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Highlights

e Arrhythmias are a serious side effect of many drugs, not just of drugs for the heart.

e We show how 30 drugs affect the QT interval, a clinical indicator for cardiac arrhythmias.

o We create a surrogate model for the QT interval using Gaussian process regression.

e Using sensitivity analyses, we identify the relevant ion channels for QT interval prolongation.
e Using uncertainty quantification, we show how measurement variabilities affect our results.

Abstract

Prolonged QT intervals are a major risk factor for ventricular arrhythmias and a leading cause of sudden cardiac death. Various
drugs are known to trigger QT interval prolongation and increase the proarrhythmic potential. Yet, how precisely the action of drugs
on the cellular level translates into QT interval prolongation on the whole organ level remains insufficiently understood. Here we
use machine learning techniques to systematically characterize the effect of 30 common drugs on the QT interval. We combine
information from high fidelity three-dimensional human heart simulations with low fidelity one-dimensional cable simulations to
build a surrogate model for the QT interval using multi-fidelity Gaussian process regression. Once trained and cross-validated,
we apply our surrogate model to perform sensitivity analysis and uncertainty quantification. Our sensitivity analysis suggests that
compounds that block the rapid delayed rectifier potassium current I/, have the greatest prolonging effect of the QT interval, and
that blocking the L-type calcium current /c,1 and late sodium current Iy, shortens the QT interval. Our uncertainty quantification
allows us to propagate the experimental variability from individual block-concentration measurements into the QT interval and
reveals that QT interval uncertainty is mainly driven by the variability in /g, block. In a final validation study, we demonstrate
an excellent agreement between our predicted QT interval changes and the changes observed in a randomized clinical trial for the
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drugs dofetilide, quinidine, ranolazine, and verapamil. We anticipate that both the machine learning methods and the results of this
study will have great potential in the efficient development of safer drugs.

(© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CCBY license
(http://creativecommons.org/licenses/by/4.0/).

Keywords: Machine learning; Gaussian process regression; Sensitivity analysis; Uncertainty quantification; Finite element analysis; Drug
development

1. Introduction

Sudden cardiac death is an abrupt, unexpected loss of heart function. The majority of sudden cardiac deaths can
be attributed to ventricular arrhythmias associated with a significant increase in heart rate and a loss of cardiac
output [1]. A prolonged QT interval is a major risk factor for ventricular arrhythmias and sudden cardiac death [2].
The QT interval is a specific feature of the electrocardiogram that measures the total time from the beginning of the
QRS complex to the end of the T wave associated with the depolarization and repolarization of the ventricles [3].
Many drugs, not just cardiac drugs, prolong the QT interval and induce a condition known as torsades de pointes, a
ventricular arrhythmia characterized by rapid, irregular QRS complexes that oscillate around the electrocardiogram
baseline [4]. Most episodes of torsades de pointes begin spontaneously and revert to normal sinus rthythm within a
few seconds, but some persist, degenerate into ventricular fibrillation, and lead to sudden cardiac death [3]. In the
United States, more than 350,000 sudden cardiac deaths occur each year, but the true incidence of drug-induced
torsades de pointes is largely unknown [5]. In the early 1990s, the reporting rate of torsades de pointes increased
exponentially when numerous drugs were recognized to have an increased pro-torsadogenic risk [6]. In response, 14
compounds were removed from the market. Currently, the gold standard to assess the pro-arrhythmic risk of a drug
is to measure its effects on a specific potassium channel in single cell experiments [7] and on the QT interval in the
electrocardiogram [8]. Yet, the precise correlation between drug-induced ion channel block on the cellular level and
the QT interval on the whole organ level remains poorly understood.

Mathematical modeling and computational simulations can help to mechanistically understand and quantify the
effect of drugs on the QT interval. A recent initiative of regulatory agencies, clinical practitioners, researchers and
industry partners recommends to use computational simulation to characterize the pro-arrhythmic risk of new and
existing drugs [9,10]. There have been several recent efforts in view of this goal: In a single cell model, a study
simulated the effect of 31 compounds on the single cell action potential and predicted the individual risk categories
of these drugs [11]. However, these models fail to capture the electrotonic coupling between individual cells that
has a significant influence on the development of arrhythmias [12—15]. In a one-dimensional model of cardiac
electrophysiology, other studies simulated the effect of drugs on the QT interval [16,17]. We have recently developed
a high-resolution multi-scale model of the human heart to study drug-induced arrhythmias [18]. With this model,
we have explored the critical concentrations at which drugs initiate torsades de pointes [19] and the mechanisms
that trigger arrhythmias across the scales [15]. Yet, these high fidelity models still remain the exception and a major
roadblock to use them more frequently is their tremendous computational cost.

The success of a computational drug safety evaluation heavily relies on experimental data that characterize the
block-concentration response of specific drugs on specific ion channels [11]. Block-concentration characteristics are
typically recorded in single cell patch clamp electrophysiology [20]. These experiments are inherently associated
with uncertainties that propagate into the mathematical and computational models. This implies that the experimental
measurements create an uncertainty in the output [21], in our case in the QT interval, that needs to be quantified.
Various strategies have been proposed to address uncertainty including global optimization [22], data assimilation and
genetic algorithms [23], causality and information flow [24], and phase transitions [25]. Specifically, recent studies
have made first attempts to quantify the uncertainties of block-concentration measurements [26]. However, current
efforts have focused exclusively on characterizing uncertainties on single cell level [27]. Because of the immense
computational cost of uncertainty propagation, there is currently no strategy to propagate the uncertainties of block-
concentration measurements from the cellular level into the QT interval on the whole heart level.

