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Abstract

Understanding real-world dynamical phenomena remains a challenging task. Across various scientific disciplines, machine
earning has advanced as the go-to technology to analyze nonlinear dynamical systems, identify patterns in big data, and

ake decision around them. Neural networks are now consistently used as universal function approximators for data with
nderlying mechanisms that are incompletely understood or exceedingly complex. However, neural networks alone ignore the
undamental laws of physics and often fail to make plausible predictions. Here we integrate data, physics, and uncertainties by
ombining neural networks, physics informed modeling, and Bayesian inference to improve the predictive potential of traditional
eural network models. We embed the physical model of a damped harmonic oscillator into a fully-connected feed-forward
eural network to explore a simple and illustrative model system, the outbreak dynamics of COVID-19. Our Physics Informed
eural Networks seamlessly integrate data and physics, robustly solve forward and inverse problems, and perform well for
oth interpolation and extrapolation, even for a small amount of noisy and incomplete data. At only minor additional cost,
hey self-adaptively learn the weighting between data and physics. They can serve as priors in a Bayesian Inference, and
rovide credible intervals for uncertainty quantification. Our study reveals the inherent advantages and disadvantages of Neural
etworks, Bayesian Inference, and a combination of both and provides valuable guidelines for model selection. While we
ave only demonstrated these different approaches for the simple model problem of a seasonal endemic infectious disease, we
nticipate that the underlying concepts and trends generalize to more complex disease conditions and, more broadly, to a wide
ariety of nonlinear dynamical systems. Our source code and examples are available at https://github.com/LivingMatterLab/x
INNs.
2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

http://creativecommons.org/licenses/by/4.0/).
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. Motivation

Modeling and predicting the behavior of complex nonlinear dynamical systems remains a challenging scientific
ask [1]. Numerous scientists are addressing this challenge by collecting more observational data than ever before;
owever, more often than not without a clear picture how to sort, analyze, and understand these enormous amounts
f information [2]. Throughout the past two decades, machine learning has advanced as the go-to technology to
nalyze big data and explore the massive design spaces associated with them [3]. Simply put, machine learning is
n incredibly powerful strategy to make data-driven recommendations and decisions based on the input data alone.
s such, it is has become an indispensable technology for image or speech recognition, medical diagnostics, or self-
riving cars. However, traditional machine learning ignores the fundamental laws of physics, and, as a consequence,
erforms well at fitting observations, but often fails to make consistent and plausible predictions. In the engineering
cience community, especially in disciplines that are traditionally not data-rich, these limitations have raised the
uestion how we can advance machine learning and build in our prior knowledge to respect underlying physical
rinciples.

The trend of embedding physics into machine learning has recently drawn tremendous attention in various
cientific applications [4]. As engineering scientists, we have been modeling complex nonlinear dynamical systems
or hundreds of years and we have developed a reasonable quantitative knowledge about physical parameters,
oundary conditions, and constraints [5]. Physics-informed machine learning now allows us to use this prior
nowledge when training machine learning tools [3]. This not only makes the training more efficient, but also
ore accurate and robust, especially when working with missing, noisy, or sparse real-life data [6]. A powerful

nd effective strategy to seamlessly integrate data and physics are Physics Informed Neural Networks [7]. Physics
nformed Neural Networks introduce a learning bias by directly embedding the physics into the loss function of a
eural network [8]. This makes the neural network more robust, especially in the presence of sparse or imperfect
ata, and can provide more accurate and physically consistent predictions, even outside the training window [2]. For
xample, recent studies have successfully applied Physics Informed Neural Networks to study the complex outbreak
ynamics of COVID-19 [9,10] by integrating advance epidemiology models into deep neural networks [11,12].
owever, the success of these methods depends crucially on the amount of available data and the complexity of

he system itself. For the COVID-19 pandemic, we now know that predictions typically fail beyond a two-week
indow [13,14], and that predicting outbreak dynamics beyond this range can have devastating consequences [15].

t seems intuitive to ask how we can quantify uncertainties to estimate the reliability of our models and to build
onfidence in our model predictions [16].

Real-world data are inherently stochastic, noisy, and incomplete, and naturally contain aleatoric uncertainty [17].
his is why we should never just look at the plain data. Instead, we should always interpret data in the context of
odels that allow us to quantifying uncertainties [18]. A recently proposed promising strategy is to interpret Physics

nformed Neural Networks within the framework of Bayesian statistics [6]. This approach combines a Bayesian
eural Network with a Physics Informed Neural Network to create prior distributions and uses Hamilton Monte
arlo methods to estimate posterior distributions [19]. Uncertainty quantification in the form of credible intervals

s a natural and important by-product of such a Bayesian analysis [20]. Throughout the past decades, Bayesian
tatistics have undeniably gained massive popularity [21] and have stimulated the birth to an entirely new field,
robabilistic programming [22]. Combined with Physics Informed Neural Networks, Bayesian statistics perform
ell for both forward and inverse problems including Poisson problems, flow problems, phase separation problems,

nd reaction–diffusion problems [19]. However, most of these applications train their network on synthetic data
rom a known solution with overlaid noise [23]. This motivates the question how well Bayesian Physics Informed
eural Networks perform on real-word data from a nonlinear dynamical system for which the underlying physics

re not entirely known, with both aleatoric and epistemic uncertainty.
The objective of our study is to illustrate the performance of Neural Networks, Bayesian Inference, and a

ombination of both using real-world data. However, rather than showcasing these methods on real big data, we
ocus on a simple data set that is easy to understand, interpret, and reproduce: the reported daily number of new
OVID-19 cases worldwide [24] throughout the year of 2021 [25]. We identify a suitable, yet simple mathematical
odel with an analytical solution that allows us to characterize the data. Again, our objective is not to develop the
ost rigorous physical model to explain each and every feature of the outbreak dynamics of a global pandemic [26].

nstead, we adopt simple physical model, a damped harmonic oscillator, to characterize the long-term dynamics of
OVID-19 on a global scale. We integrate the case data and the oscillator model using Neural Networks and
2
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Fig. 1. Data - Daily new COVID-19 cases worldwide in 2021. Thin fluctuating line illustrates the reported daily new cases of COVID-19
orldwide; thick smooth line illustrates the seven-day moving average of the daily new cases, from January 1, 2021 to December 31, 2021.

ayesian Inference and compare their model equations, parameters, training, predictions, and uncertainties. We
nvision that this study sheds light on the performance of different cutting-edge machine learning tools, highlights
heir advantages and disadvantages, and helps engineering scientists to select the best method to analyze real-world
onlinear dynamical systems.

. Model problem

.1. Data - Daily new COVID-19 cases

Fig. 1 illustrates our real-world data to compare different machine learning approaches. As example, we use the
umber of new COVID-19 cases worldwide [27] throughout the entire year of 2021, which we draw from a public
atabase [25]. The thin fluctuating line shows the raw data, the reported daily new cases worldwide from January 1,
021 to December 31, 2021. Global reporting started on January 22, 2020 with a total number of cases of 557 [28].
n January 1, 2021, at the beginning of our analysis window, the number of newly reported cases worldwide was
72,602 bringing the total number of cases up to 84,332,767. On December 31, 2021, at the end of our window, the
otal number of cases was 288,631,129. Altogether, the reporting window saw three pronounced waves. The first
ave had a minimum number of new cases of 281,223 on day 46, February 16, 2021, and a maximum number of
05,378 on day 118, April 29, 2021, as we can confirm from the global minimum and maximum in Fig. 1. The
econd wave had a minimum number of new cases of 296,808 on day 172, June 22, 2021, and a maximum number
f 819,336 cases on day 221, August 10, 2021, about four months after. To eliminate noise, reporting uncertainties,
nd weekday–weekend fluctuations, data analysts typically average the reported case numbers across a seven-day
indow [29]. The thick smooth line illustrates the seven-day moving average x̂(t) of the daily new cases. In the

ollowing sections, we will use both the raw data and their seven-day moving average as an example to illustrate
he potential of Neural Networks, Bayesian Inference, and both methods combined.

