.

This approach has been generalised from a 1D approach

for embedded collagen fibres within a matrix (Watton et al.

2004, 2009; Schmid et al. 2010).

2.7 Simulations

To validate the consistent formulation presented herein, we

investigated different cases for a unit cube (1 cm3) with a

Neo–Hookean material response. Firstly, we investigated

the case of pure volume change for one constituent, i.e. a

constant density throughout the adaptive process. This was

done for uniaxial extension with step increases in the

displacement. Secondly, the case of pure density change is

presented for a unit cube under uniaxial tension with step

increases in force. For effortless validation, the material

parameters and the geometry were adopted from Himpel

et al. (2005) and are listed in Table 2. Note, however, that

they used a compressible version of the Neo–Hookean

response such that material parameters differ to ensure

similar stress responses. For isotropic growth, the growth

tensor is Ft
g ¼ lgI. Considering that lg ¼ v 1/3, we have

Ct ¼
1

2
utk tr Ct

e

� �
2 3

� �
; ð23Þ

and, thus

S ¼ 2 Ft
g

� �21›Ct

›Ct
e

Ft
g

� �2T

2pðCtÞ21

¼ 2n22=3 ›C
t

›Ct
e

2 pðCtÞ21

¼ n22=3utkI2 pðCtÞ21:

ð24Þ

Lastly, a unit cube consisting of two different constituents

is investigated under uniaxial extension to illustrate the

advantage of this approach, i.e. being able to validate

volume or mass fractions at different times during the

adaptation process.

3. Results

3.1 Pure volume change

Following Himpel et al. (2005), we used uniaxial

extension tests of a unit cube to show the validity of

pure volume change for one constituent. For physiologi-

cally realistic adaptation, the tissue was first stretched up T
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to a ‘homeostatic’ stretch of lx ¼ lh ¼ 1.1 in which the

quantity tr(S) was taken as a point of reference for

subsequent axial adaptation steps. Additional displace-

ments of Dux ¼ 0.1 cm were applied five times up to a final

value of lx ¼ 1.6, ux ¼ 0.6 cm.

The graphs show excellent agreement with the data

from Himpel et al. (2005) (Figure 6) for the case where

the stretch limit is not reached (q þ ¼ 2.00). Note that

(Figure 2, top right) with progressive displacement steps,

the difference in the limit values of the relative volume

change between two successive steps increases. Although

the displacement steps have the same value each time, the

volume increases with cubic power (Dv t , (Du)3).

3.2 Pure density change

To show that the concept of ‘homeostatic equilibrium’

holds for the case of a single constituent with pure density

change as well, we followed Himpel et al. (2005) and used

uniaxial tension tests of a unit cube for one constituent. For

physiologically realistic adaptation, the tissue was first

loaded up to a ‘homeostatic’ load of Fx ¼ Fh ¼ 4.0 N

in which the quantity6 tr(Eh) was taken as a point of

reference for subsequent axial adaptation steps. Additional

loads of DFx ¼ 4.0 N were applied five times up to a final

value of 20.0 N.

The graphs in Figure 4 show excellent agreement with

the data from Himpel (2007) (Figure 3.2) for the case when

the material is assumed to be incompressible. It can be

concluded that the concept of ‘homeostatic equilibrium’ is

an appropriate alternative to model adaptation (Figure 3).

3.3 Density and volume change

As an illustrative example, we take a tissue which consists

of two constituents A and B. The value of the constitutive

parameter k of the Neo–Hookean material is taken to be

different for both constituents (Figure 4). We consider two

different types of loading:

Case 1. One load step: the first one is used to illustrate

the systemic effects of coupling the degradation of one

constituent and the adaptation of another. For this, we

introduce two constituents A and B with material
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Figure 2. Pure volume change. The graphs depict the prescribed time course of steps in the displacement (top left), the resulting relative
volume change with respect to the original volume (top right), the changes in the trace of the stress which, as determined by the evolution
equation, tends to go back to its original value (bottom left) and the normalised density which remains unity (bottom right).