Here we use machine learning techniques to combine data from different levels of fidelity [28] and characterize
the effect of drugs on the QT interval. We prototype a method that allows us to explore the QT interval at the organ
level via sensitivity analysis and uncertainty quantification while keeping the computational cost manageable. Fig. 1
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Fig. 1. Methods overview. Using machine learning techniques, we combine data from different levels of fidelity and characterize the effect of
drugs on the QT interval. The input to our model are drug-induced channel block recordings from single cell patch clamp electrophysiology [20].
From this input, we simulate the effect of drugs using a high fidelity three-dimensional heart model [19] and a low fidelity one-dimensional
cable model [15]. From Ny = 45 high and N; = 400 low fidelity simulations, we calculate high and low fidelity electrocardiograms from
which we extract the drug-modulated QT interval lengths. From these results, we build a surrogate model using multi-fidelity Gaussian process
regression [29]. Once we have trained our regression, we perform a sensitivity analysis and propagate the uncertainty from the drug-induced channel
block recordings into the QT interval.

illustrates the work flow of our method: Our input are drug-induced channel block recordings from single cell patch
clamp electrophysiology [20]. From this input, we simulate the effect of drugs using finite element models of cardiac
electrophysiology. We perform Ny = 45 high fidelity three-dimensional human heart simulations [19] and N, = 400
low fidelity one-dimensional cable simulations [15], which we post-process to extract the electrocardiograms to
quantify the drug-modulated QT interval lengths. We integrate these results into a surrogate model using multi-
fidelity Gaussian process regression [29]. Once we have trained our regression, we perform a sensitivity analysis to
identify the effect of individual channel blocks on the QT interval and propagate the uncertainty from the drug-induced
channel block recordings into the QT interval. We anticipate that the results from this study will help understand the
mechanisms behind drug-induced arrhythmias and improve the design of new compounds.

2. Methods
2.1. Cardiac electrophysiology
We model the spatio-temporal evolution of the transmembrane potential ¢ using the classical mono-domain
model [30,31],
¢ =div(D - Vo) + f¢ on B. (1)

We initialize the transmembrane potential with the initial conditions, ¢(f = 0) = ¢y, and adopt homogeneous
Neumann boundary conditions across the entire boundary, (D - V@) -n = 0 on dJ5. For the flux term, div(D - V¢), we
assume an anisotropic conductivity D with a fast signal propagation of D! parallel to the fiber direction f and a slow
signal propagation of D+ perpendicular to it [32,33],

D=D'fef+D'[I-f®f]. )
For the source term, f¢, we scale the ionic current oy by the membrane capacitance C,,

f? = ~ILion/Cn» 3)
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Fig. 2. Drug-induced ion channel block. Human ventricular cardiomyocytes model, left, and Purkinje fiber model, right. The ventricular cell model
distinguishes between endocardial, midwall, and epicardial cells and has 15 ionic currents and 39 state variables [39]; the Purkinje cell model has
14 ionic currents and 20 state variables [42]. We selectively block ionic currents and determine the fractional block from single cell experiments
[20] using a Hill model.

and model the ionic current [;,,(¢, g) as a function of the transmembrane potential ¢ and a set of state variables
q [34,35]. The state variables obey ordinary differential equations, § = g(¢, q), as functions of the transmembrane
potential ¢ and their current values ¢ [36]. The number of ionic currents and state variables depends on the cell type
and determines the complexity of the model. Here we use two distinct cell types, ventricular cells and Purkinje cells.

2.2. Drug-induced ion channel block

We model the effect of drugs on the single cell action potential ¢ by selectively blocking the relevant ionic currents
Tion [37]. For each drug, we select a desired concentration C, calculate the fractional current block of individual
channels g; using a Hill model, and scale the ionic current /; by the fractional block [ 1 — 8;] [18],

a1
™ =[1-g1L with B=|1+ (L> . (4)
1Csg

The Hill model has two parameters, the Hill exponent & and the concentration / Cs, required to achieve a 50% current
block. We identify these two Hill-type parameters i and I Cs for different drugs using fractional block measurements
Bi at different discrete concentration levels C from patch clamp electrophysiology [20,26]. For the ventricular cells,
we choose conductivities of D! = 0.090 mm?/ms and D+ = 0.012 mm?/ms parallel and perpendicular to the fiber
direction [38] and adopt the O’Hara—Rudy model with 15 ionic currents and 39 state variables [39],

Lion=Ixr + Ixs + Ixi + IcaL + Ina + Icana + Icax
+ Icab + INab + Ixp + Lo + Inak + Ipca + INaca,i + INaCass -

Fig. 2, left, shows the rapid and slow delayed rectifier potassium currents Ik, and Ik, the inward rectifier potassium
current Ix;, the L-type calcium current /¢, , the fast and late sodium currents In,p and In,p, the calcium sodium and
calcium potassium currents Icyn, and Icyk, the background calcium, sodium, and potassium currents Icup, Inap, and
Iy, the transient outward potassium current [,, the sodium potassium pump current Iy,k, the sarcolemmal calcium
pump current I,c,, and the sodium calcium exchange currents Inaca,i and Inaca,ss Of the ventricular cell model. To
appropriately model signal propagation [40], we replaced the fast sodium current In,p of the original model with the
fast sodium current of the ten Tusscher model [41], without any changes in the model parameters.

&)
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To account for regional specificity, we use three individual parameterizations of the O’Hara—Rudy model for
endocardial, midwall, and epicardial cells. For the Purkinje fiber network, we choose a conductivity of DIl =
3.0 mm? /ms [18] and adopt the Stewart model with 14 ionic currents and 20 state variables [42],

Lion = Ixr + Ixs + Ixi + Icaw + Ina + Icap + INab
+ Ito + I + Isus + INaK + IpCa + IpK + INaCa-

Fig. 2, right, shows the rapid and slow delayed rectifier potassium currents Ik, and I, the inward rectifier potassium
current /g, the L-type calcium current Ic,, the fast and late sodium currents Iy,, the background calcium and
sodium currents Ic,, and Ingp, the transient outward potassium current [y, the hyperpolarization-activated current
I, the sustained potassium current I, the sodium potassium pump current Iy, the calcium and potassium pump
currents Iyc, and Ik, and the sodium calcium exchange current Inac, of the Purkinje fiber model.

(6)