.2. Neural Network modeling - Fully-connected feed-forward Neural Network

To model the data in Fig. 1 without any prior knowledge of the underlying physics, we use a neural network
hat approximates the model solution x, the reported daily new COVID-19 cases, by taking the time coordinates t
s input. We adopt one of the simplest examples of neural networks, a fully-connected feed-forward neural network

omposed of multiple hidden layers. We denote the hidden variables of the kth hidden layer as zk and summarize

3
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he neural network, here for two hidden layers, as

z0 = t
z1 = σ ( W1 z0 + b1 )
z2 = σ ( W2 z1 + b2 )
z3 = W3 z2 + b3

(1)

where the output of the last layer is used to approximate the true solution, x ≈ z3. Here, σ (◦) denotes the non-
linear activation function for which we select a hyperbolic tangent function, σ (◦) = tanh (◦), and θ = {Wk, bk}

re the trainable network parameters, the weight matrix Wk and the bias vector bk of the kth layer of the network.
hroughout this project, for illustrative purposes, we consider a fully-connected feed-forward network with one

nput, the time t , two hidden layers with 32 nodes each, and one output, the daily new cases x(t). For this
ype of network, W1 ∈ R1×32, W2 ∈ R32×32, W3 ∈ R32×1, and b1 ∈ R32, b2 ∈ R32, b3 ∈ R1, resulting in
2 + 32 × 32 + 32 = 1088 weights and 32 + 32 + 1 = 65 biases.

.3. Physic Informed modeling - Damped harmonic oscillator

To model the data in Fig. 1 using a physics-based model, we consider a general parameterized second order
ifferential equation,

r (t, x, ẋ, ẍ, ϑ) = 0 (2)

here t ∈ [ 0, T ] is the time, x(t) is the solution with initial conditions x(t0) = x0 and ẋ(t0) = ẋ0, r is the residual
s a function of x and its first and second time derivatives ẋ and ẍ, and ϑ are the physics parameters. We now
pecify the general Eq. (2) for the model problem of a damped harmonic oscillator, which is governed by Newton’s
econd law, the balance of forces, m ẍ + c ẋ + k x = 0, or, divided by the mass m,

r = ẍ +
c
m

ẋ +
k
m

x = 0 or r = ẍ + 2 ζω0 ẋ + ω2
0 x = 0 . (3)

We can parameterize the damped harmonic oscillator equation in terms of the mass m, the viscous damping
coefficient c, and the stiffness k, or, equivalently, in terms of the damping ratio ζ = δ/ω0 = c/(2

√
mk), the

damping δ = c/(2m), and the angular frequency ω0 =
√

k/m. Eqs. ((3).1) and ((3).2) are homogeneous linear
differential equations of second order with constant coefficients. For solutions to this type of equations, we can
make an exponential ansatz of the form x(t) = C exp(λ t), such that ẋ(t) = λ C exp(λ t) and ẍ(t) = λ2C exp(λ t).
nserting this ansatz into Eqs. ((3).1) and ((3).2) yields their characteristic equations,

λ2
+

c
m

λ +
k
m

= 0 or λ2
+ 2 δ λ + ω2

0 = 0 . (4)

These equations are quadratic equations in normal form with two solutions for λ,

λ1,2 = −
c

2m
±

√( c
2m

)2
−

k
m

or λ1,2 = −δ ±

√
δ2 − ω2

0 . (5)

rom Eq. ((5).2) we conclude that the damping ratio ζ = δ/ω0, the ratio between damping δ and frequency ω0,
etermines the type of the solution and with it the behavior of the system: A damped harmonic oscillator can be
verdamped for ζ > 1 and δ > ω0 with two different real valued solutions for λ; critically damped for ζ = 1 and
= ω0 with two identical real valued solutions for λ, or underdamped for ζ < 1 and δ < ω0 with two conjugate

omplex solutions for λ. Here we consider the underdamped case. The analytical solution of an underdamped
armonic oscillator describes an exponential decay of the oscillation,

x(t) = 2A0 cos(ω t + φ) exp (−δ t) , (6)

here A0 is the amplitude, ω =

√
ω2

0 − δ2 is the natural frequency, and φ = arctan (−δ/ω) is the phase angle.
Fig. 2 illustrates the dynamics of a damped harmonic oscillator. The solid line highlights the analytical solution

m ẍ + c ẋ + k(x − x0) = 0 or ẍ + 2 ζω0 ẋ + ω2
0 (x − x0) = 0, the dashed lines highlight the exponential decay in

amplitude, x0 ± A0 exp(−δt), where A0 is the amplitude, δ = c/(2m) is the damping, ω0 =
√

k/m is the frequency
ssociated with the period T = 2π/ω0, and x0 is the offset. We fix the value of the mass to m = 1 and collectively

{ }.
ummarize the remaining physics parameters in the parameter vector ϑ = c, k, x0

4
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Fig. 2. Physics - Damped harmonic oscillator. Characteristic exponential decay of the oscillation in terms of the period T = 2π/ω0 with
requency ω0 =

√
k/m, damping δ = c/(2m), offset x0, and amplitude A0. Solid lines illustrate the analytical solution m ẍ+c ẋ+k(x−x0) = 0

r ẍ + 2 ζω0 ẋ + ω2
0 (x − x0) = 0, dashed lines illustrate the exponential decay in amplitude x0 ± A0 exp(−δt) around the offset x0.

.4. Machine Learning - Integrating data and physics

To create learning machines that seamlessly integrate the data from Fig. 1, the physics from Fig. 2, or both, we
ombine Neural Network modeling from Section 2.2 and Physics Informed modeling from Section 2.3 and learn
he underlying network and physics parameters. To quantify the uncertainty of the learned parameters, and with it
he quality of the model, we can integrate each of these methods into a Bayesian Inference.

Fig. 3 motivates the use of classical Neural Networks, Physics Informed Neural Networks, and classical Bayesian
nference before we describe these methods in detail in Sections 3 and 4. The thin yellow lines indicate daily new
ase data, the thick orange lines are their seven-day average, the blue dots are the training data, here for 225 out
f 365 days, the dashed red lines are the model simulations, and light blue areas are the credible intervals of the
odel prediction. The left column uses the thin yellow lines of the daily new case data, and the right column uses

he thick orange lines of their seven-day average for training the models.
Neural Networks in the top row approximate the training data of the first 225 days well, but fail to predict the

ehavior outside the training window of the remaining 140 days. The neural network model simply continues the
earned trend. Since day 225 corresponds to a plateau with a horizontal tangent, the neural network model predicts
flatline with constant case numbers for the remaining part of the year. This trend is similar when trained on both

he daily case data in the top left and the seven-day average in the top right.
Physics Informed Neural Networks in the middle row approximate both the training data of the first 225 days

nd the behavior outside the training window of the remaining 140 days with a good accuracy. Throughout the
ntire year, the red dashed lines of the model remain close to the orange line of the seven-day case average. The
t of the Physics Informed Neural Network is virtually identical for training on the daily case data in the middle

eft and on the seven-day average in the middle right.
Bayesian Inference in the bottom row not only approximates both, the training data and the behavior outside the

raining window, but also provides credible intervals to estimate the quality of the fit. Since the Bayesian Inference
ses the same underlying physics as the Physics Informed Neural Network, its red dashed lines also remain close to
he orange line of the seven-day case average throughout the entire year. However, the fit with respect to the training
ata is worse compared to the Physics Informed Neural Network, because we bias the solution towards the physics
quations. In contrast to the previous two models in the top and middle rows, the Bayesian Inference displays a
lear difference between training on raw versus averaged data. The light blue areas of its credible intervals are
otably wider when the model parameters are inferred using the daily case data in the bottom left than when using
he seven-day average data in the bottom right. We will now describe details of the underlying equations for Neural

etworks in Section 3 and for Bayesian Inference in Section 4.

