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Abstract

Hypertrophic scarring is the result of excessive collagen deposition during wound healing. Wound healing is a well-synchronized
cascade of chemical, biological, and mechanical events that act in concert to restore the damaged tissue. An imbalance between
these events can lead to an abnormal response in the form of thick, stiff, and sometimes painful scar. Despite intense efforts to
decipher the signaling mechanisms of wound healing, the role of mechanics remains severely understudied and poorly understood.
Here we establish a computational systems biology model to identify the chemical, biological, and mechanical mechanisms of
scar formation. Our approach is unconditionally stable, geometrically flexible, and conceptually modular. To ensure unconditional
stability, we employ an implicit backward Euler scheme in time. To enable geometrical flexibility, we use a finite element discretiza-
tion in space. To maintain modularity, we first introduce a generic framework for arbitrary chemical, biological, and mechanical
fields. Then, we introduce the model problem of wound healing in terms of a particular chemical signal, inflammation, a particular
biological cell type, fibroblasts, and a particular mechanical model, isotropic hyperelasticity. To explore the cross-talk between
the individual fields, we perform systematic sensitivity analyses both in time and space. Altogether, our model is a decisive step
towards the incorporation of individualized data in wound healing. Driven by the increasing importance of systems medicine and
translational systems biology, our formulation has the potential to significantly improve effective wound management and optimize
treatment options on an individualized patient-specific basis.

1. Motivation

Effective wound management is a quotidian concern in clini-
cal practice, since abnormal wound healing can initiate hyper-
trophic scars associated with serious sequelae from deteriorated
skin characteristics to psychological trauma [2]. The health care
cost related to wound treatment is jolting; wounds are common
to many clinical procedures and span all patient demographics
[3]. Fostering a healthy tissue response is a non-trivial task. The
process of wound healing is a complex sequence of interrelated
events that involve mechanical cues, coordinated cell behavior,
and the interaction of numerous chemical signals [10]. In such
a scenario, planning effective healing on a patient-specific basis
becomes almost impossible. Computational systems biology
has found a niche to enrich our understanding of this complex
problem [21]. However, despite intense efforts to character-
ize the healing process with mathematical models, simulation
of wound healing in arbitrary three-dimensional geometries re-
mains an open problem.
Disrupting the integrity of skin triggers a cascade of events that
are common to all inflammation-based systems in the human
body [53]. Additionally, during dermal wound healing, special-
ized processes take place to restitute the particular functional
requirements of dermal tissue [13]. Perhaps the most distinct
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feature of this system is the interaction of different key players
across scales, both in space and time. During the past decades,
scientists have successfully identified and characterized the in-
dividual aspects of this network, but a holistic understanding of
the healing process as a whole remains obscure [54].

1.1. Wound healing across the spatial scales

The spatial scales of interest for the healing system range
from the order of micrometers, to millimeters, centimeters, and
decimeters [6]. Figure 1 illustrates the multi-scale nature of
the healing process with four interacting spatial scales [36]: the
system level, the organ level, the tissue level, and the cell level
[17].
On the cell level, the smallest spatial scale of the order of mi-
crometers, single cells are the individual actors, which directly
affect the healing process [44]. In the damaged dermal tis-
sue and its surroundings, the following cell types are present:
two types of leukocytes, neutrophils and macrophages, dispose
pathogens and debris and establish gradients of growth factors;
endothelial cells generate a new vasculature; keratinocytes di-
vide and migrate across the epidermis to produce a new protec-
tive outermost layer; and fibroblasts deposit collagen and gen-
erate active stresses to contract the wound [32, 52].
On the tissue level, the next larger scale of the order of mil-
limeters, the actions of the individual cells are smeared out by
meso-scale patterns, which emanate from the collective cell be-
havior. This collective response exhibits distinctive character-
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Figure 1: Wound healing across the spatial scales. The chemo-bio-mechanical problem of wound healing spans from the cellular level via the tissue level and organ
level to the system level bridging four orders of magnitude in space.

istics, which can no be extrapolated directly from single cell
actions. Populations of keratinocyte generate a well-organized
traveling wave inwards, and populations of endothelial cells
keep strong cell-cell interactions to create fractal-like vascular
networks [26, 35]. From this scale upward, both the mechani-
cal response and the reaction-diffusion response of the chemical
species can be characterized through field variables using a con-
tinuum approach [11, 25].
On the organ level, the scale of the order of centimeters, we
can explore the interaction of the mechanical properties, differ-
ent cell populations, and reaction-diffusion systems of chemical
concentrations. The organ level provides a holistic approach to
study the role of the individual key players of wound healing,
and allows us to explore tissue function in health and disease.
On the system level, the scale of the order of decimeters, we
can study the entire system created by the interplay of different
organs. Ideally, system level models are generated on a patient-
specific basis from individual clinical imaging data [60].

1.2. Wound healing across the temporal scales
The temporal scales of interest for the healing system range
from the order of minutes, to hours, days, and weeks [6]. Fig-
ure 2 illustrates the multi-scale nature of the healing process
with four overlapping temporal scales: hemostasis, inflamma-
tion, proliferation, and remodeling [27]. Immediately after the
injury occurs, healing is critical to restitute the barrier func-
tion of skin. Unfortunately, the initially generated temporary
scaffold has only poor mechanical characteristics. Accordingly,
subsequent stages of the healing process gradually reconstruct
the tissue to ultimately restore the constitution of the uninjured
skin [30]. The entire healing process can last for weeks or even
months.
During hemostasis, within the order of minutes, the injured re-
gion fills with blood, which quickly coagulates. This results
in the formation of an emergency scaffold of fibrin fibers. The
only cells present in the clot are platelets, responsible for co-
agulation and the release of growth factors. At the end of this
stage, degranulation of the platelets floods the injured site with
chemicals to attract leukocytes.

During inflammation, within the order of hours, the first popu-
lation of leukocytes, neutrophils, arrive at the wound site. Neu-
trophils remove pathogens and dispose of tissue debris from
the injury. Shortly after, a second population of leukocytes,
macrophages, migrate into the wound and continue the cleaning
process. In addition, they establish gradients of various chem-
ical signals to attract other cell populations [48]. After one or
two days, the inflammatory phase smoothly blends into the pro-
liferative phase.
During proliferation, within the order of days, the chemical sig-
naling established by the macrophages attracts specialized cell
populations that reconstruct skin. Endothelial cells generate a
new vasculature that provides nutrients to the other cell pop-
ulations [14]. Keratinocytes reconstruct the outermost protec-
tive layer, the epidermis, in a process called re-epithelialization
[43]. Fibroblasts replace the temporary fibrin scaffold with a
collagenous matrix that restitutes the desired mechanical prop-
erties of the healed tissue [7]. Although the proliferation phase
creates a somewhat functional tissue, the mechanical proper-
ties of the newly reconstructed skin are not nearly identical to
healthy, uninjured skin: The newly generated material is stiff
scar tissue, which is partly provisional and will be replaced dur-
ing the final remodeling phase [50].
During remodeling, within the order of weeks, fibroblasts
slowly tear down and deposit collagen until the matrix ap-
proaches the structure of healthy tissue. The remodeling phase
can continue for months or even years.