2.3. High fidelity three-dimensional heart model

For the high fidelity model, we discretize the weak form of the mono-domain equation (1) in space using finite
elements [30] and in time using finite differences [19]. To solve the resulting system of equations, we adopt the finite
element software package Abaqus [43]. In particular, we use an explicit time integrator for both the reaction—diffusion
equation (1) and the ionic models in Eqgs. (5) and (6), with a fixed time step size of At = 0.005 ms. Our high fidelity
model is a fully three-dimensional representation of the human ventricles [44], created from magnetic resonance
images [45], and discretized with regular cube elements with a constant edge length of 0.3 mm [19]. This results in a
discretization with a total of 6,878,459 regular trilinear hexagonal finite elements, 7,519,918 nodes, and 268,259,901
internal variables. To model the regional specificity of ventricular cells, we create a transmural cell distribution with
20% endocardial cells, 30% midwall cells, and 50% epicardial discrete layers of cells [46] across the ventricular wall
by simulating a series of Laplace problems [47]. We alternate essential boundary conditions in the endo- and epicardial
surfaces and threshold the solution of these problems to create layers of tissue. This arrangement ensures positive T
waves in the healthy baseline electrocardiogram [46]. We account for the anisotropy of the tissue by defining local
orientations for each element [45]. To model the Purkinje fiber network, we generate a fractal tree that grows on
the endocardial surface of the heart [48]. This results in a discretization with 39,772 linear cable elements, 39,842
nodes, and 795,440 internal variables [18]. At the terminals of the fractal tree, we connect the Purkinje network to the
neighboring myocardium using 3545 resistor elements with a resistance of 1.78 2m [38]. To explore how the single-
cell action potentials from Fig. 2 translate into the excitation profile of the entire heart, we initially excite the Purkinje
network at the location of the atrioventricular node and then let the automaticity of the Purkinje network drive the heart
rate. We simulate five heart beats, which typically takes 40 h using 160 CPUs. We post-process the transmembrane
potential profiles to calculate pseudo electrocardiograms [49]. At every point of the heart, we project the gradient of
the transmembrane potential, V¢, onto the direction vector [50], V(1/|| r ||), and integrate this projection across the
entire cardiac domain B [51], ¢e(xe) = — fB V¢-V(1/| r|)dV. The vector r = x. —x points from current point x to
a virtual precordial electrode x. two centimeters away from the left ventricular wall [19]. While the precise location
of the electrode does modulate the amplitude of the electrocardiogram, it has virtually no impact on the length of the
QT interval. From the final beat of the resulting electrocardiogram, we calculate the QT interval as the time difference
between the onset of the QRS complex and the peak of the T wave [17]. Fig. 3 illustrates two characteristic simulations
with our high fidelity model, one for the baseline case without drugs and one for the drug ranolazine.

2.4. Low fidelity one-dimensional cable model

For the low fidelity model, we discretize the set of continuum equations (1) to (5) in space and time using finite
differences and adopt an explicit time integrator. Our low fidelity model is a one-dimensional cable representation of
a transmural section across the ventricular wall [52]; it takes advantage of the existing parametrization of the O’Hara—
Rudy model and ensures positive T waves [46]. The total length of the cable is 10 mm, in agreement with ventricular
thicknesses from magnetic resonance studies [53]. We discretize the cable with a mesh size of 0.1 mm, resulting in a
total of 101 nodes and 3900 internal variables [15]. Similar to the high fidelity model, we model the regional specificity
of the ventricular wall using a distribution of 20% endocardial cells, 30% midwall cells, and 50% epicardial cells along
the cable. To activate the cable, we excite the first endocardial cell at a frequency of 1 Hz, equivalent to 60 beats per
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Fig. 3. High fidelity three-dimensional heart model. Our high fidelity model is a fully three-dimensional representation of the human ventricles
discretized with 6,878,459 regular linear hexagonal finite elements, 7,519,918 nodes, and 268,259,901 internal variables [19]. For each high fidelity
simulation, we simulate five heart beats, calculate the electrocardiogram, and extract the QT interval as the time difference between the onset of the
QRS complex and the peak of the T wave [18].

minute, for a total of 100 beats using a fixed time step of 0.005 ms. After simulating 100 heart beats, we post-process
the transmembrane potential profiles to calculate pseudo electrocardiograms by integrating the projected gradient of
the transmembrane potential along the cable B, ¢e(x.) = — |, 5 V¢ - V(1/r)dL. Similar to the high fidelity model,
r = x. — x, denotes the distance from current point x to a virtual electrode x. two centimeters away from the last
epicardial cell. We define this quantity as the time difference between the initial excitation and the peak of the T
wave [17].

2.5. Nonlinear Gaussian process regression

A core capability of the proposed methodology is associated with constructing probabilistic surrogate models that
combine low- and high-fidelity information about the QT interval. This surrogate model will allow us to efficiently
estimate QT intervals, perform sensitivity analyses, and propagate uncertainty in silico [54]. We construct our
surrogate model using Gaussian process regression [55], a flexible tool for nonlinear Bayesian regression. We assume
that we have a data-set of input/output pairs D = {(x;, yi)f\’: 1} = {X, y}. The input X € RM*7 contains the N
measurements of the fractional current blocks g of the seven most relevant ionic currents, Icar, Ixr, Iks, 1K1, Tto, INaps
and Iy [20,56], and the output y € RY contains the corresponding N QT intervals of the high fidelity, three-
dimensional model. Our goal is to infer a latent function f, such that

y=rX)+e, )

where € is a noise process that may corrupt our observations of y. For simplicity, we assume that € is Gaussian and
uncorrelated, € ~ N0, anzl ), where anz is an unknown variance parameter that will be learned from the data, 0 € RV
is a zero column vector, and I € RV is the identity matrix. Starting from a zero-mean Gaussian process prior

assumption on f,
fx) ~GP@, k(x,x";0)), (3

we first identify the optimal set of kernel hyper-parameters and model parameters, © = {6, 0%}, and then use the
optimized model to perform predictions at a set of new unobserved locations x*. The covariance kernel function
k(x, x’; 0) that depends on a set of hyper-parameters 6 and encodes any prior belief or domain expertise we may
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have about the underlying function f plays a central role in this process. Here we use the squared exponential
covariance kernel with automatic relevance determination weights that account for anisotropy with respect to each
input design variable [55]. We train our model by minimizing the negative log-marginal likelihood of the Gaussian
process model [55]. Since our likelihood is Gaussian, we can evaluate it analytically in closed form,

1 1 N
O* = argm@inc(@) =3 log|K + 21| + EyT(K +o2) 'y + > log(27), 9)

where the covariance matrix K € RV*V follows from evaluating the kernel function k(-, -; 6) at the locations of
the input training data X. Here, we choose the squared exponential covariance kernel with automatic relevance
determination weights for each input variable [55]. For the minimization, we adopt a quasi-Newton optimizer L-BFGS
with random restarts [55,57]. We use the default parameters in the Scipy implementation [58]. Once we have trained
our model on the available data, we compute the posterior predictive distribution p(y*|x*, D) ~ N (u(x*), X (x*)) at
a new location x* by conditioning on the observed data,

nx*) = k(x*, X)K +o)""y

Y(x*) = k(x*, x*) —k(x*, X)(K + a,f)_lk(X, x*), (10)

where p(x*) and X'(x*) denote the posterior mean and variance.