H. Schmid et al.8

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
S
t
a
n
f
o
r
d
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
0
7
:
2
4
 
2
5
 
F
e
b
r
u
a
r
y
 
2
0
1
1



parameters kA1
¼ 1 and kB1

¼ 5. The initial volume

fractions of both constituents are taken to be

f0
A ¼ f0

B ¼ 0:5. The tissue is initially stretched in the

axial direction to a ‘homeostatic value’ of lx ¼ lh ¼ 1.1.

Subsequently, constituent B is being degraded via

f BðtÞ ¼ b
t=t̂
min, where t̂ is the time at which fB reaches the

value bmin. Constituent A, on the other hand, is allowed to

adapt according to the evolution Equation (22)2.

Note that the current trace of the stress tr(Scur) initially

overshoots the target stress tr(Sh), yet eventually reaches it.

This pattern could be interpreted as a phenomenon which

(Bellousov 1998; Taber 2008) is described as the hyper-

restoration law. This simulation suggests that it might be a

systemic effect of one constituent degrading and the other

substituting its function. Note this is also due to the choice

of rate constants, i.e. that constituent B is degrading faster

than constituent A can adapt. If this was to be vice versa, no

overshoot would occur. Furthermore, both the volume and

the density adapt over time, so that on a tissue level, one

cannot consider it to be either pure volume or pure density

change.

Case 2. Several load steps: we distinguish two different

scenarios with kA2a
¼ 1 and kB2a

¼ 5 and with kA2b
¼ 5 and

kB2b
¼ 1. The initial volume fractions of both constituents

are taken to be f0
A ¼ f0

B ¼ 0:5 for both cases. The tissue is

initially stretched in the axial direction to a ‘homeostatic

value’ of lx ¼ lh ¼ 1:1. In subsequent time steps,

constituent B is being degraded via f BðtÞ ¼ b
t=t̂
min, where t̂

is the time at which fB reaches its target value bmin.

Constituent A, on the other hand, is allowed to adapt

according to the evolution Equation (22)2 (Figure 5).

It can be seen that, as predicted, both phenomena of

volume change and density change actually take place on a

tissue level, if the material consists of several components.

In Case 2a, the material that is being degraded (A) is

weaker than the one that is adapting (B) (kA , kB),

whereas it is the other way around for Case 2b (kB , kA).

Therefore, it is expected that in Case 2a, less material of

constituent B is needed to compensate for the stiffness loss

of material A than in Case 2b, which can be seen by

comparing both the relative volume and relative density

changes in Figures 6 and 7. Although the relative volume

change in Figure 7 is monotonically increasing for each

displacement step, the relative volume change in Figure 6

has an inflection point for each displacement step, because

the material B with higher material stiffness takes over a

major part of the load and thus less material is needed. For

increasing load steps, most of the whole material is made

of material B, and thus the inflection point becomes less

and less prominent.

4. Discussion

4.1 Heterogeneities

Densities of constituents tend to be vastly heterogeneous

throughout a given volume of soft tissues (Sands et al.

2005; Pope et al. 2008; Kim et al. 2009). It is thus important

that local changes in mass can be handled on a Gauss point

basis in the FE model, which has been implemented in this

code. In this way, the remodelling equations can account

for local stress and strain heterogeneities and their effects

on the growth and remodelling processes. This was used in

the context of pure density change for arterial adaptation

(Schmid et al. 2010).
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Figure 3. Evolution of reference and current configuration. The left image shows the evolution of the reference configuration. The
evolution of this cube is due to changing reference volume f . n t, cf. Equation (14) and is described by the growth deformation tensor Ft

g.
The right image shows the evolution of the current configuration due to increased displacement boundary conditions and a change in the
reference configuration. Note that the cross-sectional area is rectangular in the current configuration because of the applied axial stretch.
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4.2 Connection between type of adaptation and driving