5
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Fig. 3. Machine learning - Integrating data and physics. Neural Networks approximate the training data well, but fail to predict the
behavior outside the training window, when trained on both, the daily case data (top left) and the seven-day average (top right). Physics
Informed Neural Networks approximate both the training data and the behavior outside the training window, when trained on both, the daily
case data (middle left) and the seven-day average data (middle right). Bayesian Inference not only approximates both, the training data and
the behavior outside the training window, but also provides credible intervals, which are wider when model parameters are inferred using
the daily case data (bottom left) than when using the seven-day average data (bottom right). Thin yellow lines indicate daily new case data,
thick orange lines are their seven-day average, dashed red lines are the model simulations, light blue areas are its credible intervals, blue
dots are the training data, here for 225 out of 365 days.

3. Neural Network modeling

The objective of Neural Network modeling is to train the neural network (1) such that the model output x(t) best
pproximates the data x̂, by minimizing a loss function,

L(Θ ; t) → min , (7)

hrough iteratively updating the set of model parameters Θ . The set of model parameters could consist of the
etwork parameters θ , the physics parameters ϑ , and a weighting coefficient ε,

Θ = {θ , ϑ, ε} with θ = {Wk, bk} and ϑ = {c, k, x0}, (8)

here Wk and bk are the network weights and biases from Eq. (1) and c, k, and x0 are the physical damping,
tiffness, and offset from Eq. (3). We specify the loss function (7) and the relevant parameters (8) for classical
eural Networks in Section 3.1, for Physics Informed Neural Networks in Section 3.2, and for Self Adaptive
hysics Informed Neural Networks in Section 3.3.

.1. Neural Networks

The objective of classical Neural Networks is to learn the network parameters θ , without prior knowledge of the
nderlying physics, by minimizing a loss function (7) that consists of a single term Ldata,
L(θ ; t) = Ldata → min . (9)

6
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he data loss Ldata penalizes the error between model x(t) and data x̂. We define it as the mean square error, the
L2-norm of the difference between model and data, ∥ x(t) − x̂ ∥

2, divided by the number of training points ntrn,

Ldata(θ ; t) =
1

ntrn

ntrn∑
i=1

∥ x(ti ) − x̂i ∥
2 . (10)

We minimize the loss function (9) in terms of the mean square error (10) to optimize the network parameters θ ,
the network weights and biases Wk and bk ,

θ = {Wk, bk} , (11)

using the ADAM optimizer, an adaptive algorithm for gradient-based first-order optimization.

3.2. Physics Informed Neural Networks

The objective of Physics Informed Neural Networks is to learn both the network parameters θ and the physics
parameters ϑ by simultaneously training a neural network (1) and solving an underlying physics equation (3).
We convert both into a single optimization problem that minimizes the loss function L to learn the parameters
Θ = { θ , ϑ },

L(Θ; t) = ( 1 − ε ) Ldata + ε Lphys → min . (12)

he first term, the data loss Ldata, penalizes the error between model x(t) and data x̂, the second term, the physics
oss Lphys, penalizes the physics residual r. Since both terms can be of a different order of magnitude, we weight
hem with the weighting coefficients ( 1 − ε ) and ε. For the first term, we use the mean square error, the L2-norm
f the difference between model and data, ∥ x(t) − x̂ ∥

2, divided by the number of training points ntrn similar to
ection 3.1,

Ldata(Θ; t) =
1

ntrn

ntrn∑
i=1

∥ x(ti ) − x̂i ∥
2 . (13)

For the second term, we use the L2-norm of the residual, ∥ r ∥
2, divided by the total number of sampling points

smp,

Lphys(Θ; t) =
1

nsmp

nsmp∑
i=1

∥ r (ti ) ∥
2

=
1

nsmp

nsmp∑
i=1

∥ ẍ(ti ) +
c
m

ẋ(ti ) +
k
m

(x(ti ) − x0) ∥
2 . (14)

key step in calculating the physical loss function (14) is to compute the time derivatives of the model solution
x , ẋ = dx/dt and ẍ = dẋ/dt , which we address using automatic differentiation. Automatic differentiation is part
f various deep learning frameworks which makes it convenient for Physics Informed Neural Networks to evaluate
erivatives. We minimize the overall loss function (12) to optimize the network parameters θ , the network weights

k and biases bk , and the physics parameters ϑ , the viscous damping c, stiffness k, and offset x0,

θ = {Wk, bk} and ϑ = {c, k, x0} , (15)

gain using the ADAM optimizer, an adaptive algorithm for gradient-based first-order optimization.

.3. Self Adaptive Physics Informed Neural Networks

The objective of Self Adaptive Physics Informed Neural Networks is to train a neural network (1) and solve an
nderlying physics equation (3) similar to Section 3.2, but now, rather than prescribing the weighting coefficient ε

etween data and physics, we learn it as a function of time t , along with the other parameters, Θ = { θ , ϑ, ϵ } [30].
e adopt the same loss function L as in Section 3.2,

L(Θ; t) = [ 1 − ε(t) ] Ldata + ε(t) Lphys , (16)

n terms of the data loss, the weighted error between model x and data xdata,

Ldata(Θ; t) =
1

n

ntrn∑
∥ x(ti ) − x̂i ∥

2 , (17)

trn i=1

7
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Fig. 4. Neural Network modeling. Neural Networks minimize a loss function L → min that could consist of two terms, a data loss
Ldata, the error between data and model ∥ x̂ − x(t) ∥, and a physics loss Lphys, the physics residual ∥ r ∥, to learn the network parameters
θ = {Wk , bk}, the physics parameters ϑ = {c, k, x0}, and possibly even the dynamic weighting term ε(t) between Ldata and Lphys.

and the physics loss, the weighted norm of the physics residual r,

Lphys(Θ; t) =
1

nsmp

nsmp∑
i=1

∥ r (ti ) ∥
2

=
1

nsmp

nsmp∑
i=1

∥ ẍ(ti ) +
c
m

ẋ(ti ) +
k
m

(x(ti ) − x0) ∥
2 . (18)

e minimize the overall loss function (16) to optimize the network parameters, Wk and bk , the physics parameters,
, k, and x0, and the weighting term ε(t),

θ = {Wk, bk} and ϑ = {m, c, k, x0} and ε(t) . (19)

he dynamics of the weighting term ε(t) provide insight into the relative importance of data loss Ldata and physics
oss Lphys and into the change of both terms in time.

.4. Comparison of Neural Network models

Fig. 4 illustrates the features the Neural Network models of this section. The classical Neural Networks from
ection 3.1 minimize a loss function, L → min, that characterizes the data loss Ldata, the error between data and
odel ∥ x̂ − x(t) ∥ shown on the left. The Physics Informed Neural Networks from Section 3.2 build additional

hysics loss tersm Lphys into the loss function L , for example, the physics residual ∥ r ∥ shown on the right. In
a forward problem, Neural Networks learn the network parameters θ = {Wk, bk}. In an inverse problem, Neural
Networks learn the network parameters θ = {Wk, bk}. the physics parameters ϑ = {c, k, x0}. Self Adaptive Physics
Informed Neural Networks from Section 3.3 also learn the dynamic weighting term ε(t) between data and physics
loss Ldata and Lphys.