2.6. Multi-fidelity Gaussian processes regression

For multi-fidelity Gaussian processes regression, we extend the workflow of our nonlinear Gaussian process
regression to data from different information sources of variable fidelity [59,60]. We introduce two levels of fidelity
and observe data D = [{(x,, yL‘.)fV,L1 hoA(xw;, yHl.)fV:H] H = {X, y}, where (x,, y.) and (x g, yy) are the input/output
pairs generated by the low fidelity one-dimensional cable model and the high fidelity three-dimensional heart model,
with significantly more data sets from the low than from the high fidelity model, N, >> Ny. We create a multi-variate
regression framework that returns accurate high-fidelity predictions while being primarily trained on low-fidelity data

and consider the following multi-output Gaussian process regression model [59],

yo=frlxp)+eL and yu = fu(xy) +€n (1D

where €, ~ N(0, anzLI )and e ~ N(0, o,%HI ) denote the Gaussian and uncorrelated noise and f7(x) and §(x) are
two independent Gaussian processes,

fr(x) ~ GP(0, k(x; x5 6L))

8 (x) ~GPO, ku(x;x";05)) and  fu(x) = pfr(x) +8(x).
2

(12)
The variances o, and a,%H that potentially corrupt the low- and high-fidelity data and the scaling parameter p are
learned during model training. As a consequence of the auto-regressive assumption in Eq. (12), the joint distribution
of the low- and high-fidelity data inherits the following structure,

_ |y - 0| (Kir Kin
- (B[ &) ®
with

Kip = kp (xp,x5:00) + UELI
Kig =p kp (xp,x%;61) (14)
Kun = p* ki (xp, x7y;00) + ku(xn, xy; 9H)+03HI-

The covariance of y takes a block structure, where the diagonal blocks K, ; and Ky 5 model the data in each fidelity
level and the off-diagonal blocks Ky model the cross-correlation structure between different levels of fidelity. We
can now train the model and perform posterior predictions using the concatenated low- and high-fidelity data along
with this block covariance matrix structure that replaces K in Egs. (9) and (10). From minimizing the log-marginal
likelihood in Eq. (9), we obtain the optimal set of model parameters and hyper-parameters, © = {0,, 0y, p, a,%L , anZH 1,
with which we perform posterior predictions using Eqgs. (10).
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2.7. Training and cross-validation

To construct the Gaussian process regression, we limit the current blocks to the range g; € [ 0.0, 0.6 ]. Beyond this
range, the high fidelity model may develop torsades de pointes [15,18,19], an arrhythmic condition in which the QT
interval is no longer well defined. We compute the QT interval from N; = 400 low fidelity one-dimensional cable
simulations and from Ny = 10 high fidelity three-dimensional heart simulations using a latin hypercube design.
We continue to sample the next Ny = 35 high fidelity points by adaptively choosing the location of maximum
posterior variance, computed from the Gaussian process regression using Eq. (10). We do not account for the effect
of rate changes in the QT interval, since we found, using the low fidelity model, that this change is on the order of
3%, and thus is rather small compared to the changes induced by drugs. To assess the accuracy of the constructed
regression, we perform a five-fold cross-validation. We partition the Ny = 45 high fidelity samples into five groups
and iteratively predict the response of one group on the basis of the remaining four. To quantify the predictive error
of the regression, we calculate the root mean squared error for each group and average the result over all five groups,
err = % lez WL Zjl\;l( £i(X;) — ¥)* 1'%, where f; is the Gaussian process regression that has been training with the
remaining four groups and N = Ny /5 =09.

2.8. Sensitivity analysis

To analyze the sensitivity of the QT interval with respect to different ion channel blocks, we adopt the elementary
effects method [61,62]. We create a grid of p levels in the parameter space and sample by moving through trajectories
that randomly change one parameter at a time to compute the elementary effect d; associated with changes in the ith
parameter,
y(Xi1, . Xion, Xi + A, Xigr, ..., Xp) — y(X)

A .
Here y = f(X) is the output of the multi-fidelity Gaussian process regression, rather than the output of the model
itself, and A = g/(1 — p) in terms of the number of levels to jump in the next move in the trajectory g, typically

g = p/2. We calculate the mean p; and standard deviation o; of the elementary effect d;(X;) for each of the seven
channel blocks §; [61],

5)

1 1 X 2
m=ﬁ§%aaaMcm{ﬁ—72ﬁuv—wﬂ . (16)
t r=1 vt r=1

The mean p; represents the average influence of the input, the channel block g, on the output, the QT interval and the
standard deviation o; indicates the degree of non-linearity and interaction of the QT interval when varying the channel
block g;. To overcome a well-known short-coming of the calculation of the mean w;, in which elementary effects with
opposite signs cancel one another, we report the mean of the absolute value of the elementary effects [62],

Nt
1
W= Dol (17)
t r=1

We set the number of trajectories to 10,000 and the number of levels to six. Since the evaluation of the regression is
rather inexpensive compared to the evaluation of the model itself, we can simply evaluate a large number of trajectories
without having to choose optimal trajectories, which would require the solution of a brute force problem [62].

A source of error is associated with the randomized selection of trajectories that may not cover the input parameter
space evenly. We calculate the variance generated by this error using bootstrap [63] and sample with a replacement
B times from the already calculated elementary effects, creating a distribution of u;, ui and oj. A second source of
error is associated with using a surrogate model, the regression, instead of the model itself. To assess the magnitude of
this error, we take advantage of the Gaussian process regressions that outputs a distribution rather than a single value.
We compute the sensitivity indices N, times and sample the values of the QT interval from a predictive posterior
distribution [63]. This results in a matrix of N, x B evaluations of the sensitivity indices, from which we compute the

total variance o2,

1 B N; 1 B N;

B = G 2 2t and 0Re)) = g 3 Sy, — (18)

b=1 z=1 b=1 z=1
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We set the number of bootstrap repeats to B = 100 [63] , the number of evaluations from the posterior distribution
to N, = 500, and the level of confidence to 95%. To quantify the influence of one of the model inputs over the
output when all other input parameters are averaged [64], we compute the main effects of each channel block §;
using our surrogate model, z(X;) = E(y|X;) — E(y). We approximate this metric using 200 samples from a latin
hypercube design over the parameter space, z(X;) = 1/N ZJA;] yXij, ..., Xiy ..., Xpj) —1/N ZJN:] y(Xj), where
X represents a sample from the latin hypercube. We vary the input X; to compute the main effects across the parameter
space.