term in the evolution equation

Section 2.4.1.1 points out that in the case of pure volume

change, the variable f t ¼ n t and is thus a kinematic

variable. In Section 2.4.1.2, on the other hand, the variable

f t ¼ u t and is thus a variable which acts by weighting the

stress. In Section 3.1, the driving term for pure volume

change is chosen to be tr(S), whereas in Section 3.2, the

driving term is tr(E). Thus, the energetically conjugate

variables need to be used to ensure convergence.
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Figure 4. Pure density change. The graphs depicts the prescribed time course of steps in the axial force (top left), the resulting
normalised density with respect to the original density (top right), the normalised volume which remains unity (middle left) and the
changes in the displacement which, as determined by the evolution equation, tends to go back to its original value (middle right).
The second Piola–Kirchhoff stress in the x-direction (bottom left) is increasing over time, because the axial force is increasing as well.
The target strain is reached for each step increase in the force (bottom right).
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This is also reflected in the type of boundary condition

used for those two examples.

4.3 Evolution equations

The introduced evolution equation is linear in its form and

thus represents the simplest case. According to Bellous-

sov’s hyper-restoration hypothesis, tissue responses to

stress perturbations tend to restore, but initially overshoot,

the original (target) stress (Bellousov 1998; Taber 2008).

Our simulation suggests that this effect may be due to a

systemic effect of degradation and adaptation playing in

concert to reach a given target stress value. Stress

overshoot could also be obtained by letting the target stress

change at a rate proportional to the same stress difference

(Taber 2008). This was done for 1D evolution equations

and may serve as a possible mechanism to expand the

above-introduced evolution equations to three dimensions.

Furthermore, higher order strain or stress invariants

may be used to capture the underlying material symmetry.

Further investigations are necessary to clarify the

connection between phenomenological descriptions of

one and several constituents.

4.4 Incompressibility

The condition of incompressibility may be enforced

differently as well, via split of the deformation gradient

into a volumetric and a deviatoric part (Ogden 1997;

Holzapfel 2000). The volumetric part is chosen to be up to

100–1000 times stiffer than the deviatoric part, ensuring

the required property. The stress–strain relationship does

then contain the Lagrange multiplier p. This is also called

near incompressibility, alluding to the fact that in reality no

material is absolutely incompressible. For more theoretical

details and numerical implementations, please refer to

Peng and Chang (1997) and Hartmann and Neff (2003).

4.5 Summary

We have presented a formulation for tissue adaptation

which is consistent on the kinematic and constitutive level.

This method utilises the fact that incompressibility and

volume growth happen on substantially different time-

scales. This approach has the advantage that it can be

validated against physiological measurements of volume

or mass fractions, see, e.g. Rizzo et al. (1989). It was

validated against previous numerical simulations
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Figure 5. Two constituents, Case 1. The graphs depict the prescribed time course of the load step in the axial displacement (top left), the
resulting tissue volume changes with respect to the original volume (top right), the current trace of the stress tr(Scur) (bottom left) and the
normalised density and the mass change (bottom right) of both constituents. Note that the current trace of the stress tr(Scur) initially
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normalised density and the mass change (bottom right). Note that the tissue volume decreases although the target stress seems to be
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resulting relative volume change with respect to the original volume (top right), the current trace of the stress tr(Scur) (bottom left) and the
normalised density and the mass change (bottom right).
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(Himpel et al. 2005) and thus holds promise for simple

implementations in future studies.

Notably, the effect of hyper-restoration (Bellousov

1998; Taber 2008) seems to be a consequence of a

systemic effect of different constituents degrading and

adapting at different rates.
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Notes

1. Migration of cells within the tissue would be a possible
contribution to the convective term, yet would also happen
on a longer timescale.

2. Programmed cell death by inflammatory molecules.
3. We neglect the word infinitesimal in the sequel.
4. Note that this fraction is not a derivative but the division of

two infinitesimal volumes at different times. The infinitesi-
mal d is upright, whereas the differential d is slanted.

5. The first invariant was chosen for the sake of simplicity.
Experimental guidance is necessary to further qualify the
dependence on possibly other invariants and possible
nonlinear dependencies.

