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Abstract

The design of versatile soft actuators remains a challenging task, as it is a complex trade-off between robotic adaptability
nd structural complexity. Recently, researchers have used statistical and physical models to simulate the mechanical behavior
f soft actuators. These simulations can help identify optimal actuator designs that fulfill specific robotic objectives. However,
utomated optimization of soft robots is a delicate balance between simplifying assumptions that reduce predictive fidelity
nd expensive simulations that limit design space exploration. Here we propose a generalized Bayesian optimization method
o identify the designs of fiber-based biomimetic soft-robotic arms that minimize the actuation energy under arbitrary robotic
ontrol requirements. We use the reduced-order active filament theory as the overarching design paradigm and mechanical
odel, which enables a computationally robust and efficient optimization process. We evaluate the performance of our Bayesian

ptimization for a simple control objective in which the actuator has to reach a given target position. We show that our proposed
ptimization scheme outperforms a random-search baseline; it identifies more desirable designs faster and more frequently.
lthough we illustrate the performance of our approach for a single actuation problem, the derived method easily generalizes

o the design optimization of fiber-based actuators under a large family of robotic applications.
2023 Elsevier B.V. All rights reserved.

eywords: Soft robotics; Automated design; Bayesian optimization; Continuum mechanics; Structural mechanics

1. Introduction

A significant challenge in the field of robotics is the optimal control and design of soft actuators. While rigidly
inked robotic arms are defined by a finite number of degrees of freedom, the motion of soft actuators involves, in
rinciple, an infinite number of degrees of freedom [1], since every infinitesimal portion of the soft continuum can
eform continuously in the three-dimensional space. As a result, the quantitative modeling of soft actuators requires
dvanced mathematical constructions that are often computationally expensive. Currently, due to this great level of
echanical complexity, there is no robust, physics-informed, and generalizable control law for infinite-degree-of-

reedom soft actuators [2]. Consequently, the challenges of soft actuator control, and the intricate mechanics of
hese structures both render the design of soft-robotic arms highly difficult [3].
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Nomenclature

A Fourier amplitude quantity in the active filament formulae for û
A Elastic part in the multiplicative decomposition of F
A Cross section of the multi-ring filament with a simplified annular geometry
A The general active filament model function taking Γ and P as input, and outputting ζ̂ , û
A−1

Γ The inverse of the active filament model mapping A with respect to Γ

a0, a1, b1 First three Fourier coefficients of γ (θ )
B 3-dimensional domain B ⊂ R3 of the undeformed configuration of the filament (before

dimensional reduction)
BA Reduced deformed configuration {r, {d1, d3, d3}} of the filament upon fiber activation
CΓ Set of constraints imposed on the fiber activation Γ

cΓ An element of CΓ
D Director basis map {d1, d3, d3} : R→ {R3,R3,R3

} of the filament
D Set of parameters defining the filament geometry
di i th vector in the director basis of the filament, i ∈ {1, 2, 3}, di ∈ R3

E Young’s modulus of the filament
EG Energetic activation cost optimal under a control goal specification G

E Expected value operator
ei Reactive strain components ei , i ∈ {1, 2, 3}; used in the definition of the deformation map

χ

ei x Partial derivative of ei with respect to x
ei Fixed basis vector associated with the coordinate i , i ∈ {R,Θ, Z , R̃, Θ̃, Z̃ , X, Y }
F Deformation gradient tensor field
F Set of parameters defining the fiber architecture embedded in the filament
f Objective function minimized via Bayesian optimization; an algorithmic augmentation of

EG

fbest Function of k returning the minimum value of f found after k iterations
fmin Minimum value of the objective function found so far in the Bayesian optimization process
fth Objective value threshold for the computation of the Kmin metric
G 3-dimensional tensor field defining the fibrillar activation along m throughout B
G Control goal defining the target configuration of the filament; part of the complete control

problem specification G

Gend Control goal associated with the end-effector control goal specification Gend

G Control goal specification; a complete specification of the control objective, with all
auxiliary objects G, JG , and CΓ

Gend Particularized control goal specification G in which the filament is to reach a target
end-effector position rGend

GC A boolean flag that is true whenever the actuator exhibits satisfactory control
GP A Gaussian process object
g Scalar function of R, Θ , and Z that quantifies the extent of fibrillar activation in the

activation field G
H Complete evaluation history of points (P, f ) in the GP
Hi Auxiliary numerator quantities used in the formulas for the intrinsic curvatures ûi

H Displacement gradient of the filament continuum
2
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Imp Improvement function used in the maximization of the expectation E[Imp]
JG Cost function associated with control goal G; part of the complete control problem

specification G

JG
end Cost function associated with the control goal of type Gend

K Number of iterations in the Bayesian optimization algorithm
Ki Stiffness coefficients of the 1-dimensional filament
Kd Number of iteration windows for which the distributions of function evaluations are

computed
Kmin Minimum iteration index k for which fbest(k) is no greater than a threshold fth

kGP Kernel function used in the GP
L Length of the actuator; the same for all rings
M Total number of rings in a multi-ring filament
ME Optimization scheme used for expected improvement maximization
MΓ Optimization scheme in the algorithm for activation optimization; the Nelder–Mead simplex

algorithm is used by default
m Mean function of the GP
m 3-dimensional vector field defining the fiber directions throughout B
m⊥ 3-dimensional vector field orthonormal to m
m′
⊥

3-dimensional vector field orthonormal to m and m⊥
N Number of active angular sectors in the piecewise definition of γ (θ )
N Normal distribution; N (x | µ, σ 2) is a normal PDF with mean µ and standard deviation σ

Nres Maximum number of restarts of ME permitted for identifying a satisfactory evaluation point
ncore Number of CPU cores available
nE Number of samples in the initial interior sampling plan used in the chosen scheme for ME
ninit Number of initial points (at each f evaluation) provided for the activation optimization

algorithm
nprior Number of prior data points after post-processing
nrand Number of samples used for the random baseline in performance evaluation
ñprior Number of data points used to initialize the sampling plan for prior generation
ñrand Number of samples initialized for the random baseline in performance evaluation before

post-processing
O Set of auxiliary optimization hyperparameters
P Set of all parameters defining the active filament
Pnear

i i th closest point to some point P in L2-norm
{R,Θ, Z} Cylindrical coordinates defined in the undeformed configuration
{R̃, Θ̃, Z̃} Cylindrical coordinates defined in the current configuration
R0 Outer radius of the entire filament
R1, R2 Inner and outer radii of the cylindrical filamentary tube defining a given ring R
R A tubular region in the simplified cylindrical geometry of the filament; called a “ring”

throughout the analysis
R Set of all real numbers
r Filament centerline map; an R→ R3 space curve
rGend Target end-effector position for a control goal Gend

S Random seed used in the initialization of MΓ
3



B. Kaczmarski, D.E. Moulton, A. Goriely et al. Computer Methods in Applied Mechanics and Engineering 408 (2023) 115939
S Set of arc length values for a given target curve in the control goal G over which JG is
defined

S Cross section of the filament at some material coordinate Z
∂S Boundary of S

t Thickness of the annular cross-section of the filamentary tube
U Continuous uniform distribution; the multivariate distribution U(a, b), a, b ∈ Rn ,

corresponds to
∏n

i=1 U(ai , bi ), ai , bi ∈ R
u Vector (u1, u2, u3), where ui is the curvature function of the filament around the axis defined

by di

û Intrinsic version of u
vi j Weight in JG corresponding to d j , and the i th element of Z and S
W Strain energy density function
W Total energy of the filament
wi Weight in JG corresponding to r , and the i th element of Z and S
{X, Y, Z} Cartesian coordinates defined in the undeformed configuration
X A 3-dimensional point in the undeformed configuration B
X• Feasible set corresponding to the object •
XGP Sampling plan for expected improvement maximization
(∂XGP)i GP sampling plan over i th boundary surface of XP

X prior Quasi-random sampling plan for prior generation
Z Material coordinate and the argument of BA
Zmin/max Set of all minimum/maximum perturbation vectors z(i)

min/max, i ∈ {1, . . . , M}
Z Set of material parameters Z over which the cost function JG is defined
zmin/max Vector in RN of minimum/maximum perturbations of γ used for parallelized initializations
α Angle between m and eZ ; function of R, Θ , and Z
αx Partial derivative of α with respect to x
α2 Helical angle of the fiber field at R = R2, i.e., the outer surface of a given ring R
β Angle between m and eΘ ; function of R, Θ , and Z
βx Partial derivative of β with respect to x
Γ Set of all γ (i)(θ ), i ∈ {1, . . . , M}
ΓG Optimal set Γ under a control objective specification G

Γ Vector of all γ (i), i ∈ {1, . . . , M}
ΓG Optimal activation vector Γ under a control objective specification G

ΓG
path Linearly interpolated control path in the γ -space, given an optimal activation set ΓG

γ (θ ) Piecewise function defining the cross-sectional activation distribution in a fiber field of a
single ring

γi Fiber activation parameter corresponding to the i th annular sector in the piecewise definition
of γ (θ )

γ0 Scalar factor in the interval [0, 1] used in linear interpolation of the control path ΓG
path in

the γ -space
γ (note the boldface) vector of all activation parameters γi in a given ring R, i ∈ {1, . . . , N }
γ G Optimal activation γ in a given ring R under a control objective specification G

δ, δ⊥, δ
′

⊥
The eigenvalues associated with the eigenvector fields m, m⊥, and m′

⊥
, respectively
4
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δi Functions of R1, R2, α2, and ν appearing in the active filament formulae, i ∈ {0, 1, 2, 3}
ε Small parameter of the thin rod geometry
ϵJ Positive hyperparameter defining the maximum permissible value of JG at ΓG for a sample

to be valid
ϵ f Positive hyperparameter defining the maximum permissible value of f for a sample to be

valid
ζ Axial extension function for the filament
ζ̂ Intrinsic version of ζ

θ Polar angle coordinate in the annular cross section of the filament used in the definition of
γ (θ )

θ0 Constant angular offset in the piecewise definition of γ (θ )
ϑ Characteristic length scale of the kernel function kGP