2.9. Uncertainty quantification

To characterize the uncertainty in the Hill model parameters, the Hill exponent . and the concentration Csg
required to achieve a 50% current block in Eq. (4), we perform a systematic uncertainty quantification. We employ
a hierarchical Bayesian approach to obtain a complete probabilistic characterization of the unknown Hill model
parameters and obtain the posterior distribution of the parameters using Bayes’ rule,

p(yl6) p(®)
[ p(y10) p(6)do
where p(y|0) is the likelihood of the parameters 6 for the observed data y, and p(6) is the prior distribution of the
parameters 6 that contains our prior knowledge about the parameters before observing any data. We postulate the

following prior distributions over the Hill exponent #, the inhibitory concentration /Csg, and the observed data y
[26],

hi ~ log -logistic(a, B) 1 Cs0; ~ logistic(u, ) v~ (f(x; hi, ICs00), 02) (20)

p@ly) = (19)

where y/ is the jth concentration entry in experiment i’s responses y;. We implicitly assume that every experiment
i that generates a QT interval as an output y; has K; data points. This allows us to consider cases where different
experiments may test different numbers of concentrations, j =1, ..., K;andi = 1, ..., N,. We employ experimental
block-concentration data to obtain a posterior distribution over unknown parameters 6 := {«, 8, i, s, 0>} by assigning
a gamma prior to each parameter {a, 8, i, s, o}, and marginalizing it out using an adaptive Metropolis—Hastings
MCMC algorithm [26]. This generates an approximate posterior distribution, p(6|y), that we sample to consistently
propagate the uncertainty associated with the Hill model parameters . and ICsg to the uncertainty associated with
the predictions of the QT interval using our multi-fidelity framework. As basic input, we use previously published
experimental data [20], in which ion channel currents were evaluated using whole-cell patch-clamping. Using the
hierarchical Bayesian approach in conjunction with these data, we sample a set of 500 { &, I Cs } parameter pairs.
For each pair at each drug concentration, we calculate the fractional block B; of a specific ion channel using Eq. (4)
and feed it into the multi-fidelity regression of the QT interval. Finally, we obtain a probability density function using
Gaussian kernel density estimation. We consider a range of normalized concentrations C € [0, ..., 4 Cpax ] and vary
the concentration in increments of 0.1 Cpax, Where Chax is the free plasma concentration, the amount of the drug that
is available to bind to the ion channel [20]. We determine the probability density as a function of both the compound
concentration and the QT interval. For some compounds, the specified range of concentrations exceeds the range
Bi € [0.0,0.6] for which we had built our multi-fidelity regression. In these cases, we refrain from reporting the
results due to the lack of validation. For all remaining QT intervals, we report the percentage QT interval change with
respect to the baseline QT interval of 264 ms for the simulation without drugs.

3. Results

We successfully built a surrogate model using multi-fidelity Gaussian process regression and trained the model
with high and low fidelity simulations. We used our surrogate model to perform sensitivity analysis and uncertainty
quantification, and validated our results against experimental data.

3.1. Multi-fidelity Gaussian process regression and cross-validation

Our Gaussian process-based surrogate model combines high and low fidelity simulations to efficiently and
accurately predict QT interval lengths. Fig. 4 shows the electrocardiograms generated by our high and low



322 ES. Costabal, K. Matsuno, J. Yao et al. / Computer Methods in Applied Mechanics and Engineering 348 (2019) 313-333

QT interval [ms]
200 T 500
s
E
I s
=
2
<]
o
0 time [ms] 750
QT interval [ms]
200 T 400
s
E
- 190 time [ms] 420
°
o
0 time [ms] 750

Fig. 4. Multi-fidelity Gaussian process regression. We combine the electrocardiograms of Ny = 45 high fidelity three-dimensional heart
simulations, top, with Nz, = 400 low fidelity one-dimensional cable simulations, bottom, to extract QT intervals for our multi-fidelity Gaussian
process regression.

fidelity models. To calculate the QT intervals for our multi-fidelity Gaussian process regression, we combine
Ny = 45 high fidelity three-dimensional heart simulations, top, with N; = 400 low fidelity one-dimensional
cable simulations, bottom. All electrocardiograms display the characteristic QRS complex followed by a positive
T wave. The electrocardiograms of the low fidelity model show a narrow QRS complex and a small amplitude T wave
compared to the electrocardiograms from the high fidelity model. The QT interval of the low fidelity model ranges
from 196 to 411 ms and is smaller than the QT interval of the high fidelity model that ranges from 245 to 535 ms.
This difference is a result of the irregular cell distribution of the high fidelity model. However, the different lengths
have no influence on the training process, since the algorithm is set to find correlations between the different levels
of fidelity as indicated in Eq. (12). A five-fold cross-validation of the multi-fidelity regression reveals an average root
mean squared error of 16.7 ms, which represents a 6.3% error compared to the baseline QT interval of 264 ms.

3.2. Sensitivity analysis

Blocking Ix;, Inap, Ix1 and Ik, prolongs the QT interval, while blocking /;,, Ina. and Ic,. shortens the QT
interval. Fig. 5 and Table 1 summarize the sensitivity of the QT interval with respect to individual current blocks from
our elementary effects analysis. The analysis reveals that blocking the rapid delayed rectifier potassium current I, the
fast sodium currents Inap, the inward rectifier potassium current Ik, and the slow delayed rectifier potassium current
Ik prolongs the QT interval, while blocking the transient outward potassium current Iy, the late sodium current I,
and the L-type calcium current I, shortens the QT interval. Table 1 summarizes the means p and variances o of
our elementary effect analysis in Fig. 5. Although the variances oy induced by our surrogate model account for a
large part of the total variances o, their overall values remain small compared to the magnitude of the elementary
indices u themselves. This suggests that our Gaussian process-based surrogate model provides a reasonably accurate
approximation of the drug-induced changes in the QT interval.

The QT interval is most sensitive to drugs that block the rapid delayed rectifier potassium current /.. Fig. 6
highlights the results of our main effects analysis for the QT interval of individual current blocks. To create these
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Table 1

Sensitivity of QT interval with respect to individual current blocks. Blocking the Ik, INap, Ik1 and Iks
currents prolongs the QT interval; blocking the I, INar. and Icar currents shortens the QT interval.
Elementary effect indices are normalized with respect to the largest index Ix;. Signs of the modified
mean of the elementary effect index p* are assigned from p. Variances o induced by using the surrogate
model are small compared to the indices u* themselves.