1.3. Modeling wound healing
Wound healing has been studied assiduously both experimen-
tally and theoretically. Recent developments in computational
systems biology suggest that we cannot gain a complete un-
derstanding of wound healing from studying isolated spatial or
temporal scales alone [46]. Rather, trends in modeling seem to
converge towards assembling the individual building blocks for
a holistic model that, once calibrated, can provide new insight
into the baseline system [9, 31]. Systematic perturbations of
this system allow us to probe different healing scenarios to ulti-
mately link computational tools with personalized models [41].
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Figure 2: Wound healing across the temporal scales. The chemo-bio-mechanical problem of wound healing spans from the homeostatic phase via the inflammatory
phase and proliferative phase to the remodeling phase bridging four orders of magnitude in time.

The first mathematical model of wound healing was introduced
in the early 1990s. Its initial goal was to simulate the trav-
eling wave front of growing cell populations at the edge of a
wound [42]. Since then, mathematical models have gained in
complexity and have gradually incorporated the different com-
ponents that interact in synchrony to heal the damaged tissue
[58]. Recent models can be categorized according to two cri-
teria, the aspect of healing they seek to analyze in detail and
the simulation framework employed for the analysis. Three as-
pects of healing are particularly relevant: re-epithelialization
and cell migration; angiogenesis; and mechanical aspects of
wound healing such as collagen deposition and wound contrac-
tion. Four modeling strategies are prevalent: one-dimensional
and axisymmetric continuum models; two-dimensional contin-
uum models; two- and three-dimensional discrete models; and
two-dimensional hybrid discrete/continuum models. A recent
review article highlights the state of the art in systems biology
approaches towards wound healing [6].
Among the different variables that influence the outcome of
healing, the importance of mechanical cues has recently been
identified with more clarity. Fibroblasts have the capability to
sense mechanical signals, to translate them into specific action
such as active contraction, and to release chemical substances
[55]. We now know that increased stress in the wound site al-
ters fibroblast phenotype by reducing their apoptotic rate and
inducing the release of pro-inflammatory signals [1, 33]. In
turn, when the inflammation phase is prolonged, fibroblasts di-
vide and migrate into the wound at higher rates, which results
in an increased collagen deposition. The ultimate consequence
is a poorly structured dermal tissue with thick collagen bundles
instead of the smooth, inter-woven collageneous network found
in healthy tissue. Visually, the result of such pathological reac-
tion is very clear to the human eye, which can readily recog-
nize hypertrophic scars [57]. However, despite this obvious ev-
idence, only few models have incorporated a detailed mechani-
cal description of the wound environment. While some models
have addressed collagen deposition and active wound contrac-
tion, their application is limited by the underlying simplified
constitutive models for the tissue structure [18, 49]. While such

simplifications are adequate for baseline studies and first proto-
type simulations [22, 23], in the current state, these models are
unable to bridge the gap towards arbitrary geometries, large de-
formations, and complex stress distributions that arise in more
realistic settings.

Motivated by the need for a computational framework that
incorporates the state-of-the-art development in wound heal-
ing, here we present a novel finite element formulation for the
chemo-bio-mechanical problem of wound healing in arbitrary
geometries. The manuscript is structured as follows: In Section
2, we introduce the generic continuum framework of wound
healing. In Section 3, we specify a particular type of the model
parameterized in terms of a single chemical signal, a single bio-
logical cell density, and the mechanical deformation. In Section
4, we derive the discrete formulation of the particular model
problem. In Section 5, we present sensitivity studies and se-
lected examples to showcase the features of the model. Finally,
in Section 6, we provide a discussion and a brief outlook.

2. Chemo-bio-mechanical problem

We begin by introducing the generic equations that govern
the dynamics of inflammation-based systems. In general,
the underlying chemo-bio-mechanical problem can be char-
acterized through three spatially and temporally interacting
building blocks: chemical fields including substances such
as growth factors and inflammation signals, here summa-
rized in the vector c(X, t) = [c1(X, t), c2(X, t), ..., cnc (X, t)]t;
biological fields including cell populations, here summa-
rized in the vector ρ(X, t) = [ρ1(X, t), ρ2(X, t), ..., ρnρ (X, t)]t;
and mechanical fields including the deformation ϕ(X, t),
which are possibly locally supplemented by microstruc-
tural internal variables such as microstructural directions
n(X, t) = [n1(X, t), n2(X, t), ..., nnn (X, t)]t and local concentra-
tions w(X, t) = [w1(X, t),w2(X, t), ...,wnw (X, t)]t. In the fol-
lowing, we characterize the evolution equations of these sets
of variables in a continuum setting.
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2.1. Chemical problem: Chemical concentrations
Chemically, the evolution of the set of chemical concentrations
c is balanced by the chemical flux qc and the chemical source
f c,

ċ = div qc(∇c) + f c(c, ρ) , (1)

where {◦̇} = d{◦} / dt denotes the material time derivative and
∇{◦} and div{◦} denote the spatial gradient and divergence. The
chemical flux qc is typically modeled as a linear function of the
gradient of the chemical concentration ∇c to indicate that the
chemical signal can diffuse freely in the domain of interest,

qc = Dcc · ∇c , (2)

where Dcc denotes the chemical diffusion tensor. The chemi-
cal source f c typically consists of a production term f c

p and a
degradation term f c

d , whereby the degradation typically scales
linearly with the concentration c,

f c(c, ρ) = f c
p (c, ρ) − f c

d (c, ρ) c . (3)

In general, f c
p and degradation f c

d can be functions of all chem-
ical concentrations c and all cell populations ρ. They contain
the information about how chemical substances are produced
and degraded through chemical reactions with other chemical
substances and by the different biological cells. In homeosta-
sis, in the absence of chemical gradients ∇c = 0, the chemical
production and degradation balance each other, f c

p = f c
d c.