µ, λ Lamé parameters of the filament material
µ̂ Predicted mean function in the GP
ν Poisson’s ratio of the filament
ν̃ Parameter of the Matérn kernel function
σ Angular width of an active annular sector in the piecewise definition of γ (θ )
σ̂ Standard deviation function for the prediction in the GP
φ Warping function used in the generalized active filament formulae
φx Partial derivative of φ with respect to x
Φ Angle interval of θ values in which the activation γ is non-zero in a given ring R
ϕ Fourier phase offset in the active filament formulae for û
χ Deformation map for the three-dimensional filament continuum
ω Torsion function used in the generalized active filament formulae
ωx Partial derivative of ω with respect to x
1 Identity tensor
•

(i) Object • associated with the i th concentric tubular ring R(i) of the filament
•

new Object • newly evaluated at a given iteration of the Bayesian optimization
•

prior Object • corresponding to the set of priors for the Bayesian optimization
•
∗ Object • resulting from the Bayesian optimization; P∗

= best filament design found for a
given G

•
0 Constant quantity • prescribed at the origin Z = 0
| • | Cardinality of a set •
⊗ Tensor product operation

To tackle the formidable challenge of soft actuator design, some researchers have looked to nature for inspiration
n developing biomimetic designs of soft robotic arms [4]. This meta-level approach led to numerous prototypes

imicking the structure and mechanical principles of slender biological actuators such as the elephant trunk [5–8],
r the octopus arm [9–14]. However, these biomimetic designs are largely based on qualitative decisions when
ranslating the features of their biological counterparts into their respective engineering solutions. Further, past
ork relied primarily on empirical observations to guide the choices of the various design parameters. While this

pproach is interesting, it has not been an unmitigated success.
Another approach is to apply automated, quantitative optimization methodologies to identify most desirable soft-

obotic designs [15–17], and state-of-the-art optimization methods have been implemented to derive optimal soft
ctuator geometries [18–20], or actuation designs [21–24] under various objective metrics. However, to date, soft-
obotic actuator optimization lacks a formally generalized framework to determine actuator designs that maximize
obotic adaptability and actuation versatility. This limitation exists partly because the most common methodologies

or the design optimization of soft actuators rely on computationally expensive models of actuator mechanics that

5
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utilize high-fidelity simulations to evaluate the objective function. As a consequence, the high computational cost
of most soft actuator models generally limits the evaluation of the actuator design to a singular robotic talk, for
example a particular mode of deformation or a desired target geometry.

To address these limitations, we seek to bridge the qualitative bio-inspired design approach with a formalized,
omputationally efficient method for soft actuator design optimization under generalized control conditions. In
articular, we apply a surrogate Bayesian optimization framework to optimize a biomimetic soft-robotic arm under
desired control objective. In principle, the deformation of an arbitrary slender soft actuator can be approximated

omputationally via multi-physics finite element analysis [25–29]. However, a single execution of a finite-element
imulation is a highly expensive operation and, as such, it is not a good candidate for a model-based approach for
eal-time dynamic soft actuator control. We therefore consider a special class of biomimetic actuator designs with
mbedded fibers, and model the actuator by applying a reduced-order active filament model [30], which ensures
ow computational cost for predicting the actuator deformation for a given control input. Most importantly, our
pproach seeks to efficiently identify fiber-based actuator designs that are optimal for arbitrary control objectives.

We proceed by summarizing the active filament theory [30] to quantify the physics of an arbitrarily designed
ber-based actuator. Then, we introduce our optimization approach [31] to tackle the inverse problem, finding the
ctuation to achieve a specific control objective for a given actuator design. Finally, we outline, evaluate, and discuss
he Bayesian optimization method to estimate optimal actuator designs under a specified control objective.

. Active filament model

The active filament model uses the morphoelastic rod theory [32] to describe the mechanics of filaments with
mbedded active fiber fields in a reduced-order fashion [30]. In the following section, we briefly summarize the
ctive filament theory as a prelude to the design of the optimization for identifying optimal fiber-based actuator
esigns.

.1. Generalized dimensional reduction

To reduce the computational cost of high-fidelity soft actuator modeling, we adopt a dimensional reduction
f the actuator’s three-dimensional filamentary continuum to a one-dimensional Kirchhoff rod [30,33–35]. The
esulting one-dimensional structure is defined by its centerline function r : R→ R3, and the director basis function

D = {d1, d2, d3}, where di : R → R3. If Z denotes the material parameter of the filament, i.e., the arc length of
the filament in the undeformed configuration, and L is its total length, then the centerline r is a mapping from
Z ∈ [0, L] to the one-dimensional space-curve shape of the deformed filament. Similarly, D evaluated at Z defines
an orthonormal basis that characterizes the local orientation of the deformed cross section at Z . By considering
all Z ∈ [0, L], the functions r and D together make up the dimensionally-reduced representation of the deformed
filament.

The dimensional reduction results in a simplified form of the filament deformation χ which maps the initial
configuration B to the current configuration BA. In this reduced form, we write the deformation map in terms of r
and D as

χ (X) = r(Z )+
3∑

i=1

εei (εR,Θ, Z )di (Z ), (1)

where ε is the small parameter of the thin rod geometry, ei are the reactive strains that define the deformation of
the cross section, X is a point in B, and {R,Θ, Z} are the cylindrical coordinates of X.

Remark. While we can equivalently express χ (X) in any other coordinate system, it is most natural to write it in
cylindrical coordinates due to the slender, tubular shape of the filamentary structure in its reference configuration.

To ensure the validity of the applied reduction, the centroids of the cross sections S (Z ) are oriented so that

∀Z :
∫

S (Z )
E X d XdY =

∫
S (Z )

EY d XdY =
∫

S (Z )
E XY d XdY = 0, (2)

here X and Y are the Cartesian coordinates in X = (X, Y, Z ) ∈ B, and E is the Young’s modulus of the

lament [30].

6
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We express r and D most naturally in terms of the local (Darboux) curvature vector u = {u1, u2, u3} and the
tretch ζ , both as functions of Z . The components u1 and u2 represent the local bending of the filament about the
irectors d1 and d2, respectively, the component u3 corresponds to the local twist of the filament around d3, and
describes the local stretch of the centerline r . These functions are governed by the following system of ordinary

ifferential equations that describes the kinematics of the filament:

r ′(Z ) = ζ (Z )d3(Z ),
d′i (Z ) = ζ (Z )u(Z )× di (Z ),

(3)

or i ∈ {1, 2, 3} [30]. For a given set of curvature and extension functions, we can compute the deformed
onfiguration of the filament {r, D} by integrating (3) numerically.

emark. The system of differential equations (3) only has a closed-form analytical solution for special forms
f the functions u(Z ) and ζ (Z ). However, a generalized design of a fiber-based actuator does not produce these
articular functions, so numerical integration of (3) is needed.

.2. Special case of active filaments

The system of ordinary differential equations (3) is a geometric statement relating a filament shape to its
urvatures. To obtain these curvatures, we assume that the elastic structure of interest is sufficiently slender. Then,
he active filament theory [30] particularizes the filament geometry and characterizes the deformation as a result of
brillar activation, which defines the expressions for the intrinsic curvature û and extension ζ̂ that are analytically

ractable.
In the active filament theory, we specify a fiber field m : B → R3 at all points of the undeformed geometry
⊂ R3. For a tubular filament, we can construct an arbitrary fiber field in a cylindrical basis as

m = (sin α sin β) eR + (sin α cos β) eΘ + (cos α) eZ , (4)

where α and β are functions of the cylindrical coordinates {R,Θ, Z}, with associated orthonormal basis vectors
{eR, eΘ , eZ }, respectively. The basis vector eR points in the radial direction of the tubular reference shape B, eΘ
points in the tangential direction, and eZ = eR × eΘ . The generalized functions α(R,Θ, Z ) and β(R,Θ, Z ) are the
angles of the fiber directions m(R,Θ, Z ) measured in the cylindrical basis such that α denotes the angle between
m and eZ , and β denotes the angle between m and eΘ . The deformation then results from the activation of the
fiber field defined by a tensor G : B→ R3

⊗R3, which is constructed such that one of its eigenvector fields is m,
and its two remaining eigenvector fields m⊥ and m′

⊥
are orthonormal to m. Assuming a small deviation of G from

the identity tensor 1, we define fibrillar activation such that the eigenvalues of G corresponding to m, m⊥ and m′
⊥

are

δ = 1+ εg(R,Θ, Z ), δ⊥ = δ′
⊥
= 1− ενg(R,Θ, Z ), (5)

where ν is the Poisson’s ratio, and g is a scalar function of R, Θ , and Z that quantifies the extent of the fibrillar
extension or contraction at each point in the tubular configuration [30]. As a result, the activation tensor can be
expressed in the matrix form as

G = 1+ εg

⎡⎣ (1+ ν) sin2α sin2β − ν (1+ ν) sin2α sin β cos β (1+ ν) sin α cos α sin β

(1+ ν) sin2α sin β cos β −(1+ ν) sin2α sin2β − ν (1+ ν) sin α cos α cos β

(1+ ν) sin α cos α sin β (1+ ν) sin α cos α cos β 1
2 (1− ν + (1+ ν) cos 2α)

⎤⎦ , (6)

hen written in the tensor basis G = G i j ei ⊗ e j , with i ∈ {R̃, Θ̃, Z̃} and j ∈ {R,Θ, Z}, where {R,Θ, Z} are the
cylindrical coordinates of the reference, non-activated configuration and {R̃, Θ̃, Z̃} are the cylindrical coordinates
defined in the current configuration.