Fig. 5 illustrates the result of a grid search for the Physics Informed Neural Network. Here we show the simulation
with one and two hidden layers, left and right columns, with two, four, and eight nodes each, from top to bottom.
The number of network weights Wk and biases bk increases with increasing number of layers and nodes. The one-
hidden-layer models have nΘ = 10, 16, and 28 parameters and the two-hidden-layer models have nΘ = 16, 36, and
100 parameters. The six graphs confirm our intuition that the performance of the Physics Informed Neural Network
increases with increasing number of hidden layers, from left to right, and increasing number of nodes per layer,
from top to bottom. For both models, we also performed simulations with 16 and 32 nodes, but the performance
did not increase markedly beyond the eight-node models. Fig. 5 suggests that the one-hidden-layer models perform
poorly, independent of the number of nodes. For each additional hidden layer, the number of parameters increases
with the number of nodes squared and the risk of overfitting increases. The two-hidden-layer models seem to be
a reasonable compromise between underfitting and overfitting: They perform well, even with only eight nodes
and nΘ = 100 parameters. Throughout this manuscript, we use Neural Networks with two hidden layers and
32 nodes.
8
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Fig. 5. Neural Network modeling. Grid search for Physics Informed Neural Network. The performance and number of parameters of
the Physics Informed Neural Network increases with increasing number of hidden layers (left to right) and increasing number of nodes per
layer (top to bottom). For both one and two hidden layers, the performance does not increase markedly beyond eight nodes (bottom row).
Throughout this manuscript, we use a Neural Network with two hidden layers and 32 nodes. Thin yellow lines indicate daily new case data,
thick orange lines are their seven-day average, dashed red lines are the physics-based model, light blue areas are its credible intervals, blue
dots are the training data.

Fig. 6 compares the classical Neural Network with Physics Informed Neural Networks with varying weighting
coefficient ε. The thin yellow lines indicate daily new case data, the thick orange lines are their seven-day average,
the blue dots are the training data, here for 225 out of 365 days, the dashed red lines are the simulation with the
physics-based model. In Physics Informed Neural Networks, the loss function, L = ( 1 − ε ) Ldata + ε Lphys, is a
weighted average of the data-based mean square error, Ldata, and the physics-based residual, Lphys. For the special
case of ε = 0 in the top left, the loss function degenerates to the loss function of the classical Neural Network
L → Ldata from Section 3.1. The classical Neural Network provides a good approximation of the training data
during the first 225 days of the year, but fails to predict the behavior outside the training window. During the
remaining 140 days, the classical Neural Network simply continues the learned trend, which, on day 225, suggests
a plateau with constant case numbers for the remaining part of the year. For positive weighting coefficients ε > 0,
the loss function accounts for both data loss Ldata and physics loss Lphys. With increasing weighting coefficients

= [ 10−∞, 10−5, 10−4, 10−3, 10−2, 10−0], from top left to bottom right, the influence of the data loss Ldata

ecreases and the influence of the physics loss Lphys increases. In other words, the smaller the weighting coefficient
, the better the fit of the data; the larger the weighting coefficient ε, the better the fit of the physics. For the special
ase of ε = 1 in the bottom right, the loss function degenerates to the loss function of the physical model L → Lphys

rom Section 2.3. The network solves the physics of the damped harmonic oscillator without accounting for any
ata, and converges to the trivial solution with a zero amplitude.

Fig. 7 quantifies the contributions to the loss function for Physics Informed Neural Networks with weighting
oefficients ε varying from 10−6 to 10−2. In Physics Informed Neural Networks, the loss function, L = ( 1 −

) Ldata + ε Lphys, is a weighted average of the data-based mean square error, Ldata, summarized in the left panel,

nd the physics-based residual, Lphys, summarized in the right panel. Each panel separately reports the descriptive

9
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Fig. 6. Neural Network modeling. Classical Neural Network vs Physics Informed Neural Networks with varying weighting coefficients
ε. In Physics Informed Neural Networks, the loss function, L = ( 1 − ε ) Ldata + ε Lphys, is a weighted average of the data-based mean
square error, Ldata, and the physics-based residual, Lphys. The special case of ε = 0 represents a classical Neural Network (top left). With
increasing weighting coefficients, ε = [ 10−∞, 10−5, 10−4, 10−3, 10−2, 10−0], the influence of the data fit decreases and the influence of the
hysics increases (top left to bottom right). Thin yellow lines indicate daily new case data, thick orange lines are their seven-day average,
ashed red lines are the physics-based model, light blue areas are its credible intervals, blue dots are the training data, here for 225 out of
65 days.

Fig. 7. Neural Network modeling. Sensitivity analysis for Physics Informed Neural Networks with varying weighting coefficients ε.
In Physics Informed Neural Networks, the loss function, L = ( 1 − ε ) Ldata + ε Lphys, is a weighted average of the data-based mean square
error, Ldata, and the physics-based residual, Lphys. With increasing weighting coefficients ε, the model emphasizes less on the data fit and
more on the physics fit; the predictive data loss, descriptive physics loss, and predictive physics loss decrease, while the descriptive data
loss increases. Orange dots indicate the descriptive losses Ldata and Lphys for the first 255 days; red dots indicate the predictive losses Ldata
and Lphys for the following 140 days.

loss, the sum of the daily errors in the training window as orange dots,

Ldata(Θ; t) =
1

255

255∑
∥ x(ti ) − x̂i ∥

2 and Lphys(Θ; t) =
1

255

255∑
∥ r (ti ) ∥

2,
i=1 i=1
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Fig. 8. Physics Informed Neural Network. History of loss function L and physics parameters damping c, stiffness k, and offset x0.
Within 60K epochs, the physics parameters converge towards a viscous damping coefficient of c = 1.251, a stiffness of k = 374.6, and an
ffset of x0 = 0.558. This corresponds to a damping of δ = 0.626, a frequency of ω = 19.35, and a period of T = 0.325 years. Simulation
ith weighting coefficient of ε = 10−3 and training window of ntrn = 225 days.

nd the predictive loss, the sum of the daily errors in the prediction window as red dots,

Ldata(Θ; t) =
1

140

365∑
i=256

∥ x(ti ) − x̂i ∥
2 and Lphys(Θ; t) =

1
140

365∑
i=256

∥ r (ti ) ∥
2.

ith increasing weighting coefficients ε, the model emphasizes less on the data fit and more on the physics fit.
he predictive data loss, descriptive physics loss, and predictive physics loss decrease, while the descriptive data

oss increases. The quantitative comparison of the four losses in Fig. 7 agrees with the qualitative observation in
ig. 6: For smaller weighting coefficients ε, the red dashed lines of the model and orange lines of the seven-day
ase data average are in close proximity during the first 225 days of the descriptive regime, but deviate notably
uring the remaining 140 days of the predictive regime. For larger weighting coefficients ε, the red and orange lines

deviate more during the first 225 days of the descriptive regime, but are in close proximity during the remaining
140 days of the predictive regime. This example highlights the importance of selecting an appropriate weighting
coefficient ε, which can bias the result of a Physics Informed Neural Network either towards the data or towards
the physics. An ideal weighting coefficient minimizes the sum of all four loss terms. From Fig. 7, we can estimate
a reasonable weighting coefficient on the order of ε ≈ 10−3. This value is of the same order of magnitude as the
earned weighting term ε(t) with mean and standard deviation of ε = 0.007 ± 0.003 for the self-adaptive Physics
nformed Neural Network from Section 3.3.

Fig. 8 summarizes the history of the loss function L and of the physics parameters ϑ , the damping c, stiffness k,
nd offset x0, for a Physics Informed Neural Network with a weighting coefficient of ε = 10−3. For the first 30K
pochs, the loss function decreases while the physics parameters are still oscillating without clear trends. After 60K
pochs, the physics parameters have converged towards a viscous damping coefficient of c = 1.251, a stiffness of
= 374.6, and an offset of x0 = 0.558. This corresponds to a damping of δ = 0.626, a frequency of ω = 19.35,

nd a period of T = 0.325 years. This period of approximately four months agrees well with the reported daily
ew cases in Fig. 1 that display three pronounced waves throughout the year of 2021.