2.2. Biological problem: Biological cell densities
Biologically, the evolution of the set of cell densities ρ is bal-
anced by the biological flux qρ and the biological source f ρ,

ρ̇ = div qρ(c,∇c, ρ,∇ρ) + f ρ(c, ρ,∇ϕ) . (4)

The biological flux qρ typically consists of two contributions,

qρ = D ρρ · ∇ρ + D ρc(c, ρ) · ∇c . (5)

The first contribution, D ρρ · ∇ρ, describes the free diffusion of
cells along cell density gradients ∇ρ and is the continuum con-
sequence of random walk and contact inhibition at the cell level
represented through the biological diffusion tensor D ρρ. The
second contribution, D ρc · ∇c, characterizes the phenomenon
of chemotaxis and is associated with directed diffusion along
chemical concentration gradients ∇c. The chemotactic diffu-
sion tensor D ρc can either be constant or depend on the local
chemical concentrations c and cell densities ρ. The biologi-
cal source consists of a mitotic contribution f ρm and an apop-
totic contribution f ρa , which typically scales linearly with the
cell density ρ,

f ρ(c, ρ,∇ϕ) = f ρm(c, ρ,∇ϕ) − f ρa (c, ρ,∇ϕ) ρ (6)

The mitotic and apoptotic terms f ρm and f ρa can be functions of
all chemical concentrations c, all cell populations ρ, and of me-
chanical cues ∇ϕ. In homeostasis, in the absence of biological
gradients ∇ρ = 0, the mitotic and apoptotic rates balance each
other, f ρm = f ρa ρ.

2.3. Mechanical problem: Mechanical deformation

Mechanically, we assume that the mechanical problem is quasi-
static and balances the mechanical flux σ with the mechanical
source fϕ,

0 = divσ (∇ϕ,n,w) + fϕ . (7)

The mechanical flux σ, the Cauchy stress, typically consists of
two contributions,

σ = σmat(∇ϕ) + wσfib(∇ϕ,n) . (8)

The first contribution σmat describes the isotropic water-based
matrix as a function of the deformation gradient ∇ϕ. The sec-
ond contribution σfib describes the anisotropic response of fi-
brous constituents such as elastin, collagen, or smooth muscle
as a function of the deformation gradient ∇ϕ and preferred mi-
crostructural directions n, scaled by the fiber content w. The
mechanical source fϕ, the external mechanical force such as
gravity, is typically negligible in the context of inflammation-
based systems,

fϕ = 0 . (9)

Biological cells continuously interact with and remodel the tis-
sue in their immediate environment to establish a well defined
microstructural arrangement in healthy tissue. After an injury,
this microstructure of the healthy skin disappears. Local remod-
eling by cells becomes the crucial connecting point between
the chemical, biological, and mechanical fields [28]. We typi-
cally model this coupling through the internal variables n and
w, which evolve in response to cell population dynamics ρ. In
the most general setting, we allow the microstructural direc-
tions n to gradually reorient according to a set of local evolu-
tion equations [12], e.g., driven by chemical gradients ∇c, by
biological gradients ∇ρ, by mechanical gradients ∇ϕ, and by
the current microstructural directions n,

ṅ = f n(∇c,∇ρ,∇ϕ,n) . (10)

Similarly, the local fiber content w can evolve in time, e.g.,
driven by chemical concentrations c, by biological cell densi-
ties ρ, by mechanical gradients ∇ϕ, and by the current fiber
content w,

ẇ = f w(c, ρ,∇ϕ,w) . (11)

Even though the microstructural direction n and the microstruc-
tural fiber content w are parametrized in terms of inhomoge-
neous fields, their evolution equations are strictly local as they
do not contain any gradient or divergence terms. This suggests
to treat the microstructural information n and w as a set of in-
ternal variables [15, 29].

In summary, we represent the chemo-bio-mechanical problem
through a system of three sets of partial differential equations
for the chemical concentrations c, the biological cell densities
ρ, and the mechanical deformation ϕ, locally supplemented by
two sets of ordinary differential equations for the microstruc-
tural directions n and the microstructural fiber content w. In
the following section, we will specify these generic equations
to explore a particular model problem of wound healing.
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3. Model problem of wound healing

In this section, we illustrate the features of the proposed generic
framework in terms of a simple model problem of wound heal-
ing restricting attention to a few key players. We represent the
chemical problem through the concentration of the inflamma-
tory signal c(X, t), the biological problem through the fibroblast
density ρ(X, t), and the mechanical problem through the defor-
mation ϕ(X, t) supplemented by the collagen content w(X, t) as
local internal variable. We assume that the collagen fiber orien-
tation n(X, t) remains constant throughout the healing process.

3.1. Chemical problem: Inflammatory signal
Chemically, we characterize the response through the inflam-
matory signal c, which represents the initial recruitment of
macrophages and their contribution to generate growth factor
attractors for fibroblasts. According to the generic chemical
balance law (1), we balance its rate of change with the chemi-
cal flux qc and the chemical source f c,

ċ = div qc + f c . (12)

For the chemical flux, we assume that the inflammatory signal
diffuses freely in space along its own gradient ∇c,

qc = Dcc ∇c . (13)

where Dcc is the isotropic chemical diffusion coefficient. For
the chemical source, we assume that the inflammatory signal
has no production component and displays a linear degradation,

f c = −k c , (14)

where k is the chemical degradation rate.

3.2. Biological problem: Fibroblasts
Biologially, we characterize the response through the fibroblast
density ρ. According to the generic biological balance law (4),
we balance its rate of change with the biological flux qρ and the
biological source f ρ,

ρ̇ = div qρ + f ρ . (15)

For the biological flux, we assume that fibroblasts are motile
cells, which diffuse freely along their own gradients ∇ρ per-
turbed by a biased diffusion towards the gradient of the inflam-
matory signal ∇c,

qρ = Dρρ ∇ρ + a ρ∇c , (16)

where Dρρ and Dρc = a ρ denote the isotropic biological and
chemotactic diffusion coefficients. For the biological source,
we make the following ansatz in terms of the fibroblast density
ρ and the intensity of the inflammatory signal c,

f ρ = k1 [ ρ − ρ0 ] + k2 c ρ (17)

where ρ0 is the homeostatic fibroblast concentration, k1 is the
physiological mitotic and apoptotic rate, and k2 is the mitotic
rate induced by the inflammatory signal c. Under healthy con-
ditions, fibroblast mitosis and apoptosis balance one another to
ensure a stable fibroblast population ρ0. However, in the pres-
ence of inflammatory signals, the mitotic rate increases and cre-
ates an imbalance with respect to the steady state ρ0 to increase
the fibroblast density.