This definition of G explicitly defines the local contraction or extension of all fibers in the filament, with the Pois-
son effects captured by the determinant of G [30]. To compute the deformation of the complete three-dimensional
body, we adopt a multiplicative decomposition of the deformation gradient [33]:
F = Gradχ = A ·G, (7)

7
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where χ is the deformation map, A is the elastic part of the deformation gradient, and G is the activation tensor [32].
Given the form of χ in (1), we can write the deformation gradient in matrix form as

F =

⎡⎢⎣e1R
1
R e1Θ εζ (u2e3 − u3e2)

e2R
1
R e2Θ εζ (u3e1 − u1e3)

e3R
1
R e3Θ ζ (1+ ε(u1e2 − u2e1))

⎤⎥⎦ , (8)

which is expressed in a tensor basis such that F = Fi j di ⊗ e j , where i ∈ {1, 2, 3}, j ∈ {R,Θ, Z}, and di are the
director vectors in the director basis function D defined before. The quantities ei R and eiΘ are the respective partial
derivatives of the reactive strains ei . That is, ei R = ∂ei/∂ R and eiΘ = ∂ei/∂Θ , for i ∈ {1, 2, 3}. By using (8), we
can then compute the elastic part A for any specific activation tensor G [30].

In general, from the deformation gradient F, we can compute the filament’s deformation upon arbitrary fibrillar
activation by using the finite element method. However, this approach is computationally expensive and unfeasible
for real-time filament control. Thus, we reduce the filament domain B and its deformed configuration to their one-
dimensional representations as described in Section 2.1, and re-express all other objects in terms of reduced-order
quantities. We then write the total energy of the filament as

W = ε2
∫ L

0
d Z

∫
S (Z )

W (A)(det G)R d R dΘ, (9)

here W is the strain energy density function. Noting that A = F ·G−1 and under the assumption of an unshearable
lament, we expand the energy W up to the second order in the small parameter ε, assuming, without loss of
enerality, a quadratic strain energy density

W =
1
2

[
µ
(
tr(H ·HT )+ tr(H2)

)
+ λ(tr(H))2] , (10)

where H = A−1, and µ, λ are the Lamé parameters of the material [30]. Finally, we minimize the resulting energy
functional W up to O(ε4) over all admissible deformed configurations {r, D} compatible with assumed kinematic
constraints, such as the previously mentioned unshearability.

Remark. We emphasize that, for generality, we do not impose an inextensibility constraint on the centerline r of
the filament, which means that ζ̂ can take any positive value as a function of Z depending on the applied fibrillar
activation.

We express the terms in the resulting minimal energy in the standard form for Kirchhoff rods [33],

W =
1
2

∫ L

0

[
K0(ζ − ζ̂ )2

+ K1(u1 − û1)2
+ K2(u2 − û2)2

+ K3(u3 − û3)2
]

d Z , (11)

o extract the stiffness coefficients K0, K1, K2, K3, and the intrinsic curvature and extension functions û1, û2, û3,
nd ζ̂ . Extracting these quantities yields the following analytical expressions [30]:

û1 =
H1

K1
, û2 = −

H2

K2
, û3 =

H3

K3
, ζ̂ = 1+

H0

K0
, (12)

n terms of the four numerators

H0 =
1
2

∫
S (Z )

E(1− ν + (1+ ν) cos 2α)gR d R dΘ,

H1 =
1
2

∫
S (Z )

E R2(1− ν + (1+ ν) cos 2α)g sinΘ d R dΘ,

H2 =
1
2

∫
S (Z )

E R2(1− ν + (1+ ν) cos 2α)g cosΘ d R dΘ,

H3 =
1
2

∫
S (Z )

E
ν + 1

(
g(ν + 1) sin(2α)

(
(R2
+ φΘ ) cos β + RφR sin β

)
−

ωΘ

(
φΘ + R2

)
− RωRφR

)
d R dΘ, (13)
R
8
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and the four denominators

K0 =

∫
S (Z )

E R d R dΘ, K1 =

∫
S (Z )

E R3 sin2Θ d R dΘ,

K2 =

∫
S (Z )

E R3 cos2Θ d R dΘ, K3 =

∫
S (Z )

µ

(
R3
+ 2RφΘ +

1
R

φ2
Θ + Rφ2

R

)
d R dΘ .

(14)

The functions φ and ω are the so-called warping and torsion functions respectively, which satisfy

∆φ = 0 X ∈ S ,

n · Grad φ = − R n · eΘ X ∈ ∂S ,

∆ω = − 2R(1+ ν) [ sin α cos α (RgR sin β + gΘ cos β)

+ g(−RαR sin2 α sin β + αΘ cos(2α) cos β

+ RαR cos2 α sin β − βΘ sin α cos α sin β

+ RβR sin α cos α cos β + sin α cos α sin β) ] X ∈ S ,

n · Grad ω = 0 X ∈ ∂S ,

(15)

here g = g(R,Θ, Z ) is the scalar activation function in (6), X is a point in the configuration B defined by the
oordinates {R,Θ, Z}, S is again the cross section of the filament, ∂S is the boundary of S , n is the outward
ormal of ∂S , and eΘ is the cylindrical basis vector tangent to ∂S , as before in (4). That is, the classical warping
unction φ satisfies the Laplace equation over the filament cross section with a Neumann boundary condition,
nd the torsion function ω satisfies the Poisson equation over the cross section with a null Neumann boundary
ondition [30]. In (13)–(15), the scalar quantities of the form ()x denote the partial derivatives with respect to x ,
.e.,

φR =
∂φ

∂ R
, ωR =

∂ω

∂ R
, gR =

∂g
∂ R

, αR =
∂α

∂ R
, βR =

∂β

∂ R
,

φΘ =
∂φ

∂Θ
, ωΘ =

∂ω

∂Θ
, gΘ =

∂g
∂Θ

, αΘ =
∂α

∂Θ
, βΘ =

∂β

∂Θ
.

(16)

ost importantly, the primary result of the active filament model is the construction of an explicit relationship
etween the fibrillar activation and the deformation of the fiber-based filament.

In the most general case, û and ζ̂ are functions of the fiber activation and the filament’s geometry, despite
eing analytically explicit. Therefore, we adopt further simplifications of the filamentary structure [30], in which
he tubular geometry of the filament consists of M concentric cylindrical rings R(1), . . . ,R(M). The inner and outer
adii R(i)

1 and R(i)
2 define the geometry of the i th ring, such that R(i)

1 = R(i−1)
2 to preserve domain continuity.

quivalently, we can represent the geometry of all rings in terms of independent parameters only, i.e., the inner
adius R(1)

1 of the first ring, followed by M ring thickness values t (1), . . . , t (M). The specific form of the active
lament theory considers a class of helical fiber fields embedded in each ring R(i) and defined via a helical angle
(i)
2 ∈ (−π/2, π/2) [30]. Here, α

(i)
2 = 0 corresponds to longitudinal fibers aligned with the long axis of the filament,

hile α
(i)
2 ̸= 0 represents a field of either right-handed or left-handed helical fibers with α

(i)
2 > 0 or α

(i)
2 < 0,

espectively. With these assumptions, the expressions for the stress-free curvature and extension functions simplify
o [30,31]:

û1 = −
4

3R4
0

M∑
i=1

A(i)δ
(i)
1 sin

(
ϕ(i)
−

Z

R(i)
2

tan α
(i)
2

)
, û3 =

2
R4

0

M∑
i=1

δ
(i)
3 a(i)

0 ,

û2 = −
4

3R4
0

M∑
i=1

A(i)δ
(i)
2 cos

(
ϕ(i)
−

Z

R(i)
2

tan α
(i)
2

)
, ζ̂ = 1+

1
2R2

0

M∑
i=1

a(i)
0 δ

(i)
0 ,

(17)

here

a(i)
0 =

1
π

∫ 2π

0
γ (i)(θ ) dθ, a(i)

1 =
1
π

∫ 2π

0
γ (i)(θ ) cos θ dθ, b(i)

1 =
1
π

∫ 2π

0
γ (i)(θ ) sin θ dθ (18)

are the first three Fourier coefficients of a prescribed fiber activation distribution γ (i)(θ ) in the i th ring. The fiber
activation distribution γ (i)(θ ) is expressed in terms of the polar coordinate θ in the annular cross section of R(i).
Fundamentally, the fiber activation distribution γ (i)(θ ) is a simplified representation of the general scalar activation
9
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g(R,Θ, Z ) that takes advantage of the assumptions that the fibers can only be either uniaxial or helical, and that
he activation is split into regions R(i) within which there is no variation of g in R. As a result, when evaluated at θ ,
γ (i)(θ ) represents the magnitude of the fibrillar activation g imposed for all R and Z in R(i) at that polar coordinate

. For helical fibers, the polar frame associated with the angular coordinate θ rotates as a function of Z following
he helix prescribed via the helical angle α

(i)
2 in the i th ring. In other words, the coordinate θ can be set equal to Θ

or α
(i)
2 = 0, but Θ becomes a function θ and Z for α

(i)
2 ̸= 0. For example, with an activation distribution γ (i)(θ )

hat is constant in θ , setting α
(i)
2 = 0 would result in a uniform activation g along longitudinal fibers parallel to eZ ,

ut setting α
(i)
2 ̸= 0 would yield a uniform activation g along helical fibers with a helical angle α

(i)
2 .

The set Γ (θ ) = {γ (1)(θ ), . . . , γ (M)(θ )} of activation distributions within all M rings fully defines the fibrillar
ctivation – either contraction or extension – of the helical fiber fields in the entire filament. The remaining
uantities in (17) include the outer radius of the filament R0 = R(M)

2 , the amplitude A(i) and phase ϕ(i) related
ia a(i)

1 = A(i) cos(ϕ(i)), b(i)
1 = −A(i) sin(ϕ(i)), and the δ

(i)
j factors, j ∈ {0, 1, 2, 3}, that are functions of R(i)

1 , R(i)
2 ,

(i)
2 , and the Poisson’s ratio ν(i).

emark. The active filament model assumes that the activation results in changes of the purely intrinsic properties
f the structure. As such, (17) does not account for the effect of external forces in predicting the resulting
eformation. Nevertheless, if the filament is also subject to any external loading, we can use the intrinsic û and
ˆ in (17) to compute the curvatures u and extension ζ of the loaded filament, based on the classical equations of

irchhoff rod mechanics [33].