. Bayesian Inference modeling

The objective of Bayesian Inference is to estimate the posterior probability distribution of a set of the parameters
ˆ
, such that the statistics of the model x(t) agree with data x [31] and possibly also satisfy the physics r, by

11
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aximizing the prior-weighted likelihood P(x̂, r|Θ),

P(Θ |x̂, r) =
P(x̂, r|Θ) P(Θ)

P(x̂)P(r)
=

P(x̂|Θ) P(r|Θ) P(Θ)
P(x̂)P(r)

→ max . (20)

Here, P(x̂, r|Θ) is the likelihood of the data x̂ and P(r|Θ) the likelihood of the physics r for given fixed parameters
Θ ; P(Θ) is the prior, the probability distribution of the model parameters Θ ; P(x̂) and P(r) are the marginal
likelihood or evidence; and P(Θ |x̂, r) is the posterior, the conditional probability of the parameters Θ for the
given data x̂ and physics r. The first likelihood function P(x̂|Θ) evaluates the quality of fit between the model
output x(t), here the simulated number of new cases for given parameters Θ , and the observed data x̂, here the
eported number of new cases at every day i . For the daily likelihood function pi (x̂ |Θ), at each time point ti , we

select a normal distribution, N (µ, σ ), where the mean µ is the model result x(ti ) for the given parameter set Θ
and the likelihood width, the standard deviation σ , accounts for the observation error in the data x̂ . The product∏n

i=0 of all daily likelihood functions pi (x̂ |Θ), in our case throughout the n = 365 days of the year 2021, defines
the overall likelihood P(x̂|Θ),

P(x̂|Θ) =

n∏
i=0

pi (x̂ |Θ) with pi (x̂ |Θ) =
1

√
2πσ

exp
(

−
∥x̂ − x(ti )∥2

2σ 2

)
. (21)

he second likelihood function P(r|Θ) evaluates how accurately the model output x(t), here the simulated number
f new cases for given parameters Θ , satisfies the physics equation r(t) = 0 at every day i . Again, we define the
aily likelihood function pi (r |Θ), at each time point ti , through a normal distribution, N (µ, σ ), where the mean

is the model result of the physics equation r (x(ti )) for the given parameter set Θ and the likelihood width is
he standard deviation σ . The product

∏n
i=0 of all daily likelihood functions pi (r |Θ), defines the overall likelihood

P(r|Θ),

P(r|Θ) =

n∏
i=0

pi (r |Θ) with pi (r |Θ) =
1

√
2πσ

exp
(

−
∥r (ti )∥2

2σ 2

)
. (22)

imilar to the previous section on Neural Network modeling, the set of model parameters could consist of network
arameters θ and physics parameters ϑ ,

Θ = {θ , ϑ} with θ = {Wk, bk} and ϑ = {c, k, x0}, (23)

where Wk and bk are the network weights and biases from Eq. (1) and c, k, and x0 are the physical damping,
stiffness, and offset from Eq. (3). We specify the Bayesian Inference (20) and the prior distributions of its parameters
(23) for classical Bayesian Inference in Section 4.1, for Bayesian Neural Networks in Section 4.2, and for Bayesian
Physics Informed Neural Networks in Section 4.3.

4.1. Bayesian Inference

The objective of a classical Bayesian Inference is to estimate the posterior parameter distributions P(ϑ |x̂) of a
et of physics parameters ϑ such that the statistics of a physical model x(t) agree with data x̂. For the physical
odel, we assume that the number of daily new cases x(t) follows the physics of a damped harmonic oscillator

rom Section 2.3, m ẍ + c ẋ + k x = 0, where m is the mass, c is the viscous damping coefficient, and k is the
tiffness. Without loss of generality, we set m ≡ 1. We consider the underdamped case, for which the damping ratio
s smaller than one, c2 < 4 k. For this case, following Eq. (6), the analytical solution for the number of daily new
ases is

x(ϑ; t) = x0 + A0 cos (( k −
1
2 c2) t ) exp(− 1

2 c t) . (24)

he physics of the number of new cases are uniquely determined by three parameters, ϑ = {c, k, x0}, the viscous
amping c, the stiffness k, and the offset x0. We now use Bayes’ theorem, to estimate the posterior probability
istribution of the physics parameters ϑ such that the statistics of the model x(t) from Eq. (24) agree with the
eported case data x̂ in Fig. 1,

P(ϑ |x̂) =
P(x̂|ϑ) P(ϑ)

. (25)

P(x̂)

12
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ere P(x̂|ϑ) is the likelihood, the conditional probability of the data x̂ for given fixed physics parameters ϑ ; P(ϑ)
s the prior, the probability distribution of the physics parameters ϑ ; P(x̂) is the marginal likelihood or evidence;
nd P(ϑ |x̂) is the posterior, the conditional probability of the physics parameters ϑ for the given data x̂. For the
ikelihood P(x̂|ϑ), the product of the individual point-wise likelihoods pi (x̂ |ϑ) according to Eq. (33), we select a
ormal distribution N (µ, σ ), where the mean µ is the model result x(ti ) for the given physics parameters ϑ and
he likelihood width σ takes a half Cauchy distribution, σ = halfCauchy(β = 1.0),

P(x̂|ϑ) =

n∏
i=0

pi (x̂ |ϑ) with pi (x̂ |ϑ) =
1

√
2πσ

exp
(

−
∥x̂ − x(ti )∥2

2σ 2

)
. (26)

or the prior probability distributions P(ϑ), we select independent weakly informed priors with log-normal
istributions for the three physics parameters, ϑ = {c, k, x0}, the viscous damping c, the stiffness k, and the offset

x0,

P(ϑ) = P(c, k, x0) with
log(c) ∼ N (µ = log(2.2), σ = 0.5)
log(k) ∼ N (µ = log(350), σ = 0.5)
log(x0) ∼ N (µ = log(0.56), σ = 0.5).

(27)

sing the case data from Fig. 1, we approximately infer the posterior distributions from Bayes theorem (25) by
mploying a NO-U-Turn sampler [32] implementation of the Python package PyMC3 [33]. We use two chains with
he first 2000 samples to tune the sampler and the subsequent 4000 samples to estimate the set of parameters ϑ ,
nd employ a target acceptance rate of 0.85.

.2. Bayesian Neural Networks

The objective of Bayesian Neural Networks is to estimate the posterior parameter distributions P(θ |x̂) of a set
f network parameters θ , without any prior information about the underlying physics, such that the statistics of the
utput of the neural network x(t) agree with data x̂. For the neural network, we use the fully-connected feed-forward
eural network composed of multiple hidden layers of Section 2.2 to approximate the output, the number of daily
ew cases x, from the input, the time coordinates t. We denote the hidden variables of the kth hidden layer as zk

nd summarize the neural network, here for two hidden layers, as

z0 = t
z1 = σ ( W1 z0 + b1 )
z2 = σ ( W2 z1 + b2 )
z3 = W3 z2 + b3 ,

(28)

here the output of the last layer approximates the true solution, x ≈ z3. Similar to the previous sections, σ (◦)
enotes the non-linear activation function for which we select a hyperbolic tangent function, σ (◦) = tanh (◦),
nd Wk and bk are the network weights and biases of the kth layer. We use Bayes’ theorem, to estimate the
osterior probability distribution of the network parameters θ such that the statistics of the neural network x ≈ z3

rom Eq. (28) agree with the reported case data x̂ in Fig. 1,

P(θ |x̂) =
P(x̂|θ ) P(θ )

P(x̂)
. (29)

ere P(x̂|θ ) is the likelihood, the conditional probability of the data x̂ for given fixed parameters θ ; P(θ ) is the prior,
he probability distribution of the network parameters θ ; P(x̂) is the marginal likelihood or evidence; and P(θ |x̂)
s the posterior, the conditional probability of the parameters θ for the given data x̂. For the likelihood P(x̂|θ ), the
roduct of the individual daily point-wise likelihoods pi (x̂ |θ ) according to Eq. (33), we select a normal distribution
(µ, σ ), where the mean µ is the model result x(ti ) for the given network parameters θ and the likelihood width
is the standard deviation with σ = 0.05,

P(x̂|θ ) =

n∏
pi (x̂ |θ ) with pi (x̂ |θ ) =

1
√ exp

(
−

∥x̂ − x(ti )∥2

2σ 2

)
. (30)
i=0 2πσ
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or the prior probability distributions P(θ ), we select independent weakly informed priors with normal distributions
with a zero-mean for the two sets of network parameters, θ = {Wk, bk}, the network weights Wk and biases bk [19],

P(θ ) = P(Wk, bk) with
Wk ∼ N (µ = 0.0, σ = 2.0)
bk ∼ N (µ = 0.0, σ = 2.0) .