3.3. Mechanical problem: Deformation
Mechancially, we characterize the response through the defor-
mation ϕ, from which we derive the deformation gradient F =

∇ϕ and the left Cauchy-Green deformation tensor b = F · Ft as
key kinematic variables. According to the mechanical balance
law (7), we balance the mechanical flux σ characterizing the
Cauchy stress and the mechanical source fϕ characterizing the
external mechanical forces,

0 = divσ + fϕ . (18)

Skin has a well organized microstructure with an isotropic
water-based matrix that serves as a scaffold for the anisotropic
collagen network with a preferred orientation n0 [5]. We char-
acterize its constitutive response through a compressible, trans-
versely isotropic, hyperelastic free energy function,

ψ = ψmat(J, I1) + wψfib(I1, I4) , (19)

which consists of an isotropic part ψmat for the water-based
matrix and an anisotropic part ψfib for the collagen network
weighted by the collagen content w. Here, we have introduced
three kinematic invariants, the Jacobian J = det F for the vol-
umetric response, the first invariant I1 = b : I for the isotropic
response, and the fourth invariant I4 = [n ⊗ n] : I for the
anisotropic response, where n = F · n0 is the preferred col-
lagen fiber orientation in the deformed configuration [56]. We
model the matrix material as standard isotropic, compressible
Neo-Hooke-type parameterized in terms of the Lamé constants
λ and µ and the collagen fibers as Holzapfel-type [16], parame-
terized in terms of the collagen stiffness c1, the nonlinearity c2,
and the fiber dispersion κ,

ψmat = 1
2 µ [ I1 − 3 ] − µ ln J + 1

2λ ln2 J
ψfib = 1

2 c1/c2 [ exp(c2 [ κI1 + [ 1 − 3κ ] I4 − 1]2) − 1 ] .
(20)

The additive decomposition of the strain energy function trans-
lates into the additive decomposition of the Cauchy stress ac-
cording to the generic ansatz (8),

σ = F ·
2
J
∂ψ

∂C
· Ft = σmat + w · σfib , (21)

with the following matrix and fiber contributions,

σmat = F ·
2
J
∂ψ

∂C

mat

· Ft =µ [ b − I ] + λ ln J I

σfib = F ·
2
J
∂ψ

∂C

fib

· Ft = 2ψ1 b + 2ψ4 n⊗ n .
(22)

Here, ψ1 and ψ4 denote the first derivatives of the fiber energy
with respect to the first and fourth invariants, ψi = ∂ψfib / ∂Ii,

ψ1 = c0 + c1κ [ κI1 + [ 1 − 3κ ]I4 − 1 ]
exp(c2 [κI1 + [ 1 − 3κ ]I4 − 1 ]2)

ψ4 = c1[1 − 3κ] [ κI1 + [ 1 − 3κ ]I4 − 1 ]
exp(c2 [κI1 + [ 1 − 3κ ]I4 − 1 ]2) .

(23)

For the mechanical source, we assume that external forces such
as gravity do not play a major role during wound healing and
can therefore be neglected,

fϕ = 0 . (24)

5



It remains to characterize the evolution of the collagen content
w, which we treat locally as internal variable. We assume that
healthy skin possess a homeostatic collagen content w0. After
an injury, the collagen content decreases dramatically in the af-
fected region. It is the task of the fibroblasts to deposit new
collagen to restore skin’s mechanical properties. We therefore
model the evolution of the collagen content ẇ to depend on the
chemical signal c, the fibroblast density ρ, and the current col-
lagen content w itself, specifically,

ẇ = f w with f w =
ρ γ

1 + w2

[
1 − w +

α c γ
1 + c

]
. (25)

Here, γ denotes the physiological collagen deposition rate and
α denotes the increase in collagen synthesis in response to in-
flammation c.

4. Computational modeling of wound healing

To characterize the spatio-temporal evolution of the inflamma-
tory signal c, the fibroblast density ρ, the deformation ϕ, and the
collagen content w, we solve the global balance equations (12),
(15), and (18) along with the local evolution equation (25).

4.1. Strong form
To derive the algorithmic solution we begin by restating the
global balance equations (12), (15), and (18) in their residual
form in terms of the chemical, biological, and mechanical resid-
uals Rc, Rφ, and Rϕ,

Rc = ċ − div qc − f c .
= 0 in B

Rρ = ρ̇ − div qρ − f ρ .
= 0 in B

Rϕ = − divσ − fϕ .
= 0 in B .

(26)

To define the corresponding boundary conditions, we decom-
pose the boundary ∂B into disjoint parts ∂Bc and ∂Bqc for
the chemical problem, ∂Bφ and ∂Bqρ for the biological prob-
lem, and ∂Bϕ and ∂Bσ for the mechanical problem. We pre-
scribe Dirichlet boundary conditions c = cp on ∂Bc, ρ = ρp on
∂Bρ, and ϕ = ϕp on ∂Bϕ, and Neumann boundary conditions
qc · n = tc on ∂Bqc

0 , qρ · n = tρ on ∂Bqρ
0 , and σ · n = tϕ on ∂Bσ0

where n denotes the outward normal to ∂B

4.2. Weak form
To obtain the weak forms of the chemical, biological, and me-
chanical problems, Gc, Gρ, and Gϕ, we multiply the residual
statements (26) and the corresponding Neumann boundary con-
ditions with the scalar- and vector-valued test functions δc, δρ
and δϕ and integrate them over the domain B,

Gc =

∫
B

δc ċ + ∇δc ·qc − δc f c dv −
∫
∂Bqc
δc tc da .

= 0

Gρ=

∫
B

δρ ρ̇ + ∇δρ ·qρ − δρ f ρdv −
∫
∂Bqρ
δρ tρ da .

= 0

Gϕ=

∫
B

∇δϕ : σ − δϕ · fϕdv −
∫
∂Bσ
δϕ· tϕda .

= 0 .

(27)
We require that these weak forms vanish identically for all test
functions δc, δρ, δϕ inH0

1 (B).

4.3. Discretization in time

To discretize the weak forms (27) in time, we partition the
time interval of interest T into nstp subintervals [tn, t] as T =⋃nstep−1

n=0 [tn, t]. Here and from now on we omit the subscript
{◦}n+1 to denote the current time point. We assume, that the pri-
mary unknowns cn, ρn and ϕn and all derivable quantities are
known at the last time point tn. To advance the unknowns c,
ρ, and ϕ to the current time point t, we apply the classical im-
plicit backward Euler time integration scheme and evaluate the
governing equations (27) at time t. We apply a finite difference
scheme to approximate the first order material time derivatives
as

ċ = [ c − cn ] /∆t and ρ̇ = [ ρ − ρn ] /∆t , (28)

where ∆t := t − tn > 0 denotes the current time increment.