IcaL INaL o Ixs Ix1 INap Ix:
w* [-] —0.18 —0.07 —0.03 0.10 0.17 0.19 1.00
OoN [-] 0.0009 0.0003 0.0002 0.0006 0.0009 0.0007 0.0023
oM [-] 0.0018 0.0003 0.0002 0.0003 0.0012 0.0035 0.0005
or [-] 0.0020 0.0004 0.0003 0.0006 0.0015 0.0035 0.0023

+1.21
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Fig. 5. Sensitivity of QT interval with respect to individual current blocks. Blocking the Ik, INap, Ik1 and Iks currents prolongs the QT interval;
blocking the Iy, INar and Icar. currents shortens the QT interval. Blocking the rapid delayed rectifier potassium current Ik, has the largest effect on
the QT interval. Bars represent the modified mean of the elementary effect index u*, signs are assigned from w, error bars represent the standard
deviation o.

results, we sampled the parameter space by moving through 200 trajectories that randomly change one parameter at
a time to compute the main effect associated with changes in the respective parameter. The individual trajectories
are displayed as gray lines and their average mean effect is shown in color. Our main effects analysis supports
the results of the elementary effects analysis in Fig. 5 and Table 1. In addition, it provides information about the
nonlinearity of the QT interval change with respect to the degree of blockage, which we show here for 0% to 60%
block. Additionally, the spread of the gray lines indicates how much the interaction with other blockages affects an
individual current block. Four channel blocks tend to prolong the QT interval, I, Inap, Ik1, and Iks: Blocking the
rapid delayed rectifier potassium current Ik, has the largest effect on the QT interval as already suggested by Fig. 5.
Interestingly, this effect is highly nonlinear and increases as the degree of blockage increases as indicated by Fig. 6.
Blocking the fast sodium current Iy, also prolongs the QT interval, but the effect is less pronounced than /Ix,. The fast
sodium current is responsible for the fast upstroke of the action potential and is active during the depolarization stage.
Unlike the rapid delayed rectifier potassium current, it causes QT prolongation by widening the QRS complex, rather
than by delaying the repolarization phase. Blocking the inward rectifier potassium current /x; exhibits a pronounced
non-linear behavior. Interestingly, at a low percentage block, Ik blockage increases the QT interval, whereas at higher
degrees of blockage, between 25% to 50%, the effect changes sign and blockage decreases the QT interval. Blocking
the slow delayed rectifier potassium current /xs only has a minor effect on the QT interval with little interaction with
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Fig. 6. Main effects analysis of QT interval for individual current blocks. Blocking the rapid delayed rectifier potassium current /g, prolongs the
QT interval the most; blocking the L-type fast calcium current Icyr, decreases the QT interval the most. Gray lines represent the 200 trajectories
used for the simulation, colored lines represent the average main effect. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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Fig. 7. Uncertainty quantification in block-concentration characteristics of the drug ranolazine. For three different experiments of ranolazine-
induced blockage of the rapid delayed rectifier potassium current Ik, [20], we calibrate three sets of Hill parameters (brown, red, and orange
curves) and perform a best fit for all three experiments (black curve). To account for the uncertainty in the data, we use a hierarchical Bayesian
model and infer a posterior distribution of the Hill model parameters to generate 500 Hill curves (gray curves). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

other current blocks, as we conclude from both the standard deviations o in Fig. 5 and the almost flat lines in Fig. 6.
Three channel blocks tend to shorten the QT interval, I, INar, and Ica: Blocking the transient outward potassium
current I, and the late sodium current Iy, moderately decrease the QT interval mostly linearly. Both display a small
dependence on the level of block of other channels indicated by the parallel lines in Fig. 6. Blocking the L-type
calcium current Ic,. has the strongest shortening effect on the QT interval. As Fig. 6 suggests, this effect is dependent
on blockage of the other currents. Strikingly, some trajectories even display a positive slope indicating a QT interval
prolongation when combined with other channel blocks.

3.3. Uncertainty quantification

Hierarchical Bayesian modeling provides estimates for the Hill model parameters of our block-concentration
characteristics. Fig. 7 summarizes the result of three different experiments to characterize the ranolazine-induced
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Fig. 8. Uncertainty propagation of block-concentration characteristics for ranolazine at its free plasma concentration into the QT interval. We apply
the posterior distribution of current block from the hierarchical Bayesian model, left, to our surrogate model and propagate the uncertainty into
the QT interval. From this QT interval distribution, we compute a probability density function, right, using a Gaussian kernel density estimation.
For clear visualization, we only plot the channels with significant blockage, the rapid delayed rectifier potassium current /x, and the late sodium
current Inap .

blockage of the rapid delayed rectifier potassium current Ig, [20]. The points indicate the discrete measurements, the
brown, red, and orange curves indicate the calibrated Hill models, and the black curve is the best fit Hill model for
all three experiments combined. The experimental data display a significant inter-experiment variability and neither
the individual fits nor the best fit Hill model can approximate the data reasonably well. We therefore used hierarchical
Bayesian modeling to recapitulate the uncertainty in the data using prior information of the distribution of the Hill
model parameters [26]. This resulted in a posterior distribution from which we sampled 500 pairs of Hill parameters
{ICsp, h} to construct 500 block-concentration curves for varying ranolazine concentrations. Fig. 8 illustrates how
uncertainties of the block-concentration characteristics for ranolazine at its free plasma concentration propagate into
the QT interval. To create these characteristics, we used the posterior distribution of the Hill parameters from the
hierarchical Bayesian model in Fig. 7 and propagated the uncertainty using our Gaussian process-based surrogate
model to calculate the distribution of the QT interval. The compound ranolazine primarily blocks the rapid delayed
rectifier potassium current I, and the late sodium current In,.. Fig. 8, left, confirms that our predictions with
the hierarchical Bayesian model accurately capture these effects. We then propagated this uncertainty into the QT
interval. This resulted in a QT interval distribution that highlights a spread of possible values. Fig. 8, right, shows this
distribution, and, in addition, the probability density function for the QT interval that we computed using a Gaussian
kernel density estimation.