(31)

Using the case data from Fig. 1, we approximately infer the posterior distributions from Bayes theorem (29) by
employing a Hamiltonian Monte Carlo sampling [19] using Tensorflow-Probability [34]. We use the first 3000
samples to tune the sampler and the subsequent 3000 samples to estimate the set of parameters θ .

4.3. Bayesian Physics Informed Neural Networks

The objective of Bayesian Physics Informed Neural Networks is to estimate the posterior parameter distributions
P(Θ |x̂, r) of both network and physics parameters, Θ = { θ , ϑ }, such that the statistics of Physics Informed
Neural Network x(t) agree with data x̂ and satisfy the physics equation r. As such, the Bayesian Physics Informed
Neural Network integrates the Physics Informed Neural Network from Section 3.2 into a Bayesian Inference. We
use Bayes’ theorem, to estimate the posterior probability distribution of the parameters such that the statistics of
the neural network x ≈ z3 from Eq. (1) agree with the reported case data x̂ in Fig. 1,

P(Θ |x̂, r) =
P(x̂, r|Θ) P(Θ)

P(x̂) P(r)
=

P(x̂|Θ) P(r|Θ) P(θ ) P(ϑ)
P(x̂) P(r)

. (32)

ere P(x̂, r|Θ) = P(x̂|Θ) P(r|Θ) are the two likelihood functions, the conditional probabilities of data x̂ and
physics r for given parameters Θ ; P(Θ) = P(θ ) P(ϑ) are the priors, the probability distribution of the network
and model parameters θ and ϑ ; P(x̂) P(r) is the marginal likelihood or evidence; and P(Θ |x̂, r) is the posterior, the
onditional probability of the parameters Θ for given data x̂ and physics r. The first likelihood function P(x̂|Θ)
valuates the quality of fit between the model output x(t) and the observed data x̂ at every day i as a product of
he daily likelihood functions pi (x̂ |Θ), for which we select a normal distribution,

P(x̂|Θ) =

n∏
i=0

pi (x̂ |Θ) with pi (x̂ |Θ) =
1

√
2πσ

exp
(

−
∥x̂ − x(ti )∥2

2σ 2

)
. (33)

he second likelihood function P(r|Θ) evaluates how accurately the model output x(t) satisfies the physics equation
= 0 at every day i as a product of the daily likelihood functions pi (r |Θ), for which we also assume a normal

istribution,

P(r|Θ) =

n∏
i=0

pi (r |Θ) with pi (r |Θ) =
1

√
2πσ

exp
(

−
∥r (ti )∥2

2σ 2

)
. (34)

or the prior probability distributions P(Θ), we select independent weakly informed priors with log-normal
istributions for the three physics parameters, ϑ = {c, k, x0}, normal distributions for the network parameters,

θ = {Wk, bk},

P(Θ) = P(c, k, x0, Wk, bk) with

log (c) ∼ N (µ = log(2.2), σ = 0.5)
log (k) ∼ N (µ = log(350), σ = 0.5)
log (x0) ∼ N (µ = log(0.56), σ = 0.5)

Wk ∼ N (µ = 0.0, σ = 2.0)
bk ∼ N (µ = 0.0, σ = 2.0) .

(35)

sing the case data from Fig. 1, we approximately infer the posterior distributions from Bayes theorem (29) by
mploying a Hamiltonian Monte Carlo sampler implementation of Tensorflow-Probability [34]. For the Hamiltonian
onte Carlo sampler, we use 50 leapfrog steps with an initial time step of dt = 5 · 10−4, and set the burn-in steps

nd total number of samples to 3000. We use the first 3000 samples to tune the sampler and the subsequent 3000

amples to estimate the set of parameters Θ .
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Fig. 9. Bayesian Inference modeling. Bayesian Inference maximizes a prior-weighted likelihood function P(Θ |x̂, r) → max that could
consist of two terms, the likelihoods P(x̂|Θ) and P(r|Θ) of data x̂ and physics r for given parameters Θ , to infer distributions of the

etwork parameters θ = {Wk , bk} and physics parameters ϑ = {c, k, x0}.

.4. Comparison of Bayesian Inference modeling

Fig. 9 illustrates the features the Bayesian Inference models of this section. The classical Bayesian Inference from
ection 4.1 maximizes a prior-weighted likelihood, P(x̂|ϑ), in terms of the error between data and model ∥ x̂−x(t) ∥

o infer distributions of the physics parameters ϑ . The Bayesian Neural Networks from Section 4.2 maximize a
rior-weighted likelihood, P(x̂|θ ), in terms of the error between data and model ∥ x̂ − x(t) ∥ to infer distributions
f the network parameters θ . The Bayesian Physics Informed Neural Networks from Section 4.3 maximize a prior-
eighted likelihood, P(x̂, r|Θ), in terms of the error between data and model ∥ x̂ − x(t) ∥, shown on the left, and

he error of the physics ∥ r ∥, shown on the right, to infer the distributions of both network and physics parameters
and ϑ .
Fig. 10 illustrates the results of the classical Bayesian Inference for a varying size of the training data set. The

hin yellow lines indicate daily new case data, the thick orange lines are their seven-day average, and the blue
ots are the training data varying between 150, 175, 200, 225, 250, and 275 days, from top left to bottom right.
he dashed red lines represent the physics-based model and the light blue areas are its credible intervals. First
nd foremost, we note that all six panels display a reasonable agreement between data and model, both inside the
raining window and beyond. With an increasing size of training data, from top left to bottom right, the error in
he descriptive window increases and the error in the predictive window decreases. For example, the first peak of
05,378 cases on day 118, April 29, 2021, is best approximated for the smallest training data set in the top left,
hile the second peak of 819,336 cases on day 221, August 10, 2021, is best approximated for the largest training
ata set in the bottom right. In agreement with our expectation, the width of the credible interval, the light blue
rea, decreases with an increase in training data: The more data we use to train the model, the better its fit.

Fig. 11 illustrates the posterior distributions of the physics parameters ϑ , the damping c, stiffness k, and offset x0.
he Bayesian Inferences yields a viscous damping coefficient of c = 1.111 ± 0.126, a stiffness of k = 402.4 ± 1.7,
nd an offset of x0 = 0.541 ± 0.002. This corresponds to a damping of δ = 0.556, a frequency of ω = 20.06, and
period of T = 0.313 years. These values compare well to the learned parameters of the Physics Informed Neural
etwork in Fig. 8, with a viscous damping coefficient of c = 1.251, a stiffness of k = 374.6, and an offset of

x0 = 0.558. However, the Bayesian Inference not only inferred the means of the parameters, but also their posterior
istributions, where narrow distributions indicate a higher confidence in the mean values.

Fig. 12 illustrates the posterior distributions of the physics parameters ϑ , the damping c, stiffness k, and offset
x0. The Bayesian Physics Informed Neural Network yields a viscous damping coefficient of c = 1.312 ± 0.391, a
tiffness of k = 319.4 ± 38.6, and an offset of x0 = 0.571 ± 0.020. This corresponds to a damping of δ = 0.65, a
requency of ω = 17.87, and a period of T = 0.352 years. Compared to the classical Bayesian Inference in Fig. 11,

he damping is 18% larger, the stiffness is 21% smaller, and the offset is 6% larger. Notably, all three parameters
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Fig. 10. Bayesian Inference. Sensitivity analysis for varying size of training data set. With increasing training data size of 150, 175, 200,
225, 250, and 275 days, the error in the descriptive window increases, the error in the predictive window decreases, and the width of the
credible interval decreases (top left to bottom right). Thin yellow lines indicate daily new case data, thick orange lines are their seven-day
average, dashed red lines are the physics-based model, light blue areas are its credible intervals, blue dots are the training data.