4.4. Discretization in space

To discretize the weak forms (27) in space, we apply a C0-
continuous interpolation for the inflammatory signal c, the fi-
broblast density ρ, and the deformation ρ, and allow the colla-
gen content w to be C−1 continuous. Accordingly, we introduce
c, ρ, and ϕ globally on the node point level, and store w lo-
cally on the integration point level. We discretize the domain
of interest B into nel elements Be as B =

⋃nel
e=1 Be. We adopt

a Bubnov-Galerkin approach and interpolate the trial functions
ch, ρh,ϕh in H1 (B) with the same basis function Nc, Nρ, and
Nϕ as the test functions δch, δρh, δϕh in H0

1 (B) on the element
level,

δch=
∑nec

i=1 Nc
i δci δρh=

∑neρ

j=1 Nρ
j δρ j δϕh=

∑neϕ

k=1 Nϕ
k δϕk

ch=
∑nec

l=1 Nc
l cl ρh=

∑neρ

m=1 Nρ
m ρm ϕh=

∑neϕ

n=1 Nϕ
nϕn .

(29)
We adopt the isoparametric concept and interpolate the local
element geometry with the same basis functions Nϕ as the test
and trial functions ϕh and δϕh.

4.5. Discrete algoroithmic residuals

With the discretizations in time (28) and space (29), the weak
forms (27) translate into the discrete algorithmic residuals,

Rc
I =

nel

A
e=1

∫
Be

Nc
i

c − cn

∆t
+∇Nc

i · q
c− Nc

i f c dv −
∫
∂B

qc
e

Nc
i tc da .

= 0

Rρ
J =

nel

A
e=1

∫
Be

Nρ
j
ρ − ρn

∆t
+∇Nρ

j · q
ρ− Nρ

j f ρdv −
∫
∂B

qρ
e

Nρ
j tρ da .

= 0

Rϕ
K =

nel

A
e=1

∫
Be

∇Nϕ
k ·σ − Nϕ

k fϕdv −
∫
∂Bσe

Nϕ
k tϕda .

= 0 .

(30)
Here, the operator A symbolizes the assembly of all element
contributions at the element nodes i = 1, ..., nec, j = 1, ..., neρ,
and k = 1, ..., neϕ to the overall residuals at the global nodes
I = 1, ..., nnc, J = 1, ..., nnρ, K = 1, ..., nnϕ.
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4.6. Linearization

Although it is possible and sometimes advantageous to solve
the discrete residual equations (30) sequentially in a staggered
sense, here we discuss the overall solution within a monolithic
incremental iterative Newton–Raphson scheme. The Newton–
Raphson scheme relies on a consistent algorithmic linearization
of the governing equations,

Rc
I = Rc

Ii +

nnc∑
L=1

Kcc
IL dcL+

nnρ∑
M=1

Kcρ
IM dρM+

nnϕ∑
N=1

Kcϕ
IN ·dϕN

.
= 0

Rρ
J = Rρ

Ji +

nnc∑
L=1

Kρc
JL dcL+

nnρ∑
M=1

Kρρ
JM dρM+

nnϕ∑
N=1

Kρϕ
JN ·dϕN

.
= 0

Rϕ
K = Rϕ

Ki+

nnc∑
L=1

Kϕc
KL dcL+

nnρ∑
M=1

Kϕρ
LM dρM+

nnϕ∑
N=1

Kϕϕ
KN ·dϕN

.
= 0 .

(31)
Here we have introduced the iteration matrices

Kcc
IL =

nel

A
e=1

∫
Be

Nc
i [ 1

∆t − k] Nc
l + ∇Nc

i · D
cc ∇Nc

l dV

Kρc
JL =

nel

A
e=1

∫
Be

Nρ
j [−k2] Nc

l + ∇Nρ
j · a ρ∇Nc

l dV

Kρρ
JM =

nel

A
e=1

∫
Be

Nρ
j [ 1

∆t − k1 − k2 c] Nρ
m + ∇Nρ

j · D
ρρ ∇Nρ

m dV

Kϕc
KL =

nel

A
e=1

∫
Be

∇Nϕ
k · dcwσfibNc

l dV

Kϕρ
KM =

nel

A
e=1

∫
Be

∇Nϕ
k · dρwσ

fibNρ
m dV

Kϕϕ
KN =

nel

A
e=1

∫
Be

∇Nk
ϕ · c · ∇Nn

ϕ + ∇Nk
ϕ · σ̂ · ∇Nn

ϕ dV

(32)
with the understanding that, for this special model problem,
Kcρ

IM = 0, Kcϕ
IN = 0, and Kρϕ

JN = 0. The solution of the system of
equations (31) renders the iterative update for the increments of
the chemical, biological, and mechanical global unknowns as
∆cI ← ∆cI + dcI ∆ρJ ← ∆ρJ + dρJ and ∆ϕK ← ∆ϕK + dϕK .
It remains to determine the sensitivities of the collagen content
dcw and dρw and the Eulerian tangent moduli c at the constitu-
tive level.

4.7. Algorithmic constitutive equations

On the constitutive level, we first update all internal variables,
for our model problem the collagen content w. Then, we de-
termine the chemical, biological, and mechanical fluxes qc, qρ,
and σ and sources f c, f ρ, and fϕ, which enter the discrete al-
gorithmic residuals (30). Last, we determine their consistent
algorithmic linearizations, for our model problem dcw and dρw
and c, which enter the iterations matrices (32). We treat the
collagen content w as internal variable and store it locally on
the integration point level. To discretize its evolution in time,
we apply a finite difference approximation,

ẇ = [ w − wn ] /∆t , (33)

combined with an implicit backward Euler time integration
scheme. To solve its nonlinear evolution equation, we adopt

a local Newton-Raphson scheme. We rephrase the evolution
equation (25) in its residual form,