.3. Piecewise constant activation distribution

The form of the activation distribution γ (i)(θ ) can, in principle, be an arbitrary function of θ . In the context of
lender biological actuators and soft-robotic arms, the fibers are often discrete and not distributed continuously. Thus,
he form of γ (θ ) is restricted to piecewise constant functions [30,31], in which annular sectors Φ(i)

× [R(i)
1 , R(i)

2 ],
with non-zero values of γ (i) indicate the presence of an activatable fiber over θ ∈ Φ(i), where Φ(i)

⊂ [0, 2π ], while
all remaining annular sectors in the piecewise γ (θ ) are passive. Formally, we assume that the piecewise form of
γ (i)(θ ) is parametrized in terms of the number N (i)

∈ Z+ of active annular sectors with non-zero activation γ (i), the
ngular width σ (i) of all active sectors, and the overall angular offset θ

(i)
0 of all active annular sectors. The angular

istances between subsequent active sectors are determined by further enforcing N (i)-fold rotational symmetry on
(i)(θ ). Since the assumed form of γ (i)(θ ) is piecewise constant, the value of γ (i) remains constant within each

individual active sector. As a result, it is natural to describe the piecewise constant activation γ (i)(θ ) as a vector
(i)
∈ RN (i)

of activation values for the respective N (i) active sectors of the i th ring. The fibrillar activation in the
ntire filament then becomes the vector Γ = [γ (1), . . . , γ (M)] ∈ R

∑
i N (i)

of activation values in all sectors across
ll M rings.

The curvature u and extension ζ are explicit functions of Γ , the filament geometry parameter set D = {L , R(1)
1 , t},

the fiber architecture parameter set F = {α2, σ , N, θ0}, and the mechanical properties of the filament {E, ν}, where
any boldface quantity Q denotes a vector (Q(1), . . . , Q(M)). We summarize the geometry D, architecture F , and
he material properties {E, ν} in the set P = D ∪ F ∪ {E, ν} to represent the set of all parameters describing the
lament design. Fig. 1 summarizes the generalized design of a multi-ring active filament.

emark. The dimensionality of the fiber activation vector Γ depends on the set P , since all γ (i) are functions of
he numbers of active sectors N (i) in N. Similarly, the number of independent parameters that control the deformation
f the filament is also a function of N.

The theory of active filaments defines the mapping from the fibrillar activation Γ and the filament design P to
he curvature u and extension ζ . We denote this mapping with the shorthand notation A(Γ , P). Passing the output
u, ζ } of A(Γ , P) to the system of differential equations in (3) and integrating yields the deformed configuration
f the active filament BA(Z;Γ , P) = {r(Z;Γ , P), D(Z;Γ , P)}. The explicit relationship of BA as a function of
he fibrillar activation and the filament design is a starting point for the development of the optimization approach

or fiber-based actuator design.

10
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Fig. 1. Generalized geometry of a multi-ring active filament with helical fibers and a piecewise uniform distribution of fibrillar activation.
(a) Tubular geometry of individual rings R(i) with helical fiber angles α

(i)
2 , i = 1, . . . , M . (b) Cross sections of each cylindrical ring at

Z = 0.

3. Optimization approach

3.1. Actuator control: activation optimization

In this section, we briefly describe our actuator control approach [31] that sets the basis for the proposed filament
esign optimization method.

The active filament model A tackles the forward problem of predicting the deformation BA of an actuator, given
the fiber activation input Γ . Since the evaluation of A for a given Γ is inexpensive, it is meaningful to formulate
he basis of our control approach as an inverse problem of solving for the fiber activation Γ required to achieve a
arget actuator deformation. That is, we seek to construct an inverse mapping A−1

Γ that maps the desired properties
f a given deformation BA to a fiber activation Γ . Having access to such an inverse mapping would enable direct
omputation of the distributed fiber activation that yields any specified target deformation of the filament.

However, the numerical integration step required to obtain BA with the specified properties from the output of
renders the explicit derivation of the form of A−1

Γ intractable. Therefore, the inverse mapping from the target
lament configuration to the required fibrillar activation has to be evaluated numerically instead. In particular, we
pproximate A−1

Γ with an optimization problem over all permissible fibrillar activations Γ ∈ XΓ . To formalize the
onstruction of the optimization problem under some target deformation of the filament, we define a generalized
ptimization problem specification G which we refer to as the control objective specification. The specification G

consists of a prescribed control goal G = G(BA), a cost function JG(BA) associated with the control goal G, and

he set of constraints CΓ imposed on the fibrillar activation Γ . The control goal G can be most naturally expressed

11
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Algorithm 1 Quasi-static control objective optimization

Require: MΓ ▷ Optimization scheme used in this algorithm; default = Nelder-Mead
G = {G, CΓ , JG(BA)},Z,S ▷ Control objective specification
P = D ∪ F ∪ {E, ν}, ▷ P = all filament properties, D = geometry, F = fiber architecture
where D = {L , R(1)

1 , t}, F = {α2, σ , N, θ0},
with Q = (Q(1), . . . , Q(M)), ∀Q ∈ {t, α2, σ, N , θ0, E, ν},
and ∀i ∈ {1, . . . , M} : R(i)

1 ≥ 0, R(i+1)
1 = R(i)

1 + t (i), t (i)
≥ 0, α

(i)
2 ∈ (−π/2, π/2), σ (i)

∈ [0, 2π/N (i)], N (i)
∈ Z+,

θ
(i)
0 ∈ [0, 2π ), E (i)

≥ 0, ν(i)
∈ [0, 1/2], and L > 0

ζ̂ (Z;Γ , P), û(Z;Γ , P)← A(Γ ;P) ▷ Active filament model
ΓG
← argminΓ

(
JG(BA(Z;Γ , P)) s.t. CΓ , with scheme MΓ ,

where BA(Z;Γ , P)← Solve(Eq. (3), r|Z=0 = r0, di |Z=0 = d0
i , i ∈ {1, 2, 3})

)
ΓG

path ← γ0Γ
G , γ0 ∈ [0, 1] ▷ Optional control path output

in terms of the specified target deformed configuration BG
A of the activated filament. In particular, let us define G

s a discrete mapping BA(Z) → BG
A(S), where Z is a chosen set of material coordinates Z i ∈ [0, L] at which

A is to match BG
A evaluated at Si ∈ S, for i ∈ {1, . . . , |Z| = |S|}. Further, we take the cost function JG(BA)

o be a weighted sum of the squared L2-norm distances between the corresponding elements of BA and BG
A . By

ssuming this form of the cost function JG(BA), we penalize any deviation of the predicted filament configuration
A from the target configuration BG

A . Finally, the constraints cΓ ∈ CΓ can be arbitrary functions of Γ . Examples of
activation constraints include explicit restrictions on the activation parameters, i.e., cΓ = (γ (i)

j ∈ [γmin, γmax],∀i, j)
or some chosen minimum activation γmin and maximum activation γmax; maximum curvature constraints cΓ =
∥û(Γ , P)∥2 ≤ Umax) for a given maximum curvature magnitude Umax > 0; or obstacle avoidance constraints of
he form cΓ = (r(Z;Γ , P) /∈ O,∀Z ∈ [0, L]) that prohibit the centerline of the filament from entering a given
hree-dimensional obstacle region O ⊂ R3 [31].

In summary, the generalized control objective optimization problem under a specification G = {G, JG, CΓ } is

minimize
Γ

(
JG(BA(Z;Γ , P))

)
, subject to CΓ ,

where G : BA(Z i )→ BG
A(Si ), ∀i ∈ {1, . . . , |Z| = |S|},

and JG(BA) =
|Z|∑
i=1

⎛⎝wi∥r(Z i )− rG(Si )∥2
2 +

3∑
j=1

vi j∥d j (Z i )− dG
j (Si )∥2

2

⎞⎠ ,

(19)

ith wi , vi j ≥ 0 defining the cost weights of all terms in JG .
We denote the minimizer of the above problem as ΓG , under a specification G . Algorithm 1 shows a pseudocode

escription of the solution of (19), for an arbitrary optimization scheme MΓ . Here, by default, we use the
elder–Mead simplex algorithm for MΓ , but we can readily employ alternative schemes. We emphasize that this
ptimization problem assumes a constant parameter set P , which is not the case for the developments in Sections 3.3
nd 3.4.

emark. Formally, the minimum of the cost function JG(BA) is 0 under any control objective specification G if
sufficiently versatile actuator design is chosen. However, most choices of the target configuration BG

A require a
ighly complex design P to achieve G exactly. In practice, after solving (19), a given actuator design will often
nly reach a configuration BA with some finite deviation from BG

A , such that JG(BA) > 0. Thus, the choice of the
eights wi , vi j has a considerable impact on both the minimum JG(BA) and the minimizer ΓG .

For the most general specification of the control problem G , no single optimization scheme MΓ utilized to solve
G
19) reaches a global minimum of J robustly. Nonetheless, in this work, we evaluate our proposed filament design

12
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methodology under a relatively simplistic example of G , for which the Nelder–Mead simplex method proves to be
a sufficiently effective choice for MΓ . Specifically, we consider a class of control goals G that prescribe a target
endpoint position of the actuator. That is, the corresponding control objective specification is

Gend = {Gend, JG
end, CΓ }, (20)

where

Gend : r(L)→ rGend, and JG
end(BA) = ∥r(L)− rGend∥

2
2, (21)

for a desired endpoint position rGend of the actuator and a prescribed set of activation constraints. By solving
the optimization problem in (19) under the control objective specification of the form Gend in (20) and (21), we
effectively seek to obtain the fibrillar activation Γ that results in the filament’s end-effector r(L) reaching the target
endpoint rGend for some activation constraints CΓ . The control problem that considers the location of the end-effector
of a robotic arm is frequently encountered in robotic applications, and, as such, it is informative to evaluate our
approach for this particularized control specification.

An important assumption underlying the validity of applying the optimization-based form of A−1
Γ to soft actuator

control is that the motion of the actuator is quasi-static. In particular, we assume that the time scale of transient
effects due to fiber activation is long, i.e., no significant accelerations are present in the time-dependent deformation
of the actuator. A potential quasi-static path of the actuator from its undeformed configuration to BG

A can then be
constructed via linear interpolation of the optimal activation ΓG , i.e. ΓG

path = γ0Γ
G , for γ0 ∈ [0, 1].