Fig. 11. Bayesian Inference. Posterior distributions of physics parameters damping c, stiffness k, and offset x0. Inferred viscous
damping coefficient of c = 1.111 ± 0.126, stiffness of k = 402.4 ± 1.7, and offset of x0 = 0.541 ± 0.002. This corresponds to a damping of

= 0.556, a frequency of ω = 20.06, and a period of T = 0.313 years. Simulation with training window of ntrn = 225 days.

f the Bayesian Physics Informed Neural Network show wider standard deviations than in the classical Bayesian
nference, the damping by a factor 3, stiffness by a factor 23, and offset by a factor 10. These observations suggest
hat, for the chosen training window of ntrn = 225 days, the Bayesian Physics Informed Neural Network is not only

ore expensive than the Bayesian Inference, but also less robust.

. Discussion

Understanding the behavior of nonlinear dynamical systems remains a challenging task. Machine learning has
merged as a powerful technology to provide insight into observational data. A vast variety of learning machines
ave been developed throughout the past decade, but to the unexperienced user, selecting the right model for a

pecific task is an overwhelming endeavor. This is amplified by the fact that tutorials or publications typically
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c
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Fig. 12. Bayesian Physics Informed Neural Network. Posterior distributions of physics parameters damping c, stiffness k, and offset
x0. Inferred viscous damping coefficient of c = 1.312 ± 0.391, stiffness of k = 319.4 ± 38.6, and offset of x0 = 0.571 ± 0.020. This
orresponds to a damping of δ = 0.65, a frequency of ω = 17.87, and a period of T = 0.352 years. Simulation with training window of
trn = 225 days.

Fig. 13. Comparison of Physics Informed Neural Network models. Convergence with increasing size of training data set. Predictive data
loss, Ldata, as mean squared error in the predictive window from tntrn to tnsmp , for Physics Informed Neural Network, Self Adaptive Physics
Informed Neural Network, and Bayesian Physics Informed Neural Network. For all three methods, the predictive data loss decreases with
an increasing number of training data points. The Physics Informed Neural Network performs poorly initially, but converges with increasing
training set size. The Self Adaptive Physics Informed Neural Network performs well, even for small training sets. Both methods perform
similarly with increasing training set size. The Bayesian Physics Informed Neural Network performs reasonably well for small data sets but
only improves marginally with increasing training set size.

introduce new methods using artificially generated synthetic data for which the solution is already known. The
objective of this study was to compare different families of models for real-world data, the reported number of
COVID-19 cases throughout the year of 2021, using a simple dynamical model, a damped harmonic oscillator. We
reviewed the underlying model equations, parameters, and characteristic results of two families of models, Neural
Networks and Bayesian Inference, each with three members of increasing complexity.

Both Neural Networks and Bayesian Inference perform equally well on the raw daily case data with noise,
reporting uncertainties, and weekday–weekend fluctuations and on their smooth seven-day average, as Fig. 3
confirms. Our learned damping, stiffness, and offset of c = 1.251, k = 374.6, and x0 = 0.558 for the Physics
Informed Neural Network in Section 3.2, Fig. 8, agree well with the inferred means of c = 1.111, k = 402.4,
x0 = 0.541 for the Bayesian Inference in Section 4.1, Fig. 11, and with the combination of both methods of
c = 1.312, k = 319.4, x0 = 0.571 for the Bayesian Physics Informed Neural Network in Section 4.3, Fig. 12. Our
study confirms our general intuition that the quality of the fit increases with increasing size of the training data set.
For the classical Bayesian Inference in Section 4.1, Fig. 10 shows that the credible intervals become progressively
narrower as the size of the training data increases. Fig. 13 compares the convergence of the three Physics Informed

Neural Network models of our study, the plain Physics Informed Neural Network from Section 3.2 the Self Adaptive
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Fig. 14. Comparison of Neural Network and Bayesian Inference models. Neural Networks approximate the training data well, but fail
to predict the behavior outside the training window (top left). Physics Informed Neural Networks approximate both the training data and
the behavior outside the training window, but are sensitive to the weighting coefficient (middle left). Self Adaptive Physics Informed Neural
Networks approximate both the training data and the behavior outside the training window, and simultaneously learn the weighting term
ε(t) (bottom left). Bayesian Inference not only approximates both, the training data and the behavior outside the training window, but
also provides credible intervals of the model (top right). Bayesian Neural Networks approximate the training data well, but fail to predict
the behavior outside the training window where they generate a wide credible intervals (middle right). Bayesian Physics Informed Neural
Networks approximate the training data well, but fail to predict the behavior outside the training window (bottom right). Thin yellow lines
indicate daily new case data, thick orange lines are their seven-day average, dashed red lines are the model, light blue areas are its credible
intervals, blue dots are the training data.

Physics Informed Neural Network from Section 3.3, and the Bayesian Physics Informed Neural Network from
Section 4.3. Clearly, for all three methods, the prediction error decreases with increasing size of the training data
set. We close our study with a direct side-by-side comparison of all six methods from Sections 3 and 4 in Fig. 14.
Fig. 15 provides a final recommendation to improve the performance of the Bayesian Physics Informed Neural
Networks by scaling the physics equation. Table 1 summarizes the results of Figs. 14 and 15 and discusses the
advantages and disadvantages of each method.

Neural Networks are a simple and robust tool to fit training data, but have poor predictive potential.
Classical Neural Networks have remarkable power to fit a network model to data without any underlying physics.
By minimizing a loss function that characterizes the error between model and data, the neural network learns the
network parameters θ = {Wk, bk}, the network weights and biases. For our example of a feed-forward network
with one input, two hidden layers with 32 nodes each, and one output, it has 32+32×32+32=1088 weights and
32+32+1=65 biases, resulting in a total of 1153 unknowns. Fig. 14, top left, suggests that even in the absence of
any prior physical knowledge, the classical Neural Network provides an excellent approximation of the training data.
However, it fails to predict the behavior outside the training window, where it simply continues the linear horizontal
trend from the last set of training data points. This becomes particularly clear when the underlying problem is non-
monotonic, or, like in our case, even oscillatory. Since classical Neural Networks provide no credible intervals, we
have no way of knowing, how poor the predictive potential of the network really is.

Physics Informed Neural Networks integrate data and physics and have a good predictive potential.

Physics Informed Neural Networks fit a network model to data, and, at the same time, to a physics-based
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Fig. 15. Comparison of classical and Bayesian Physics Informed Neural Network models for different scaling. Both types of models
are sensitive to the scaling of the physics equation, ẍ + c ẋ + k( x − x0 ) (top row) and ẍ/k + c ẋ/k + ( x − x0 ) (bottom row). Appropriate
caling improves model performance: The fit between the red dashed lines of the model x(t) and the thick orange lines of the data x̂
ncreases and the light blue credible intervals decrease. Thin yellow lines indicate daily new case data, thick orange lines are their seven-day
verage, dashed red lines are the model, light blue areas are its credible intervals, blue dots are the training data.

Table 1
Comparison of Neural Network and Bayesian Inference models. Advantages and disadvantages of Neural Networks, Physics
Informed Neural Networks, Self Adaptive Physics Informed Neural Networks, Bayesian Inference, Bayesian Neural Networks,
and Bayesian Physics Informed Neural Networks in terms of parameters, data fit, predictive potential, and robustness.