Uncertainties in the experimentally measured block-concentration characteristics for 30 compounds propagate
into the QT interval. Fig. 9 shows how the uncertainties of the block-concentration characteristics for 30 compounds
at their free plasma concentration propagate into the QT interval. Uncertainties in the individual block-concentration
characteristics in columns one through seven translate into uncertainties in the QT interval in column eight. In
agreement with our sensitivity analysis in Fig. 5, uncertainties in the rapid delayed rectifier potassium current I,
in column seven have the greatest influence on the uncertainty of the QT interval. For example, compound nilotinib
in row four displays a 95% confidence interval for a rapid delayed rectifier potassium current /g, block of 0.0 to
81.4%, which translates into a 95% confidence interval for the QT interval change of —5.8% to 72.8%. In contrast,
the compound diltiazem in row thirty exhibits high variability in the L-type calcium current /¢, block with a 95%
confidence interval of 15.2% to 88.6% , which translates into a smaller uncertainty in the QT interval change of with
a 95% confidence interval —11.3% to 0.2%.

At the free plasma concentration, dofetilide, flecainide, and quinidine change in the QT interval by more
than 50%. Fig. 10 summarizes the probability density of a QT interval change for 30 compounds across a range
of normalized compound concentrations. For some compounds including amiodorane, amitriptyline and toremifene,
increasing the concentration has only minor effects on the QT interval; for others, including diltiazem and rufinamide,
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Fig. 9. Uncertainty propagation of block-concentration characteristics for 30 compounds at their free plasma concentration into the QT interval.
Color bars indicate the 95% confidence intervals and gray lines indicate the mean. All drugs are displayed at their free plasma concentration Cpax,
except dofetilide* and quinidine*, which are displayed at 0.9 Cpnax and 0.4 Cax to avoid extrapolation. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

the QT interval tends to decrease with increasing concentration. However, for most compounds, increasing the
concentration increases the QT interval. The QT interval is particularly responsive to increases in the concentration of
dofetilide, flecainide, and quinidine. These compounds raise the average change in the QT interval by 50% or more
by the time they reach their free plasma concentration. Gray regions indicate that the blocks are beyond the values
used to train the Gaussian process regression. For all compounds, the uncertainty in the predictions of the QT interval
tends to increase with increasing concentration. In general, the regions of highest probability are located near zero
concentrations, since the Hill model is designed to predict zero block for zero concentration. Notably, the uncertainty
tends to stabilize at higher concentrations for most cases, with the exception of mexiletine.
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Fig. 10. Probability of QT interval change for 30 compounds across a range of compound concentrations. Mean QT interval changes are shown as
solid black lines and 95% confidence intervals are shown as dotted lines; gray regions are used when the blocks exceeded the range used to build
the surrogate model.

3.4. Validation

Our model predictions show excellent agreement with a randomized clinical trial for dofetilide, quinidine,
ranolazine, and verapamil. To validate the predictions of our surrogate model, we use data from a randomized
clinical trial that reports QTc interval changes for different concentrations of four common compounds: dofetilide,
quinidine, ranolazine and verapamil [65]. These compounds present an ideal set for our model validation, since they
selectively block the most relevant channels according to our sensitivity analysis: dofetilide blocks the rapid delayed
rectifier potassium current Ix,; quinidine primarily blocks the rapid and slow delayed rectifier potassium currents
Ik and Ixs and the transient outward potassium current Ii,; ranolazine blocks the rapid delayed rectifier potassium
current /g, and the late sodium current Iy,;; and verapamil blocks the rapid delayed rectifier potassium current
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Fig. 11. Validation of QT interval change predictions for the compounds dofetilide, quinidine, ranolazine, and verapamil. These compounds block
channels with opposing effects on the QT interval. Dofetilide is a selective Ik, blocker, quinidine primarily blocks Ik, Iro and Ik, ranolazine
blocks Inar, and Ikr, and verapamil blocks Ic,, and Ix;. Mean QT interval changes are shown as solid black lines and 95% confidence intervals are
shown as dotted lines; gray dots are data points from a randomized clinical trial and error bars are their 95% confidence intervals [65].

Ix; and the L-type calcium current Ic,.. Blocking different combinations of currents could have opposite effects
on the QT interval and is therefore a reasonable approach to test the ability of our model to predict multi-channel
blockage. Fig. 11 shows the results of our model validation. Remarkably, most experimental data points fall within
the 95% confidence interval of the predicted QT interval change. For dofetilide, our model accurately predicts an
increasing QT interval for increasing concentrations. However, while the clinical data suggest a linear increase, our
model predicts a less pronounced increase for higher dofetilide concentrations. For quinidine, the experimental data
points fall almost exactly onto the black line of our mean predictions of the QT interval. For ranolazine, in excellent
agreement with the clinical data, our model accurately predicts the effect of a simultaneous block of the rapid delayed
rectifier potassium current Ik, and the late sodium current Iy, in Fig. 8 that leads to a moderate increase in the
QT interval. For verapamil, both the clinical data and the model show a negligible change in the QT interval for
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increasing normalized concentrations, which is the result of a larger block of the L-type calcium current Ic,;, compared
to the rapid delayed rectifier potassium current Ix,. Overall, this validation confirms that our multi-fidelity Gaussian
process-based surrogate model can reliably predict changes in the QT interval in response to different drugs and
varying concentrations.

4. Discussion

In this work, we have presented a full sensitivity analysis and we have quantified the uncertainty induced by block-
concentration measurements over the QT interval. To reduce the computational cost, we have used multi-fidelity
Gaussian process regression to fuse information from a low fidelity, one-dimensional cable model with high fidelity,
three-dimensional model of the heart. Cross-validation of the surrogate model revealed an error of 6% normalized
by high-fidelity baseline QT interval. This level of error is small compared to the uncertainties induced by the
experimental blockage measurements for different compounds in Figs. 9 and 10.

Our sensitivity analysis in Fig. 5 confirms that the rapid delayed rectifier potassium current Ik, is the most
influential channel to modulate the QT interval. This effect is well known and is therefore a critical component of
many pro-arrhythmic drug assessment protocols [7]. However, we also quantified the relative importance of other
channels. Notably, blocking the L-type calcium current Ic,;, and the late sodium current Iy, tends to shorten the
QT interval, which could be useful in the co-administration of existing drugs or in the design of new drugs. For
example, verapamil induces a moderate prolongation of the QT interval because the L-type calcium current /¢, block
compensates the effects of its rapid delayed rectifier potassium current /g, block as we can see in Figs. 9 and 10. Our
findings are also in agreement with a recent pro-arrhythmic risk study that utilized Ik, Ic,. and Iy, blockages in a
single cell model to predict the risk categories of 31 drugs [11]. The authors showed that, even with a different cellular
model [66], blocking solely Ik, increases the action potential duration, while also blocking In, or Ic,. decreases the
action potential duration. Yet, this study did not distinguish between the late and peak components, Ina. and Inap, of
the sodium current, which according to our analysis in Figs. 5 and 6 have opposite effects on the QT interval. Our
sensitivity analysis identified the rapid delayed rectifier potassium current Ik, and the L-type calcium current /¢,
as the channels that have the most pronounced effects on the QT interval. This agrees well with a recent study that
showed that the blocks of Ik, and I, have a better predictive power of torsades de pointes risk than the additional
block of I, [67]. Sensitivity analyses are currently gaining in popularity not only in healthy but also in failing hearts,
where they hold the potential to identify network regulators [68] or specific biomarkers [69] to stratify patients in
cardiac disease.