3.2. Energy of activation

The quasi-static control approach relies on the optimization of a cost function JG based on a control specification
G . To optimize the design of the geometry and fiber architecture of the actuator, we require another metric to
optimize. That is, we need to define a numerical quantity whose value describes the fitness of a given design for
performing effectively under a prescribed control problem. Here, we seek to optimize the actuator design under the
control-optimal energetic cost of activation EG to identify the design that is the most energetically efficient for a
given control objective specification. The descriptor control-optimal refers to the fact that EG is computed for the
optimum ΓG obtained from the optimization problem in (19), and it is not an optimum with respect to P .

The explicit form of the energetic cost of activation can take many forms, since activation itself is an abstract,
dimensionless quantity that corresponds to fibrillar strains in the filament’s fiber field. For a general, not necessarily
piecewise form ΓG (θ ) of the activation distribution, we assume the following definition of the control-optimal
activation energy,

EG (ΓG ) =
∫
A
ΓG (θ )2 dA, (22)

where A is the annular region of the transverse cross section of the filament. By construction, Γ (θ ) is not a function
of Z , since its rotation around d3 with respect to Z is implicitly captured in the formulae associated with the active
filament model mapping A. As such, the integration over only the cross section – rather than the whole filament
domain – already provides a meaningful energy metric. Assuming the piecewise constant activation distribution
with activation parameters Γ , as defined in Section 2.3, we can equivalently write the energy in (22) as

EG (ΓG ) =
1

2π

M∑
i=1

(
(R(i)

2 )2
− (R(i)

1 )2
)

σ (i)
γ G (i)

2
2 , (23)

hich facilitates efficient computation of the control-optimal activation cost. Algorithm 2 provides a schematic
mplementation of the chosen activation energy metric.

emark. Since EG is a function of P and the minimizer of the optimization problem (19), it can be equivalently
xpressed as a function of G and P as

EG
= EG

(
arg min

Γ

(
JG(BA(Z;Γ , P)), s.t. CΓ

))
⇔ EG

= EG (G , P), (24)

hich we adopt in our implementation.
13
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Algorithm 2 Control-optimal energetic activation cost EG , under control goal specification G

Require: G = {G, CΓ , JG(BA)},Z,S ▷ Control objective specification
P = D ∪ F ∪ {E, ν} ▷ All filament parameters

ΓG
← Algorithm 1(G , P) ▷ Solve the activation optimization problem

EG
←

1
2π

∑M
i=1

(
(R(i)

2 )2
− (R(i)

1 )2
)

σ (i)
γ G (i)

2
2 ▷ Energetic cost of activation

3.3. Automated actuator design

The main goal of this work is to formulate a methodology for identifying optimal fiber-based actuator designs
nder a prescribed control objective. Our hypothesis is that a potentially viable approach for this optimization goal
s to minimize the control-optimal energetic cost of activation EG over the space XP of all feasible actuator designs
P , for a specific control objective specification G . In its most general form, this optimization problem becomes

minimize
P

(
EG (G , P)

)
,

subject to P ∈ XP .
(25)

Importantly, (25) is a nested optimization problem, for which every evaluation of EG requires a complete solution
of the optimization problem in (19) for a given P , and the prescribed G . In the following, we evaluate the validity
of the approach defined by (25) and assume the simplified form of G in (20), in which the control goal is for the
filament’s end-effector to reach a prescribed target position. The input requirements listed in Algorithm 1 provide the
definition of the largest permissible set XP of feasible actuator designs. In practice, we introduce further restrictions
on P to improve the optimization performance, and avoid regions of the P parameter space that result in a
significant increase in computational cost.

3.4. Bayesian optimization

Since every evaluation of EG involves solving an entire optimization problem, function evaluations in (25)
are computationally expensive. Preliminary testing revealed that solving (25) directly by using an optimization
method such as the Nelder–Mead simplex method or population-based schemes results in either no significant
improvement of the objective value over any feasible number of function evaluations, or premature convergence to
a local optimum. The elevated computational cost motivates the construction of a surrogate model to estimate EG

and compute an approximate solution of (25) in a feasible time. In particular, we chose a Gaussian process as a
probabilistic surrogate model for the purposes of Bayesian optimization. We introduce the Gaussian process object
as

GP = GP(m, kGP; H ), (26)

where m is the mean function, kGP is the kernel, and H = {(x1, h(x1)), (x2, h(x2)), . . .} is the function evaluation
history for a function h : D→ R approximated by the Gaussian process, for a given design space D. The Gaussian
process used in this work assumes a zero mean, m = 0, and a Matérn kernel of the form

kGP(x, x ′) =
1

2ν̃−1Γ̃ (ν̃)

(
2
√

ν̃

ϑ
∥x − x ′∥2

)ν̃

K ν̃

(
2
√

ν̃

ϑ
∥x − x ′∥2

)
, (27)

here Γ̃ is the Gamma function and K ν̃ is the modified Bessel function of the second kind [36]. We selected the
atérn kernel over the classical squared exponential kernel, as it is more parametrically flexible [37] and could

apture more intricate features of EG . For machine learning applications, Matérn kernels with parameters ν̃ = 3/2
nd ν̃ = 5/2 are most preferable [38]. Ultimately, we selected the value ν̃ = 5/2, which yielded a better performance
n preliminary testing. The hyperparameter ϑ of the Matérn kernel denotes the characteristic length scale of the
ernel. It is fitted during the Gaussian process training phase via maximization of the likelihood of the observed
ata under the assumption of the Gaussian process model with the k Matérn kernel.
GP

14
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Before we can use the surrogate Gaussian process for Bayesian optimization, we need to algorithmically augment
he mathematical description of the control-optimal activation energy EG to ensure meaningful optimization results.
he primary reason for a more careful treatment of the EG evaluation algorithm is that Algorithm 1 is not guaranteed

o converge to a global minimum, and, even if it does find a global minimizer ΓG , the value of JG at that global
inimum could be positive for some G and P . This occurs whenever a given actuator design P cannot achieve G

erfectly for any activation Γ ∈ XΓ . As a result, whenever ΓG results in a small EG and JG > 0, optimizing EG

ccording to (25) would yield misleading optimization results, because the small energetic activation cost would
orrespond to an actuator with poor control capabilities for the prescribed control objective.

The described behavior leads to the first, simple augmentation of EG . We add a Boolean flag output GC =
JG
≤ ϵJ ) that is true if the computed optimal activation ΓG results in satisfactory control, and false otherwise.

e measure the quality of the control result by using a small hyperparameter threshold ϵJ > 0. This additional
utput effectively allow us to monitor the actuator control quality at each step of the objective minimization and
rovides more flexibility in the design of the Bayesian optimization method.

The second modification of EG increases the computational robustness of the Bayesian optimization process by
xploring the Γ activation parameter space more exhaustively. In particular, for a machine with ncore cores, EG

s evaluated ncore times in parallel, with several randomized modifications applied to each evaluation to increase
he success rate of the optimization scheme MΓ in solving (19) globally. On all cores, we initialize the seed in

Γ with a random value, assuming that the scheme MΓ incorporates stochasticity. We determine the initial points
assed to MΓ based on the set of available prior data points H prior

= {(Pprior
1 , (EG )prior

1 ), . . . , (Pprior
nprior , (EG )prior

nprior )}.
oncretely, we first compute a set of ninit points Pprior in H prior closest to the current P in L2-norm, and denote

t as {Pnear
1 , . . . ,Pnear

ninit
}; see the following remark. Then, on one of the cores, we extract the set of all optimal

G
i corresponding to the respective Pnear

i , i ∈ {1, . . . , ninit} and use it as the set of initial points for MΓ , e.g., for
he initialization of the simplex if we choose the Nelder–Mead simplex method for MΓ . Finally, on all remaining
ores, we perturb the extracted initial point candidates ΓG

i by a random perturbation Z sampled from a continuous
niform distribution U(Zmin, Zmax), where Zmin and Zmax are the sets of minimum and maximum bounds on the
dmissible perturbations for parameters in Γ . Introducing these parallelized modifications into EG increases the
hance to find a global optimum on at least one of the cores, while preserving computational performance.

emark. Importantly, for a given input P , the L2-norm distances in P-space are only valid if all N (i) in P match
ith all N (i) in the priors used for comparison, since the dimensionality of the corresponding prior Γ vectors has

o match the dimensionality of Γ defined by P . Priors for which this matching condition is not met are not used
n the search for closest points. If no priors meet the condition, we randomize the Γ initialization in MΓ .

We compile these two algorithmic augmentations of EG into a new objective function f (G , P) implemented in
lgorithm 3. We optimize the function f using Bayesian optimization, according to the augmented optimization
roblem

Bay minimize
P

( f (G , P)) ,

subject to P ∈ XP,
(28)

here the prefix “Bay” emphasizes that the minimization of f occurs in a Bayesian sense, using the Gaussian
rocess in (26), (27).