Neural Network family Bayesian Inference family

NN BI

Fits Network without physics, no credible intervals Fits Physics model, provides credible intervals
Learns θ = {Wk , bk} Learns distributions of ϑ = {c, k, x0}

Good fit of training data, poor predictive potential Decent fit of training data, good predictive potential
Simple, robust, and straightforward Simple, robust, and straightforward

PINN BNN

Fits network and physics model, no credible intervals Fits network without physics,provides credible intervals
Learns θ = {Wk , bk} and ϑ = {c, k, x0} Learns distributions of θ = {Wk , bk}

Good fit of training data, good predictive potential Good fit of training data, poor predictive potential
Sensitive to choice of weighting coefficient ε Credible intervals provide insight into reliable regimes

SAPINN BPINN

Adaptively fits network and physics,no credible intervals Fits network and physics, provides credible intervals
Learns θ = {Wk , bk} and ϑ = {c, k, x0} and ε(t) Learns distributions of θ = {Wk , bk} and ϑ = {c, k, x0}

Good fit of training data, good predictive potential Good fit of training data, moderate predictive potential
Robust even for small training data set Most expensive method, requires large training data set

model. If we know the underlying physics, they are an effective tool to constrain a deep learning method to
a lower-dimensional manifold and create models that can be trained effectively with a small amount of data.
Physics Informed Neural Networks enforce physics via soft penalty constraints. By minimizing a loss function
that characterizes the error between model and data and the error in satisfying the physics, they simultaneously
learn the network parameters θ = {Wk, bk} and the physics parameters ϑ = {c, k, x0}. For our example, the
network has 1088 weights and 65 biases, and the physics model has a damping, stiffness, and offset parameter,
resulting in a total of 1156 unknowns. Fig. 14, middle left, suggests that the Physics Informed Neural Network
approximates both the training data and the behavior outside the training window reasonably well and is equally
capable of both interpolation and extrapolation. From Fig. 13 we conclude that Physics Informed Neural Networks
19
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equire a relatively large set of training data. For our example, they perform moderately initially, but converge well
ith increasing training set size. However, from Figs. 6 and 7, we conclude that Physics Informed Neural Networks

re sensitive to the weighting coefficient ε that can bias the solution to emphasize on either data or physics. From
ig. 15, we add that they are also sensitive to a scaling of the physics parameters ϑ , which, if done appropriately,

can improve the performance of the model. An inherent limitation of plain Physics Informed Neural Networks is
that they are not equipped with built-in uncertainty quantification which may restrict their applications, especially
in situations with noisy data.

Self Adaptive Physics Informed Neural Networks provide adaptive and robust fits of data and physics
Self Adaptive Physics Informed Neural Networks adaptively fit a network model to data, and, at the same time,
to a physics-based model. They inherit all the advantages of Physics Informed Neural Networks and address the
limitation of bias between data and physics by introducing the weighting coefficient as independent time-varying
unknown. This allows them to perform well, even in regions with steep gradients, while using a smaller number of
training epochs. Self Adaptive Physics Informed Neural Networks minimize a loss function that characterizes the
error between model and data and between model and physics, and learn the network parameters θ = {Wk, bk}, the
physics parameters ϑ = {c, k, x0}, and the weighting term ε(t) between network and physics. For our example, the

etwork model has 1088 weights and 65 biases, the physics model has a damping, stiffness, and offset, and the self
daptive model has a weighting coefficient, resulting in a total of 1157 unknowns. Fig. 14, bottom left, confirms that
he Self Adaptive Physics Informed Neural Network approximates both the training data and the behavior outside
he training window, similar to the regular Physics Informed Neural Network. With only one additional time-varying
arameter, the self-adaptively learned weighting term, it performs well even for small training data sets, as Fig. 13
onfirms. One caveat is that Self Adaptive Physics Informed Neural Networks involve training with complex loss
unctions that consist of multiple terms and result in a highly non-convex optimization problem. During training,
hese terms compete with one another which implies that the training process may not be robust and stable, and does
ot always converge to a global minimum. Self Adaptive Physics Informed Neural Networks perform best when
he equations are well scaled and pre-conditioned and their parameters all lie within the same range of magnitude.

hile we have not explicitly shown the effect of different pre-conditioning and scaling techniques here, we have
bserved that the method is sensitive to scaling and could fail to converge when scaled inappropriately.

ayesian Inference fits a physics based model to data and provides credible intervals. Classical
ayesian Inference is a simple, robust, and stable method that fits a physics based model to data. This implies that we
now the underlying physics. In our example, we do not know the exact physics; however, we hypothesized that the
ata, the daily new cases of COVID-19 worldwide, follow the dynamics of a damped harmonic oscillator. Bayesian
nference then uses Bayes’ theorem to infer the distribution of a set of model parameters, ϑ = {c, k, x0}, that best
xplain the data. For our example, we have assumed log normal distributions for each parameter, with individual
eans µ and standard deviations σ , introducing a total of 3×2 = 6 unknowns. Fig. 14, top right, demonstrates that,

rovided the physics-based model is reasonable, the Bayesian Inference approximates the behavior well throughout
he entire time window. Instead of only inferring a point value for each parameter, Bayesian Inference infers
arameter distributions and credible intervals that provide valuable insight into the goodness of the fit as we have
een in the sensitivity analysis for varying training data set sizes in Fig. 10: The narrower the credible interval, the
etter the fit.

ayesian Neural Networks fit a network model to data and provide credible intervals. Bayesian Neural
etworks fit a network model to data without any underlying physics. They use Bayes’ theorem to infer the
istribution of a set of network parameters, θ = {Wk, bk} that best explain the data. For our example, a feed-
orward network with one input, two hidden layers with 32 nodes each, and one output, the network has 1088
eights and 65 biases. We have assumed log-normal distributions for each parameter, with individual means µ and

tandard deviations σ , introducing a total of 1053 × 2 = 2306 unknowns. Fig. 14, middle right, shows that the
ayesian Neural Network shares the features of classical Neural Networks and Bayesian Inference. It approximates

he training data well, but fails to predict the behavior outside the training window. The wide credible intervals
ighlight the poor predictive potential of the model and confirm that any prediction a few days beyond the training
indow generates unreliable results.

ayesian Physics Informed Neural Networks provide a good fit and prediction, but are sensitive

o scaling. Bayesian Physics Informed Neural Networks fit both network and physics, and, in addition, provide
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redible intervals that provide insight into the quality of the fit. They use Bayes’ theorem to learn the distributions
f both network parameters, θ = {Wk, bk} and physics parameters, ϑ = {c, k, x0}, with means µ and standard
eviations σ each, resulting in a total of 2312 unknowns. Fig. 14, bottom right, suggests that Bayesian Physics
nformed Neural Networks provide a good fit of the training data and have a reasonable predictive potential
utside the training window. The narrower credible intervals compared to the Bayesian Neural Network indicate
hat including physics increases the performance, especially in the prediction window. Bayesian Physics Informed
eural Networks are a powerful tool when used appropriately. They combine the advantages of all methods, and
erform best, albeit at a larger computational cost. Similar to plain Physics Informed Neural Networks, their true
erformance is sensitive to an appropriate scaling and pre-conditioning and to the size of the training data set, as
e can conclude from their convergence curve in Fig. 13. However, when scaled appropriately, in our example such

hat the parameter k associated with the unknown x(t) becomes unity, their performance increases drastically, as
e conclude from the narrow credible intervals of the scaling study in Fig. 15.
Taken together, our study has shown that by embedding physical principles into a neural network architecture, we

an generate effective models that train well, even with a small amount of data. Physics Informed Neural Networks
eamlessly integrate data and physics, robustly solve forward and inverse problems, and perform well for both
nterpolation and extrapolation. At only minor additional cost, they can self-adaptively learn the weighting between
ata and physics and smoothly integrate real-world data and physics-based modeling. Combined with Bayesian
tatistics, Physics Informed Neural Networks can serve as a prior in a general Bayesian Inference, and can generate
stimators for posterior distributions that provide valuable insight into uncertainty quantification. Here we have only
emonstrated these features for the simple model problem of a seasonal endemic infectious disease, but it is easy
o see how the underlying concepts and trends would generalize to more complex disease conditions and, more
roadly, to a wide variety of nonlinear dynamical systems.
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