Our study suggests that, from the seven channels proposed to be studied for a new regulatory framework [56],
some channels have only a small effect on the QT interval. In particular, the transient outward potassium current I,
has a negligible elementary effects index in Fig. 5 and a nearly flat response in the main effects analysis in Fig. 6. The
slow delayed rectifier potassium current Ik also has a small prolonging effect compared to the rapid delayed rectifier
potassium current/k,. The elementary effect index for Ik, is ten times larger than for Ixs, which implies that, on
average, ten times more /g, blockage is needed to achieve the same QT interval prolongation compared to blocking Ik;.
Although there might be other currents involved in the development of drug-induced arrhythmias [70], this suggests
to remove these two currents, the transient outward potassium current I, and the slow delayed rectifier potassium
current Ixg, from future pro-arrhythmic risk assessment studies, especially in view of reducing dimensionality and
computational cost.

To quantify the uncertainty of the block-concentration measurements in the QT interval, we used a hierarchical
Bayesian model [26]. For each channel, for each compound, we generated 500 samples of the Hill model parameters
{I1Csg, h}, for which we computed the QT interval and generated an overall output distribution. In accordance with
our sensitivity analysis, we observed that the way the uncertainty propagates into the QT interval is highly mediated
by the uncertainty in the rapid delayed rectifier potassium current Ik, block measurements in Fig. 9. This finding
suggests an efficient strategy for additional experiments: Improving the measurements of the rapid delayed rectifier
potassium current /g, block will have the greatest impact on reducing the uncertainty of the model output. We also
showed that this uncertainty tends to increase as the concentration increases. However, for most compounds, the
level of uncertainty stabilizes after an initial increase. This can be explained by the nature of the Hill model, which
is designed to return zero block at zero concentration. Thus, the stable uncertainty at higher concentrations might
represent the truly experimental uncertainty that is propagated.
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Our final validation in Fig. 11 displays an excellent agreement between our model and experimental measurements.
The validation data originates from a randomized clinical trial [65] and was not previously used to calibrate our
model. The drugs used for our validation block the most significant currents of our sensitivity analysis, the rapid
and slow rapid and slow delayed rectifier potassium currents Ix, and Ixs, the L-type calcium current Ic,, the late
sodium current Iy, and the transient outward potassium current /i,. The validation data include pairs of channels
with opposite effects on the QT interval, such as ranolazine with I, and Ina, and verapamil with Ik, and Icar.. The
validation in Fig. 11 quantifies the predictive power of our model and highlights its ability to capture the simultaneous
blockage of different channels. The large spread of our predictions highlights the difficulties of making predictions
based on noisy experiments. By assimilating more data, we could narrow our predictions to levels comparable to the
experimentally measured QT intervals.

Gaussian process regression has become increasingly popular throughout the past decade. Its applications to
cardiac mechanics range from uncertainty quantification to inverse problems and optimization [71]. In a wide
variety of engineering problems, Gaussian process regression has been applied to multi-fidelity problems [59,60].
However, to our knowledge, this is the first time that this technique has been applied to elementary effect indices
with their associated variance. While multi-fidelity methods have recently been proposed for the uncertainty
quantification of cardiac activation sequences [72], here, we use these techniques to characterize the effect of drugs on
cardiac activation. Our framework provides an efficient and robust methodology to perform sensitivity analysis and
uncertainty quantification for a scalar quantity of interest, in our case, the QT interval.

Our work has a few limitations. First, it is well known that the QT interval alone has a poor specificity as predictor
of drug-induced arrhythmias [8]. However, it has a great sensitivity, which implies that many compounds that generate
torsades de pointes do indeed prolong the QT interval. In addition to identifying channel blocks that prolong the QT
interval, our method also identified channel blocks that shorten the QT interval, I, and Ina, which could be used
as inhibitors of drug-induced arrhythmias. Second, here we have based our low fidelity model on a one-dimensional
transmural cable. Since the T wave is a result of both transmural and apex-to-base gradients, it would be interesting to
include a second low fidelity model based on a one-dimensional apex-to-base cable [52] and explore to which extent
this changes the results of our study. Third, here we focused on one specific feature of the electrocardiogram. Our
methodology can be equally useful to study, for example, T wave morphology [73], and we expect it to accurately
recapitulate its effect on the QT interval. Fourth, here we only considered the QT interval, as opposed to other
electrocardiogram traces that could reveal additional information about the effects of specific drugs [65]. Fifth,
our model does not take into take account gender differences in the QT interval [74]. We could incorporate these
differences by making modular changes to the ion channel dynamics of the cellular model [75]. In the future, it would
be interesting to quantify gender differences via population variability [76]. Finally, we have assumed a particular
electrode position, a particular cellular model [39], a specific heart rate, and a specific distribution of cell types [15],
all of which could influence our predictions of the QT interval. In the future, we would also like to quantify the
uncertainties of these parameters in the predictions of the model. Overall, this study is only a very first step towards
systematically using sensitivity analysis and uncertainty quantification in pro-arrhythmic drug assessment. It opens a
wide variety of opportunities to quantify signatures in the electrocardiogram that could be used as early predictors of
drug-induced arrhythmias. For example, our method is also capable of including more levels of fidelity to improve
the predictions of drug risk bio-markers. These could include changes in single cell models or experimental data from
optical mapping [77,78] or dynamic patch clamp experiments [79]. Beyond electrophysiology applications, we could
use this approach to integrate different sources of information in problems in cardiac mechanics [80].

In conclusion, this study quantified both the sensitivity and the uncertainty involved in drug-induced QT pro-
longation. Using machine learning techniques, we combined high-resolution three-dimensional modeling with low-
resolution one-dimensional modeling to precisely characterize how different compounds modulate electrocardiogram
recordings associated with an increased pro-arrhythmic risk. We envision that our methods and results will support
the design of safe and effective drugs that avoid the risk of torsades de pointes.
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