6. Himpel et al. (2005) used a range of values for the so-called
stress stimulus attractor (Beaupre et al. 2005). In our
approach, using the target strain quantity trðEhÞ to be the
homeostatic one, equates to setting the stress stimulus
attractor to zero.
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6. Appendix

This section depicts the derivation of the general analytical
solution for incompressible uniaxial tension of a unit cube with
varying volume growth for one constituent (C ¼ 1) and for
general isotropic growth. The material is assumed to be of
isotropic Neo–Hookean response. The deformation is described
by

F ¼ FeFg: ð25Þ

The elastic deformation gradient Fe and its related Cauchy–
Green deformation tensor and Green–Lagrange strain tensor read
as follows:

Fe ¼

le 0 0

0 l21=2
e 0

0 0 l21=2
e

0
BBB@

1
CCCA;

Ce ¼ FT
e Fe ¼

l2
e 0 0

0 l21
e 0

0 0 l21
e

0
BBB@

1
CCCA;

Ee ¼
1

2
ðCe 2 IÞ;

ð26Þ

whereas the growth deformation tensor Fg and its related
Cauchy–Green deformation tensor and Green–Lagrange strain
tensor read as follows:

Fg ¼

lg 0 0

0 lg 0

0 0 lg

0
BBBBB@

1
CCCCCA
;

C ¼ FT
gCeFg ¼ l2

gCe;

E ¼
1

2
ðC2 IÞ:

ð27Þ

The determinants can then be expressed in the following form:

detðFeÞ ¼ 1; detðFgÞ ¼ Jg ¼ l3
g ¼ J ¼ detðFÞ; detðCeÞ ¼ 1;

detðCÞ ¼ J2
g ¼ l6

g:

ð28Þ

Accordingly, the free energy C and the second Piola–Kirchhoff
stress tensor S (cf. Equation (24)) read as follows:

C ¼
1

2
kuðtrðCeÞ2 3Þ ¼ kutrðEeÞ;

S ¼ 2n22=3 ›C

›Ce

2 pC21 ¼ n22=3 ›C

›Ee

2 pC21

¼ kun22=3I2 pC21;
ð29Þ

where p is the hydrostatic pressure which is a consequence of the
incompressibility constraint and u ¼ f/n ¼ f/Jg the changing
normalised density from Equation (21).

With this, the Cauchy stress tensor s in the current
configuration can be expressed as follows:

s ¼ FeSF
T
e ¼ kun22=3Be 2 pI ¼ kun22=3Be 2 p̂I; ð30Þ

with Be ¼ FeF
T
e being the left elastic Cauchy–Green defor-

mation tensor which has the same matrix components as Ce in the
case of uniaxial extension or tension, yet with spatial-based
vectors, i.e. living in the current configuration.

Remembering that n ¼ Jg ¼ l3
g, the hydrostatic pressure can

be determined by the condition for stress-free faces in the y- and
z-directions (syy ¼ szz ¼ 0):

syy ¼ szz ¼ kul22
g l21

e 2 p̂ ¼ 0 ) p̂ ¼ kul22
g l21

e ; ð31Þ

and thus finally,

s ¼ kun22=3ðBe 2 l21
e IÞ ¼ kul22

g ðBe 2 l21
e IÞ: ð32Þ

The force in the direction of stretch Fx ¼ sxxAx with
Ax ¼ l2

gl
21
e Aref , where Aref is the unit reference area with

dimensions cm2 is

Fx ¼ kun22=3 l2
e 2 l21

e

� �n o
� l2

gl
21
e

n o

¼ kul22
g l2

e 2 l21
e

� �n o
� l2

gl
21
e

n o
¼ ku le 2 l22

e

� �

¼ k
f

n
le 2 l22

e

� �
: ð33Þ

If one now wants to solve the equation for le, it can be
rearranged as follows:

ðkuÞl3
e 2 ðFxÞl

2
e 2 ku ¼ 0 ,

al3
e þ bl2

e þ cle þ d ¼ 0; ð34Þ

which can be solved with Cardano’s formula http://
mathworld.wolfram.com/cardanosformula.html.
Finally, with this at hand, one can use the solution to validate any
numerical result from the FE code.
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