Rw = w − wn −
ρ γ

1 + w2

[
1 − w +

α c γ
1 + c

]
∆t .= 0 (34)

and linearize it consistently as Kw = dwRw with

Kw =
dRw

dw
= 1+

ρ γ

1 + w2

[
1 +

2w
1 + w2

[
1 − w −

α c γ
1 + c

]]
∆t (35)

to incrementally update the collagen content w ← w − Rw/Kw

on the integration point level. Upon local equilibrium, we de-
termine the fluxes qc, qρ, and σ and sources f c, f ρ, and fϕ for
the global residuals (30). Next, we determine the linearizations
dcw = ∂cẇ ∆t /Kw with ∂cẇ from equation (25),

dcw =
ργ

1 + w2

[
αγ

1 + c
−

α c γ
[1 + c]2

]
∆t /Kw , (36)

and dρw = ∂ρẇ ∆t /Kw with ∂ρẇ from equation (25),

dρw =
γ

1 + w2

[
1 − w +

α c γ
1 + c

]
∆t /Kw , (37)

for the global iterations matrices (32). Last, we determine the
Eulerian constitutive moduli c,

c = c
mat + w · cfib , (38)

with matrix and fiber contributions,

c
mat= [ λ I⊗ I + 2[ µ − λ ln J ] i ]/J

c
fib = 4 [ψ11b ⊗ b + 2ψ14[b ⊗ n⊗ n]sym+ ψ44n⊗ n⊗ n⊗ n]/J.

(39)
Here, ii jkl = δikδ jl. ψ11, ψ14 and ψ44 denote the second deriva-
tives of the fiber energy with respect to the first and fourth in-
variants, ψi j = ∂2ψ / ∂Ii∂I j with

ψ11 = c1[ 1 + 2 c2[ κI1 + [1 − 3κ]I4 − 1]]
exp(c2 [κI1 + [ 1 − 3κ ]I4 − 1 ]2) κ2

ψ14 = c1[ 1 + 2 c2[ κI1 + [1 − 3κ]I4 − 1]]
exp(c2 [κI1 + [ 1 − 3κ ]I4 − 1 ]2) κ [1 − 3κ]

ψ44 = c1[ 1 + 2 c2[ κI1 + [1 − 3κ]I4 − 1]]
exp(c2 [κI1 + [ 1 − 3κ ]I4 − 1 ]2) [1 − 3κ]2 .

(40)

5. Examples

In this section, we present selected examples to showcase the
features of the present formulation in different wound heal-
ing scenarios. The first example is a homogeneous setting, in
which we explore wound healing across the temporal scales.
We monitor the temporal evolution of the chemical, biological,
and mechanical variables and systematically probe the consti-
tutive equations for the chemical, biological, and mechanical
source terms. The second example is a heterogeneous setting,
in which we explore wound healing across the spatio-temporal
scales. We monitor the spatio-temporal evolution of the chem-
ical, biological, and mechanical variables and systematically
probe the constitutive equations for the chemical, biological,
and mechanical flux terms.

7



5.1. Wound healing across the temporal scales
First, we explore the temporal evolution of the chemical, bi-
ological, and mechanical variables, the inflammatory signal c,
the fibroblast density ρ, and the collagen content w in a homo-
geneous setting. This allows us to systematically probe the con-
stitutive equations for the chemical, biological, and mechanical
source terms f c, f ρ, and f w defined in equations (14), (17), and
(25) and perform sensitivity analyses with respect to the associ-
ated material parameters. The homogeneous setting is charac-
terized through the local versions of equations (1), (4), and (7)
resulting in the following system of ordinary differential equa-
tions,

ċ = − k c
ρ̇ = k1 [ ρ − ρ0 ] + k2 c ρ
ẇ = ρ γ [1 − w + [α c γ]/[1 + c]]/[1 + w2] .

In the following, we use normalized variables to facilitate the
interpretation of the simulations. We choose the chemical
degradation rate to k = 0.5 [1/day], the physiological mitotic
and apoptotic rate to k1 = 0.833 [1/day], the mitotic rate in-
duced by the inflammatory signal to k2 = 0.3 [1/day], the
homeostatic fibroblast concentration to ρ0 = 0.5, the physiolog-
ical collagen deposition rate to γ = 0.1, and the inflammation-
induced increase in collagen synthesis to α = 0.5 [19]. Initially,
the wound is defined by a peak inflammatory signal, c|t=0 = 1,
a negligible fibroblast concentration, ρ|t=0 = 0, and a clot with-
out collagen, w|t=0 = 0.

Time
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Figure 3: Wound healing across the temporal scales. Temporal evolution of the
the inflammatory signal c, the fibroblast density ρ, and the collagen content w.

Figure 3 illustrates the temporal evolution of the chemical, bi-
ological, and mechanical variables, the inflammatory signal c,
the fibroblast density ρ, and the collagen content w. During
the initial phase of wound healing, the inflammatory signal c
is significantly elevated. Inflammation induces an increase in
the mitotic rate of fibroblasts, which gradually increase in den-
sity. At the same time, the chemoattractant decays exponen-
tially towards its baseline value of c = 0. The fibroblast density
ρ initially overshoots, but then gradually returns to its home-
ostatic equilibrium value of ρ = 0.5. From a structural point

of view, the collagen content w is the primary indicator of the
healing progress. It increases gradually as the wound recovers.
Once the collagen content stabilizes at its physiological value
of w0 = 1, the wound is assumed to have healed. Overall, the
dynamics of the chemical, biological, and mechanical variables
shown in Figure 3 are in qualitative and quantitative agreement
with the characteristic features of wound healing.
Next, we perform a systematic sensitivity analysis to explore
the impact of the physiological collagen deposition rate γ,
the inflammation-induced collagen synthesis rate α, and the
inflammation-induced fibroblast mitosis k2 on the healing pro-
cess. In all three cases, we monitor the temporal evolution of
the collagen content w as the primary mechanical indicator of
the healing progress.
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1.0 – 2.0
< 1.0

Figure 4: Wound healing across the temporal scales. Sensitivity of collagen
content w with respect to collagen deposition rate γ. Increasing the collagen
deposition rate induces an overproduction of collagen associated with hyper-
trophic scarring.