The Bayesian optimization approach chooses the evaluation points P heuristically by maximizing the expected
mprovement of f according to the surrogate Gaussian process, based on the current evaluation history H .
pecifically, each step of the Bayesian optimization involves solving the following maximization problem,

maximize
P

(E[Imp( f (G , P))]) , subject to P ∈ XP,

where Imp( f (G , P)) =

{
fmin − f (G , P), for f < fmin,

0, otherwise,

(29)

nd fmin is the minimum of f among the points {P, f } in the current evaluation history H . In (29), E denotes the

xpected value operator. We solve (29) using a chosen optimization scheme ME.
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Algorithm 3 Objective f , under control goal specification G

Require: G = {G, CΓ , JG(BA)},Z,S ▷ Control objective specification
P = D ∪ F ∪ {E, ν} ▷ All filament parameters
O = {ϵJ , ninit, Zmin, Zmax} ▷ Auxiliary optimization hyperparameters
is prior ▷ Flag indicating whether the input is a prior or not

if is prior then
ΓG , EG

← Algorithm 2(G , P)
else

Require: {Pprior
1 , . . . ,P

prior
nprior} ▷ Prior design points

{Pnear
1 , . . . ,Pnear

ninit
} ← ninit design points in {Pprior

1 , . . . ,P
prior
nprior} closest to P in L2-norm

that satisfy the N (i) matching condition
{ΓG

1 , . . . ,ΓG
ninit
} ← ΓG optimal activation points corresponding to the
{Pnear

1 , . . . ,Pnear
ninit
} priors

for i ← 1 to ncore do ▷ Evaluate the for-loop body on each CPU core in parallel
S← Randomized seed for activation optimization
if i ≥ 2 then

for j ← 1 to ninit do
Z ∼ U(Zmin, Zmax) ▷ Uniform sampling from [Zmin, Zmax],

Z = (z(1), . . . , z(M)), z(k)
∈ RN (k)

ΓG
j ← ΓG

j + Z
end for

end if
ΓG

[i], EG
[i] ← Algorithm 2(G , P), with seed S, and initial points {ΓG

1 , . . . ,ΓG
ninit
}

end for
I ← argmini∈{1,...,ncore}

(
JG(BA(Z;ΓG

[i], P)
)

ΓG , EG
← ΓG

[I ], EG
[I ]

end if
f ← EG

GC← (JG(BA(Z;ΓG , P)) ≤ ϵJ ) ▷ Flag indicating whether ΓG results in satisfactory control

Remark. We emphasize that the maximization in (29) does not involve any evaluations of f since the expectation
E[Imp( f )] is only a function of fmin, and the predicted mean µ̂ and standard deviation σ̂ of the Gaussian process.

his property of maximization problem is crucial since the solution of (29) provides the next evaluation point for
f , so it cannot involve an expensive computation of f .

Evaluating the objective function at the maximizer Pnew of (29) produces the new evaluation point
Pnew, f (G , Pnew)}. If GC = true, i.e., the actuator exhibits satisfactory control, and if f ≤ ϵ f for some
yperparameter ϵ f > 0, then we add the new evaluation point to the evaluation history H . The f ≤ ϵ f condition
itigates the erratic multi-branched functional characteristics of EG that we investigate in Section 4.2. If either of

hese two conditions is not satisfied, we restart the maximization in (29) with a randomized initialization provided
or ME. We permit a maximum of Nres such restarts. Subsequently, we re-train the parameters of the Gaussian
rocess for the new evaluation history H , and the Bayesian optimization continues until a maximum number of
teps K is reached. We train the Gaussian process by maximizing the likelihood of H with respect to the parameters
f the Gaussian process using the simulated annealing algorithm. Algorithm 4 summarizes the utilized Bayesian
ptimization approach. Fig. 2 synthesizes the nested computational structure of the methodology.

emark. Even though the number of active sectors in the i th ring of the filament, N (i)
∈P , is only defined over

|P|M
ositive integers, we generalize the input to the Gaussian process to any vectors in R to improve robustness,
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Algorithm 4 Bayesian optimization of f (Bay min)

Require: ME ▷ Optimization scheme for max. expected imp. maximization
f ▷ f defined by Algorithm 3
XP ▷ Feasible set of P
O = {ϵJ , ϵ f , ninit, Zmin, Zmax} ▷ Auxiliary optimization hyperparameters
G = {G, CΓ , JG(BA)},Z,S ▷ Control objective specification
H prior

▷ Prior evaluation history
K ≥ 1 ▷ Number of iterations in Bayesian optimization
Nres ▷ Maximum permissible number of restarts for ME

kGP(x, x ′)← 1
2ν̃−1Γ̃ (ν̃)

(
2
√

ν̃
ϑ
∥x − x ′∥2

)ν̃

K ν̃

(
2
√

ν̃
ϑ
∥x − x ′∥2

)
GP← GP(0, kGP; H prior) ▷ Initialize a 0-mean GP with kernel kGP, and the given priors
H ← H prior

▷ Evaluation history
fmin ← minimum f in H
for k ← 1 to K do

for l ← 1 to Nres do
Pnew

← argmaxP

(
E[Imp(Algorithm 3(G , P; O))], with P ∈ XP,

for fmin, and µ̂, σ̂ in GP, given H, with scheme ME

)
▷ Maximize expected improvement

f new, GC← Algorithm 3(G , Pnew
; O)

if GC and f new
≤ ϵ f then

break
else

Randomize the initialization of ME for next iteration
end if

end for
if f new < fmin then fmin ← f new end if
H ← H ∪ {(Pnew, f new)}
GP ← Fit(GP(0, kGP; H )) ▷ Re-train the GP by maximizing the likelihood of the updated H

end for
P∗
←P corresponding to minimum f from all (P, f ) ∈ H

as compared to using a Gaussian process with a mixed input type. To accommodate the real-valued elements N (i)

n the result P of maximizing the expectation in (29), we round the values N (i) to the nearest positive integers for
very evaluation of f to satisfy the requirement that N (i)

∈ Z+.

Since the evaluations of f are expensive, it is important that the sampling plan used for the prior initialization of
H exhibits low discrepancy, i.e., guarantees smaller variation in sampling density as compared to a pseudorandom
niform sampling plan. As such, we construct the sampling plan for H prior using a |P|-dimensional Sobol quasi-
andom sequence which exhibits low discrepancy [39], with ñprior samples drawn from the feasible set XP . We
nitialize the prior evaluation history H prior

= {(Pprior
1 , f prior

1 ), . . . , (Pprior
ñprior

, f prior
ñprior

)} according to the obtained low-
iscrepancy sampling plan. Before passing it as one of the inputs to Algorithm 4, we further process it by discarding
ll points in H prior for which f (G , Pprior) > ϵ f , with ϵ f defined as in Algorithm 4, or for which the corresponding
G results in JG > ϵJ , with ϵJ defined as in Algorithm 3. Similar to the approach within the Bayesian optimization

tself, this prior processing step removes all outlier samples with very large control-optimal energies EG , and all
amples for which the solution of the activation optimization problem (19) results in poor actuator control. Finally,
e select a fixed number nprior < ñprior of samples from the post-processed set H prior to eliminate randomness in
he number of priors provided to the Gaussian process.
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Fig. 2. The nested computational structure of the minimization methodology utilized to optimize the filament design. Only the most major
components of the implementation are depicted in the above schematic; refer to Algorithms 1–6 for the details of the implementation.

Algorithm 5 Optimization of filament geometry and fiber architecture for a given control goal

Require: ME ▷ Scheme for expected imp. maximization within Bayesian optimization
XP ▷ Feasible set of P
ñprior, nprior, O = {ϵJ , ϵ f , Zmin, Zmax} ▷ Auxiliary optimization hyperparameters
G = {G, CΓ , JG(BA)},Z,S ▷ Control objective specification

X prior
← Sobol quasi-random sampling plan over XP

P
prior
1 , . . . ,P

prior
ñprior
← ñprior samples from X prior

f prior
j ← f (G , P

prior
j ; O),∀ j ∈ {1, . . . , nprior} ▷ Parallelized computation of priors

{(Pprior
j , f prior

j )} ← Discard {(Pprior
j , f prior

j )} with f prior
j > ϵ f or JG(r(Z;ΓG , P

prior
j )) > ϵJ ,

where ΓG
= Algorithm 1(G , P

prior
j ),∀ j ∈ {1, . . . , ñprior}

H prior
← First nprior samples from {(Pprior

1 , f prior
1 ), . . . , (Pprior

ñprior
, f prior

ñprior
)}

P∗
← Bay argminP

(
f (G , P; O), with P ∈ XP ,

and the priors H prior, with scheme ME for expected imp. maximization
)

▷ f = Algorithm 3, Bay min = Algorithm 4

Remark. Importantly, the original number of sampling plan sites ñprior needs to be sufficiently large, so that the
ample discarding process does not eliminate more than ñprior − nprior samples, which would ultimately result in

H prior
= ∅. At the same time, nprior should also be large enough, so that the prior surrogate model of EG guides

he optimization effectively.

Algorithm 5 describes the complete approach for Bayesian optimization of all parameters that define the
ber-based actuator under a prescribed control objective specification.
18
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Algorithm 6 Maximization scheme ME for the expected improvement in Bayesian optimization

Require: GP ▷ Current Gaussian process
fmin ▷ Minimum value of f identified so far
nE ▷ Number of samples in the interior sampling plan over XP

XGP ← |P|-dimensional Sobol quasi-random sampling plan over XP with nE samples
(∂XGP)i ← (|P| − 1)-dimensional Sobol quasi-random sampling plan over the i-th boundary

of XP with n(|P|−1)/|P|
E samples (rounded to the nearest int.), ∀i ∈ {1, . . . , 2|P|}

▷ Re-seeded before every sampling plan construction
XGP ←XGP ∪

(⋃2|P|
i=1 (∂XGP)i

)
µ̂(P), σ̂ (P)← Predicted mean and standard deviation functions of the GP
E[Imp( f (G , P))]← E(P) = ( fmin − µ̂(P))P( f ≤ fmin)+ σ̂ (P)2N ( fmin | µ̂, σ̂ 2)

▷ adapted from [40], P( f ≤ fmin) = probability of improvement
{E(P1), . . . ,E(P|XGP|)} ← Evaluate E for all P ∈XGP, in parallel
Pnew

← argmaxP{E(P1), . . . ,E(P|XGP|)} ▷ Maximize expected improvement over the sampling plan

3.5. Selection of the scheme ME for maximization of the expected improvement

Prototypical investigation of the Bayesian optimization performance in solving the minimization problem in (28)
howed that direct optimization methods – including the simulated annealing and Nelder–Mead simplex algorithms

are not computationally viable for the expected improvement maximization scheme ME. Specifically, when
ither simulated annealing or Nelder–Mead is used for constrained maximization of the expected improvement with
∈ XP , the associated computational overhead becomes too significant compared to the cost of a single evaluation

f f . Thus, choosing these methods would compromise the effectiveness of Bayesian optimization. Further, even
f ME is augmented to allow for ncore randomized and parallelized restarts – similar to the augmented approach
aken in evaluating f – the solutions computed by these schemes frequently violate the control quality condition
JG
≤ ϵJ .

emark. A potential explanation for the poor performance of direct methods is that, since EG is erratically multi-
alued, as discussed in Section 4.2, and because it exhibits extreme non-convexity within all of its branches and
ver a large range of length scales in P-space, the fitted Gaussian process approximation of f also becomes highly
ensitive to small changes in P . This renders the constrained direct search for the maximizer computationally
xpensive.

Nevertheless, high-fidelity maximization of the expected improvement is not necessary for satisfactory perfor-
ance of a Bayesian optimization. Further testing revealed that maximizing the expected improvement over a

iscrete set of samples XGP ⊂ XP provided maximizers that still aided the progression of the Bayesian optimization
rocess, while being less costly than direct methods used with constrained optimization. In particular, we constructed
sampling plan XGP using a |P|-dimensional Sobol quasi-random sequence. We further introduced additional

obol sampling plans on the (|P|−1)-dimensional hyperplane boundaries of XP , so that the maximization occurs
ver a low-discrepancy set with well-resolved expectation data on the boundaries. To preserve an approximately
onstant sampling density over both the volume and boundaries of XP , we drew nE samples in the interior of XP ,
nd placed n(|P|−1)/|P|

E sampling sites on each hyperplane boundary. Algorithm 6 provides a detailed algorithmic
escription of the method constructed for the expected improvement maximization scheme ME [40].

emark. While each single evaluation of f involves parallelized computations that cannot be nested, a single
valuation of the Gaussian process is serial. We thus generate the sample population over XGP by performing all
elevant Gaussian process evaluations in parallel. This permits denser sampling plans for approximate maximization
f the expected improvement.
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3.6. Performance evaluation

Preliminary analysis lead to the observation that, due to the erratic functional behavior of EG , large amounts of
oise are present in the data set formed by all evaluations of the objective f during Bayesian optimization. Thus,
plot of the function evaluation history would enable only qualitative conclusions based on the graphical spread

f the data along the f axis. To facilitate quantitative evaluation, we introduce two additional metrics to assess the
erformance of the Bayesian optimization approach compared to a random search baseline.

Our first performance evaluation metric considers the distribution of the objective function values within
everal windows of the optimization process, given that the objective evaluations within Bayesian minimization
an generally exhibit a high degree of randomness. Specifically, we fit a set of Kd distributions to a set of Kd

iteration partitions of the Bayesian optimization to observe the distribution-wise progression of the objective function
evaluations. We compare the set of distributions against the distribution of a random search baseline, for which we
compute a large number ñrand of evaluation points using a Sobol sequence-based sampling plan over XP . The
random samples undergo the same type of post-processing as the set of priors in Algorithm 5 to preserve a total of
nrand samples with f ≤ ϵ f and JG

≤ ϵJ .
The second metric is inspired by acceleration factor benchmarking [41]. It corresponds to the lowest iteration

index at which the minimum objective value found by the algorithm so far is no larger than a given threshold fth.
In other words, we first compute the minimum of f as a function of the iteration index k,

fbest(k) = min{ f[1], . . . , f[k]}, k ∈ {1, . . . , K }, (30)

where f[k] is the value of the objective function at the kth iteration. Then, we define the second performance metric,

Kmin( fth) = arg min
k∈{1,...,K }

( fbest(k), s.t. fbest(k) ≤ fth) , (31)

as a function of fth both for the Bayesian optimization algorithm and for a random search baseline. Kmin( fth)
constitutes a rough estimate of the convergence capabilities of the Bayesian optimization when applied to (28),
with lower values of Kmin indicating better convergence properties at a given fth.

4. Results and discussion

Our proposed optimization methodology is general, and applies to arbitrary fiber-based slender actuators and
control objective specifications. Since benchmarking our approach for all possible actuation paradigms is virtually
impossible, here, we focus on evaluating the methodology for a single target endpoint position (20). Notably, our
analysis generalizes to any other actuation requirement, beyond any simplifying assumptions that we make in this
evaluation.

4.1. Optimization of two-ring actuator geometry and fiber architecture

For better interpretability of the results, we restrict the following analysis to a two-ring, M = 2, actuator
with fixed mechanical properties E = (1, 1) and ν = (1/2, 1/2), and a constant length L = 10. We a priori
fix the ring count M since the dimensionality of P depends on M and our implementation assumes a constant
dimensionality of P . The specific value of the filament length L is insignificant, since the filament geometry
can be expressed in terms of the dimensionless groups involving L , R(1)

1 and t (i). As a result, the design space
consists of all points P = D ∪ F = {R(1)

1 , t, α2, σ , N, θ2}, and we seek to optimize the geometry and fiber
architecture of the two-ring actuator over all feasible P . We define the feasible set through the element-wise
inequality Pmin ≤ P ≤ Pmax, where Pmin = {0.2, (0.02, 0.02), (0, 0), 1

12 (π, π), (1, 1), (0, 0)} and Pmax =

{0.5, (0.2, 0.2), 1
4 (π, π), 1

4 (π, π), (4, 4), (0, 2π−π/64)}. We clamp the Z = 0 endpoint of the actuator at the origin,
with boundary conditions r0

= (0, 0, 0), and D0
= {eX , eY , eZ }. To ensure that the fixed orientation of the cross

section at the Z = 0 boundary is meaningful, the design variable θ
(1)
0 is set to vanish, since permitting arbitrary

values of both θ
(1)
0 and θ

(2)
0 is equivalent to removing the D0 boundary condition. The actuator seeks to fulfill a

ontrol objective specification G as defined in (20) by reaching a target endpoint position rGend =
1
3 (L , L , L). The

onstraint set C is empty, i.e., no constraints are imposed on Γ beyond the ones implicitly affecting the ultimate
Γ
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Fig. 3. Bayesian design optimization for the prescribed control problem and the chosen feasible set of potential actuator designs. (a)
Convergence plots of the control objective cost function JG for prior sample generation (top) and the Bayesian optimization (bottom). Every
evaluation of the objective function f involves solving an optimization problem. The top plot visualizes nprior = 100 convergence data sets
or the prior sample generation; the bottom plot shows 200 convergence data sets for the K = 200 iterations of the Bayesian optimization.

(b) Evaluation history for the objective function f for both the prior samples (left), and the Bayesian optimization (right). The colors of the
individual data points correspond to the data sets in the JG convergence plots in (a). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

values of ΓG through the JG
≤ ϵJ and f ≤ ϵ f conditions. We set the threshold for satisfactory control to ϵJ = 10−3,

and the maximum permissible objective value to ϵ f = 1. We evaluate a total of nprior = 100 priors and perform the
ayesian optimization for K = 200 iterations. For the remaining hyperparameters, we choose ninit = 2, nE = 400,

Nres = 20, and Zmin/max = ∓[3, . . . , 3] ∈ R
∑

i N (i)
. We select the Nelder–Mead simplex method as the optimization

cheme MΓ in Algorithm 1.
Fig. 3 summarizes the results of our Bayesian optimization of the actuator’s geometry and fiber architecture under

he prescribed control objective specification. Fig. 3a shows the convergence plots of the Nelder–Mead simplex
ethod in Algorithm 1 for all prior samples and all evaluations of f throughout the Bayesian optimization, which

orresponds to nprior = 100 convergence curves for the priors, and K = 200 convergence curves for the evaluations
uring the optimization. We observe acceptable convergence in the Γ -space for all prior samples after roughly 100
terations, and for almost all evaluations of f after approximately 150 iterations of MΓ . We emphasize that the
lots only depict the convergence curves for which the condition JG

≤ ϵJ is met at the last iteration of MΓ ,
ince the sample is discarded otherwise both in the prior set and during Bayesian optimization. Most of the MΓ

xecutions exhibit fast convergence of JG close to the last iteration and slower convergence in earlier iterations,
s the hyperparameters of the Nelder–Mead method are set to promote exploration of the functional landscape to
ore robustly identify the global minima.
Fig. 3b visualizes the progression of the objective values f evaluated throughout the Bayesian optimization

rocess as a function of the Bayesian iteration k, together with the f values computed for the set of priors. As
xpected, the evaluations during the Bayesian optimization are scattered along the f -axis and no clear convergence
attern is present throughout the entire sequence of K iterations. Nonetheless, it is evident that the Bayesian
ptimization identifies smaller values of f more effectively than the randomized sampling in the set of priors.
ig. 4 demonstrates the actuator design associated with the smallest identified value of the objective function

f , along with the actuator’s deformed configuration that achieves the specified control objective. The actuator
(1)
esign P that achieves this minimal energetic cost of activation f is defined by the parameters R1 ≈ 0.2130,
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Fig. 4. The most optimal actuator design identified during the Bayesian optimization procedure, under the imposed control objective
specification. (a) Visualization of the rings comprising the two-ring actuator, together with the parameters defining the geometries and
fiber architectures of the two rings. (b) The complete two-ring actuator with a schematic of the control objective specification. (c) The
deformed configuration of the most energetically optimal actuator that successfully matches the prescribed control objective. The translucent
filamentary outlines depict a control path (linearly interpolated in Γ -space) that could be taken by the actuator to reach the target position.

t ≈ (0.0412, 0.0329), α2 ≈ (0.6092, 0.0951), σ ≈ (0.2647, 0.6819), N ≈ (3, 4), and θ0 ≈ (0, 3.1733). Since Fig. 3b
does not demonstrate a clear convergence trend, the actuator in Fig. 4 merely corresponds to the smallest identified
value of f throughout K iterations of the Bayesian optimization process, and it is neither a global nor a local
minimum of f .

To evaluate whether the Bayesian optimization is more effective at minimizing f than randomized sampling,
we visualize the distribution of the optimization data set f over Kd = 8 contiguous partitions of equal length,
and compare the result to a quasi-random baseline generated for nrand = 1000 post-processed evaluations. For each
partition, Fig. 5a shows the probability density functions of smooth kernel distributions truncated to f ∈ [0, ϵ f ]
together with the truncated smooth kernel distribution of the random baseline. Based on the computed distributions,
the Bayesian optimization identifies designs with smaller objective function values much more frequently than
the random baseline approach. Interestingly, the distributions of f in the Bayesian optimization have multi-modal
characteristics, which might be related to the multiple branches of the energetic activation cost function EG .