Figure 4 illustrates the sensitivity of the collagen content for
varying collagen deposition rates γ. Mathematically, the colla-
gen deposition rate γ directly scales the effects of the fibroblast
density ρ on the collagen content w. Biologically, a stronger
response by fibroblasts drives an overproduction of collagen,
which can be associated with hypertrophic scarring.
Figure 5 illustrates the sensitivity of the collagen content
for varying inflammation-induced collagen synthesis rates α.
Mathematically, the collagen synthesis rate α directly scales the
effects of the inflammatory signal c on the collagen content w.
Increasing the influence of the inflammatory signal through α
has a similar effect as increasing the collagen deposition rate γ.
However, increasing α has a much longer lasting effect, and the
collagen content returns to its baseline value much slower. Bi-
ologically, a larger influence of the inflammatory signal drives
an overproduction of collagen, which can be associated with
hypertrophic scarring.
Figure 6 illustrates the sensitivity of the collagen content for
varying inflammation-induced mitotic rates k2. Mathemati-
cally, the mitotic rate k2 increases the fibroblast concentration
ρ, which, in turn, increases the collagen content w. Although k2
does not directly impact the collagen content w, its variation
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Figure 5: Wound healing across the temporal scales. Sensitivity of collagen
content w with respect to inflammation-induced collagen synthesis rate α. In-
creasing the collagen synthesis rate induces an overproduction of collagen as-
sociated with hypertrophic scarring.

displays some secondary effects. However, these secondary
effects are less pronounced and the collagen concentration re-
mains within normal levels.
This set of homogeneous examples provides confidence that our
constitutive equations are indeed able to capture a range of re-
alistic scenarios in wound healing. Nonetheless, the calibration
of the model with realistic clinical data remains the next impor-
tant step.

5.2. Wound healing across the spatio-temporal scales
Now, we explore the spatio-temporal evolution of the chemical,
biological, and mechanical variables in a heterogeneous three-
dimensional setting. In contrast to the first problem, this now
allows us to probe the constitutive equations for the chemical,
biological, and mechanical flux terms qc, qρ and σ defined in
equations (13), (16), and (21) and perform sensitivity analyses
with respect to the associated material parameters. We idealize
the tissue sample as a rectangular prism and model the wound
as an elliptical enclosure at its center. The tissue has dimensions
of 4×4×1cm3. Since the problem has two planes of symmetry,
we discretize a quarter of the system using 20× 20× 4 = 1, 600
trilinear brick elements. The boundary conditions are the same
for all examples of this subsection. For the chemical and bio-
logical problems, we assume homogeneous Neumann boundary
conditions. For the mechanics problem, we impose a constant
pre-strain of 10% in the x-axis. This boundary condition re-
sembles the pre-stretched state of skin in vivo. In addition, we
apply symmetric boundary conditions to reflect the two planes
of symmetry.
In addition to the material parameters for the source terms de-
scribed in detail for the homogeneous problem in Section 5.1,
we now need to specify the material parameters for the flux
terms. For the chemical problem, the diffusion coefficient is Dcc

= 0.05 cm/day. For the biological problem, the diffusion coeffi-
cient is Dρρ = 0.02 cm/day [19]. For the mechanical problem,
the Lamé constants are λ = 0.385 MPa and µ = 0.254 MPa, and
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Figure 6: Wound healing across the temporal scales. Sensitivity of collagen
content w with respect to inflammation-induced mitotic rate k2. Increasing the
mitotic rate induces an overproduction of collagen associated with hypertrophic
scarring.

the Holzapfel parameters are c1 = 0.15 MPa, c2 = 0.0418, and
κ = 0.05 as calibrated from experiments in pig skin [20]. The
collagen fiber orientation is n = [1, 0, 0]t.
The initial conditions for the chemical, biological, and mechan-
ical fields are heterogeneous, with similar values as in Section
5.1 inside an elliptical wounded region and baseline values out-
side. We choose the center of the wound at [xc, yc, zc], and pa-
rameterize the injured as [x − xc]2/r2

x + [y − yc]2/r2
y < 1 and

z− zc < 0.5. The injured region initially has an elevated inflam-
matory signal, c = 1, and is completely depleted fibroblasts,
ρ = 0, and collagen, w = 0. The healthy tissue outside the
wound is free of inflammation, c = 0, and has a baseline fibrob-
lasts density, ρ = ρ0 = 0.5, and collagen content, w = 1.
Figure 7 shows the spatio-temporal evolution of the inflamma-
tory signal c, the fibroblast density ρ, and the collagen content
w for a circular wound with rx = ry = 1 cm. The last column in
Figure 7 summarizes the temporal evolution of the individual
fields over the region of the initial injury. The overall behavior
is similar to that of the homogeneous wound depicted in Fig-
ure 3. The marginal differences between both graphs reflect the
influence of the non-wounded surrounding region in the het-
erogeneous example. These differences disappear over time
as the injured region gradually recovers its healthy state. The
most distinguishing feature of our framework is the inclusion
of common mechanical metrics like stress and strain. Figure 8
displays the spatio-temporal evolution of the Green Lagrange
strain Exx in the direction of the collagen fibers. The initial pre-
stretch of 10%, applied at the edges of the wound, generates
an initially heterogeneous strain distribution. Its spatial pro-
file results from the heterogeneous tissue stiffness introduced
through the regionally varying collagen content w. As the heal-
ing progresses, the distribution of the strains becomes more and
more homogenous as the collagen content gradually returns to
its baseline value. The tissue gradually recovers its healthy ma-
terial properties.
Next, we perform a systematic sensitivity analysis to explore
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w: collagen

c: inflammation

ρ: fibroblasts

Figure 7: Wound healing across the spatio-temporal scales. Spatio-temporal evolution of the collagen content w, the fibroblast density ρ, and the inflammatory signal
c for a circular wound. The last column shows the temporal evolution of the individual fields integrated over the original wound domain. An elevated inflammatory
signal c increases the fibroblast density ρ, which results in an increase in the collagen content w.

Figure 8: Wound healing across the spatio-temporal scales. Spatio-temporal evolution of the Green Lagrange strain Exx in the direction of the collagen fibers.
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Figure 9: Wound healing across the spatio-temporal scales. Sensitivity of collagen content w with respect to varying wound radii of 0.25 cm, 0.5 cm, and 1.0 cm.
The last column shows the temporal evolution of the collagen content integrated over the original wound domain. The time course of the healing process remains
unaffected by the wound size. Wound healing is dominated by local source rather than global flux terms, and diffusion plays a minor role.

w: collagen

w: collagen

w: collagen

Figure 10: Wound healing across the spatio-temporal scales. Sensitivity of collagen content w with respect to varying elliptical wound shapes with aspect ratios of
1 : 3, 2 : 3, and 3 : 3. The last column shows the temporal evolution of the collagen content integrated over the original wound domain. The time course of the
healing process remains unaffected by the wound shape. Wound healing is dominated by local source rather than global flux terms, and diffusion plays a minor role.
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the impact of the wound size and the wound shape on the heal-
ing process. First, we vary the size of the injured region while
maintaining its circular shape. In particular, we study wound
radii r = rx = ry of 0.25 cm, 0.5 cm, and 1.0 cm. Then, we vary
the wound shape and study aspect ratios rx : ry of 1 : 3, 2 : 3,
and 3 : 3.
Figure 9 displays the spatio-temporal evolution of the colla-
gen content w for varying wound radii of 0.25 cm, 0.5 cm, and
1.0 cm. Unfortunately, the chosen discretization is slightly too
coarse to truly capture the circular wound shape, especially for
the wound radius of 0.25 cm. However, the basic trends are
clearly visible: For the chosen set of material parameters, the
time course of the healing process remains unaffected by the
wound size. Mathematically, this implies that the evolution
equations are dominated by local source rather than global flux
terms, and diffusion plays a minor role. Biologically, this im-
plies that, for small wounds, the wound size does not affect the
recovery time of the wound as a whole.
Figure 10 displays the spatio-temporal evolution of the collagen
content w for varying wound wound shapes with aspect ratios
of 1 : 3, 2 : 3, and 3 : 3. Again, the chosen discretization is
slightly too coarse to truly capture the elliptical wound shape.
Nevertheless, the model captures the basic trends: For the cho-
sen set of material parameters, the time course of the healing
process remains unaffected by the wound shape. The integral
response is virtually similar to the homogeneous prediction.
This is in agreement with the previous simulation of varying
wound sizes, for which we had concluded that the evolution
equations are dominated by local source rather than global flux
terms, and diffusion plays a minor role.

6. Discussion

Hypertrophic scarring is a cutaneous condition characterized by
the excessive deposition of collagen, which gives rise to red,
thick, stiff, and sometimes painful scar tissue [2]. In physiolog-
ical wound healing, the production of new collagen and break-
down of old collagen balance one another and the overall colla-
gen content remains constant. In pathological wound healing,
however, collagen production dominates collagen breakdown
and the overall amount of collagen increases. Fortunately, hy-
pertrophic scars do not extend beyond the initial wounded re-
gion, but they may continue to grow for weeks or even months
[13]. Mechanics has long been neglected to play a crucial role
in scar formation. Yet it is well-known that an increased col-
lagen deposition increases tissue stiffness, and might result in
impaired motion when the wound is located close to a joint
[50]. Here we have established a novel computational frame-
work for the chemo-bio-mechanics of wound healing to un-
derstand the fundamental mechanisms of scar formation. Our
novel approach towards simulating wound healing is uncondi-
tionally stable, geometrically flexible, and conceptually modu-
lar.
Unconditional stability is guaranteed by the use of an implicit
backward Euler scheme to discretize the evolution equations
in time, both globally and locally. Using implicit time inte-
gration schemes is algorithmically robust and allows for larger

time steps than explicit schemes. For the solution of the re-
sulting nonlinear system of equations, we suggest an incremen-
tal iterative Newton-Raphson scheme, again both globally and
locally. While the generic equations of wound healing can
be bi-directionally coupled, here we have focused on a uni-
directionally coupled model problem. For this specific case,
we could have used a sequential solution algorithm. However,
for the sake of generality, we have adopted a Newton-Raphson
based solution strategy. The conceptual advantage of Newton-
Raphson schemes is that they are not only computationally effi-
cient, but they can easily be supplemented by ad hoc time adap-
tive schemes.
Geometrical flexibility is a crucial novelty of the proposed
model. Existing models have mainly been restricted to zero-,
one-, and two-dimensional approximations [41]. Our general
three-dimensional setting allows us to move forward in the spa-
tial complexity. It is a pivotal step towards the simulation of
healing in patient specific geometries. We achieve this flexibil-
ity by using a finite element discretization [19]. As opposed to
conventional finite volume or finite difference techniques, finite
elements, by design, allow for arbitrary geometries [59]. For
the first time, we have simulated the healing process in an ar-
bitrary three-dimensional domain. For the sake of illustration,
we have used an idealized geometry. The extension to more re-
alistic geometries is, of course, straightforward and part of our
current work.
Conceptual modularity allows us to adjust our approach to other
existing models [8] or to expand on the particular model pro-
posed here [46, 58]. We have systematically divided the prob-
lem of wound healing into three building blocks: chemical,
biological, and mechanical [6]. The chemical fields obey a
system of partial differential equations common to all reaction-
diffusion systems. The biological fields follow a more complex
system of partial differential equations that can be specialized
for the individual cell populations involved in the healing pro-
cess. The mechanical fields fall into two categories, global and
local, characterized through systems of partial and ordinary dif-
ferential equations well-established for the continuum mechan-
ics of soft biological tissues. We have highlighted the consti-
tutive coupling between these three different fields for general
chemo-bio-mechanical problems. Within this generic setup, we
have specified particular constitutive equations to model spe-
cific aspects of wound healing [42]. Our approach not only
explores relevant healing scenarios for a particular model, but
effectively creates a generic framework that can be easily ex-
panded to incorporate other features such as the impact of me-
chanical cues on cell mitosis or apoptosis [40]. As such, it is not
only applicable to explore chemo-bio-mechanical interaction
during wound healing in skin, but also in other inflammation-
based systems, for example in healing infarcts in cardiac muscle
[38].
In addition to these algorithmic aspects, our model accounts for
a state-of-the-art mechanical characterization of skin within a
continuum mechanics approach [20]. Recently there has been
significant development in the theory of the mechanics of liv-
ing soft collagenous tissues [4, 16, 34]. Unfortunately, these
advances have been almost entirely disconnected from recent
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trends in systems biology, which have been confined to either
rigid geometries or viscoelastic fluids [58]. These simplifica-
tions impose great limitations towards understanding the role
of mechanical cues during wound healing. A rigorous, accurate
mechanical characterization is a fundamental knowledge gap
in existing models for wound healing. Here we characterize
skin using a hyperelastic strain energy function parametrized in
terms of a set of microstructure variables such as collagen ori-
entation [24, 45] and collagen content [39]. By allowing these
variables to evolve in time, we establish clear relations between
the action of the different cell populations and tissue remodel-
ing. For the first time in the context of wound healing, we can
predict finite deformations and impose physiological boundary
conditions such as tissue pre-strain [37].
In conclusion, the proposed framework introduces a new gen-
eration of wound healing models that may provide fundamental
insight into the role of mechanics in scar formation. A unified
monolithic finite element treatment of the underlying chemi-
cal, biological, and mechanical fields is a first step towards the
smooth incorporation of realistic environmental conditions and
personalized individual geometries. Our model has the poten-
tial to significantly improve effective wound management and
optimize treatment options on a patient-specific basis.
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