To further support the advantages of the proposed optimization method, we compute the performance metric
Kmin( fth) for both the Bayesian optimization results and the random baseline. In particular, Fig. 5b (top) shows the
minimum function value fbest up until iteration k for the Bayesian optimization, and for a set of 32 randomized
sampling runs with nrand = 200 samples each. Based on the computed fbest(k) curves, we generate the curves of the
Kmin( fth) metric, and plot them in Fig. 5b (bottom) with fth ∈ [0.005ϵ f , 0.5ϵ f ], for both the Bayesian optimization
and randomized cases. Since Kmin( fth) ∈ Z+, we compute the averaged Kmin curves with a ceiling operation to
consider the conservative case of the Kmin( fth) metric. The random baseline curves fbest(k) and Kmin( fth) averaged
ver the 32 randomized runs both lie consistently above the respective fbest(k) and Kmin( fth) curves obtained for
he Bayesian optimization process, which suggests that Bayesian optimization identifies optimal actuator designs
aster than a randomized sampling, in addition to doing so more frequently.

Last, we evaluate the quality of the Gaussian process fit throughout the Bayesian optimization in the investigated
cenario by considering the mean cross-entropy loss of the Gaussian process training as a function of the

ptimization iteration k ∈ {1, . . . , K }. Fig. 5c shows the plot of the mean cross-entropy loss of the Gaussian process,
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Fig. 5. Performance of the proposed Bayesian optimization method. (a) Truncated smooth kernel distributions of the objective function
valuations for a random baseline with nrand = 1000 samples, and for Kd = 8 iteration partitions. The Bayesian optimization identifies
esign points with smaller objective function values f more frequently than the random baseline method. (b) Top: minimum objective
unction value fbest as a function of the Bayesian iteration k and the index of the random sample in each of the 32 randomized runs with
rand = 200 samples. Bottom: Kmin metric as a function of the normalized energetic threshold fth/ϵ f for both the random baseline and

he Bayesian optimization method. The curves for the Bayesian optimization method never exceed the averaged random baseline curves,
hich indicates that the utilized method finds design points with smaller f in a fewer number of iterations. (c) Mean cross-entropy loss

s a function of the Bayesian iteration index k. The Gaussian process fits the evaluation history better and with higher confidence at later
terations. The plot is cropped along the vertical axis to more clearly visualize smaller values of the mean cross-entropy loss.

here each error bar corresponds to the standard deviation of the cross-entropy loss at iteration k. If we neglect
he outliers, based on the mean cross-entropy loss data, the Gaussian process surrogate model fits the evaluation
istory better at later iterations k in the Bayesian optimization, and is more confident in the quality of the fit at
ater iterations as well. This behavior is consistent with the expectation that the chaotic functional nature of f is
pproximated more accurately as more data are added to the evaluation history.

.2. Non-invertibility of the mapping A

The existence of the inverse A−1
Γ of the mapping A with respect to Γ is governed by a highly complex function

f both G and CΓ . In almost all cases, the mapping A is not invertible with respect to Γ . There generally exists an
nfinite number of activation parameter sets Γ that produce the same configuration BA, so there also exists an infinite
umber of parameter sets Γ that globally minimize the control cost function JG(BA). As such, a hypothetical,

G
nfinitely robust global optimization method that always converges to a global minimum of J can still yield
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Fig. 6. Multi-valued energetic cost EG as a function of the normalized inner radius R(1)
1 of a single-ring filament, for six different helical angle

values. We generate the data points by performing a large number of activation optimization runs with randomized initializations. Multiple
solution branches of the energy exist for a single design point, which introduces computational challenges in the Bayesian optimization
process. We define the actuator with the fixed properties t/L = 0.01, σ = π/4, N = 3, θ0 = 0, E = 1, and ν = 0.5 in its single ring. The
nergetic cost was computed under the control objective specification used in Section 4.1.

ifferent optimal activation sets ΓG under different initializations or due to algorithmic stochasticity. Regardless of
he robustness of the schemes MΓ and ME, this behavior has a negative effect on the optimization of f , because
ifferent ΓG generally result in different energetic costs EG for the same filament definition P . In fact, the same
pecification G and filament definition P can yield optimal EG of vastly differing magnitudes, depending on the
ptimum computed by Algorithm 1. Consequently, EG is generally highly multi-valued over any feasible set of P ,

with the range of EG spanning all of R+.
To illustrate the multi-valued nature of the optimal energetic cost EG , we consider a simple single-ring filament

eometry with a variable inner radius R(1)
1 , for six uniformly spaced helical fiber angles α

(1)
2 ∈ [π/12, π/4], and

ll other parameters in P held fixed. We compute the values of EG for the G specification in Section 4.1, for a
arge number of random R(1)

1 /L ∈ [0.02, 0.05], with multiple randomized initializations in MΓ . Fig. 6 shows the
esulting plots of EG as a function of R(1)

1 for each of the six helical fiber angles, with EG plotted on a logarithmic
cale. The plots highlight numerous branches of the multi-valued EG for all evaluated helical angles. To add to the
omplexity of the functional nature of EG , solution branches can intersect one another arbitrarily without any clear
atterns. It is worth noting that, in the case of a one-dimensional design space, each branch is represented by a
urve. In the general case, however, the range of the multi-valued EG can be represented by an infinite number of
P|-dimensional manifolds over XP .

The multi-valuedness of EG introduces undesirable noise into the Gaussian process, since subsequent evaluations
ight switch between branches of EG in an uncontrollable manner. As a result, the Gaussian process might
ake predictions based on a chaotic mixture of the various branches of EG , which can significantly reduce its

erformance in a Bayesian optimization, as manifested in the scattered distribution of f values throughout the
ptimization process in Fig. 3b. At the same time, the multi-valued nature of EG also supports the choice of Bayesian
inimization as the primary method in our approach, because it is known to be a suitable method for optimizing
24
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non-deterministic functions. The large range of values that EG can take at a single design P and specification G is
also the reason for filtering out any outliers f > ϵ f in both the construction of the prior evaluation history H prior,
nd during Bayesian optimization. It is currently unclear how we could robustly mitigate this overall challenge, and
ny potential computational remedies will need further investigation.

. Conclusions

The development of a robust design approach for soft actuators remains a formidable engineering challenge.
o far, most studies have considered quantitative methodologies for identifying optimal soft-robotic designs, but

hese approaches are computationally expensive or consider a limited family of design objectives motivated by the
ctuation goals of specific engineering prototypes.

As an alternative, we propose an automated method for the design optimization of fiber-based soft actuators
hat can be easily generalized to a wide variety of optimization problems. In our method, we minimize the
nergetic actuation cost under arbitrary control objectives based on a desired robotic functionality. To address
he excessive computational cost associated with the objective function and its multi-valued nature, we select
ayesian minimization as the method of choice to construct the optimization procedure. Notably, although the
omputational cost for the evaluation of the objective function warrants using a surrogate optimization approach,
ur optimization methodology is computationally inexpensive compared to other common design optimization
pproaches. We systematically evaluate our proposed optimization method for the specific control objective of
eaching a target endpoint position, and determine the most favorable actuator design for that objective. We show
hat, for this scenario, our methodology outperforms random baseline methods. More importantly, our approach is
ormulated in a way that can be easily extended to search for soft actuator designs that maximize robotic adaptability
nd actuation versatility under a large set of control objectives, while maintaining the computational feasibility.

Our study of Bayesian optimization, as applied to soft actuator design, exhibits some noteworthy limitations.
irst, our activation optimization method for actuator control relies on the assumption of quasi-static motion.
he quasi-static assumption renders our approach applicable only to actuator deformations where inertial forces
an be neglected. To address this limitation, we could incorporate filament dynamics into the model mapping

[42–45], and develop a model-based framework for optimal feedback control of active filaments [46,47].
uch an extension would facilitate model validation both in an experimental setting and within a computational
nvironment [48]. Second, our approach is primarily heuristic in identifying the most desirable branch of the multi-
alued energy function. To make the Bayesian minimization of the energy more robust, we could develop a less
eneric optimization scheme MΓ that is directly informed by the physics of the active filament theory. Third, the rate
f convergence of our Bayesian optimization method is sensitive to the choice of hyperparameters. To address this
ffect, we could conduct a sensitivity study to isolate the hyperparameters with the highest impact on convergence,
r reformulate the post-processing steps of our methodology to reduce the number of hyperparameters, which is a
hallenging task in itself.

To further reinforce the validity of our results, we could generate several independent data sets for the Bayesian
ptimization process, so that curves averaged over multiple optimization runs can be compared more rigorously
gainst the random baseline method. Moreover, to assess the performance of our optimization methodology in
dentifying designs that ensure a high degree of robotic adaptability, we could adopt a more involved control
bjective specification G . Specifically, we could incorporate a weighted multi-objective formulation with several
pecifications Gi , so that the energy-optimized actuator performs well under multiple actuation paradigms. Future
esearch could also evaluate how the fiber design changes under continuous changes in the control objectives.
ur expectation is that small changes in the control objective would yield small changes in the optimal actuator
esign, but further design optimization runs are required to validate this hypothesis. Additionally, implementing
he capability of optimizing with respect to the number of actuator rings M would enlarge the design space to
ncompass significantly more complex structures. Finally, our control method only considers the internal stresses
n the robotic arm due to fibrillar activation, so further work could include the design optimization under arbitrary
xternal loading [49] or different boundary conditions [50], and account for the potential instabilities commonly
bserved in filamentary structures [51–53].

The universal nature of the active filament theory not only enables more exhaustive optimization of fiber-
ased soft actuators, but also provides insight into the mechanical principles that govern optimal soft actuation.
n combination with the state-of-the-art approaches in soft robotics, our generalized framework can serve as a

owerful tool for the prototyping, design, fabrication, and operation of soft active devices.
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