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Abstract The spreading of infectious diseases includ-
ing COVID-19 depends on human interactions. In an
environment where behavioral patterns and physical
contacts are constantly evolving according to new gov-
ernmental regulations, measuring these interactions is a
major challenge. Mobility has emerged as an indicator
for human activity and, implicitly, for human interac-
tions. Here we study the coupling between mobility and
COVID-19 dynamics and show that variations in global
air traffic and local driving mobility can be used to strat-
ify different disease phases. For ten European countries,
our study shows a maximal correlation between driving
mobility and disease dynamics with a time lag of 14.6
± 5.6 days. Our findings suggests that trends in local
mobility allow us to forecast the outbreak dynamics of
COVID-19 for a window of two weeks and adjust local
control strategies in real time.

Keywords coronavirus · COVID-19 · epidemiology
modeling · SEIR model · network model

1 Introduction

A barometer is an instrument that measures air pressure.
Its main purpose is to forecast short term changes in
the weather. It is often imprecise as it relies on a num-
ber of assumptions linking variations of air pressure to
atmospheric conditions. Nonetheless, overall, we accept
it as an important tool in weather prediction that has
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saved countless lives since its introduction for forecast-
ing in the 19th century. In an evolving crisis like the
COVID-19 pandemic, the world is in a dire need of a
barometer that would provide us with reliable estimates
of the disease dynamics when lockdown measures are
either enacted or removed.

The transmission of an infectious disease depends
mostly on three key aspects: the biology of the disease
when individuals are in contact, social and human be-
havior that dictate the way individuals interact, and the
physics of such contacts [1]. We still do not know about
the details of the COVID-19 pathology, and in particular
how different age or population groups either transmit
or are susceptible to the disease [2,3]. But, the disease
pathogenicity and transmissibility cannot be altered in
the absence of a vaccine or preventive treatments. On
the behavioral side, there has been a dramatic change in
everyday habits with widespread adoption of new rules
to prevent both close contact between individuals and
the exchange of contaminated bodily fluids. The remain-
ing factors, frequency and type of contact, depend on
human activity [4]. Work, school, and leisure inevitably
increase the number of contacts, and hence the risk of
transmission that occurs in everyday life [5]. At the
global level, human mobility, tracked by mobile phone
use, has recently emerged as a possible proxy for human
activity. Studies of the effective reproduction number
R(t), the average number of secondary infections caused
by an infected person, against in-state human mobility
data in China [6,7,8] and in the United States [9,10]
have demonstrated that as long as the epidemic is on-
going, mobility and reproduction numbers are indeed
correlated [11]. Interestingly, successful exit strategies
reveal a decorrelation between mobility and reproduc-
tion, which implies that an increase in activity does not
lead to an increase in infection.
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Figure 1. COVID-19 outbreak dynamics across Europe. Mobility network of the European Union with
N = 27 nodes and the 172 most traveled edges (top left); basic reproduction number R0 = C/B (top right);

initial community spread ⇢ = E0/I0 (bottom left); and a↵ected population ⌘ = N⇤/N (bottom right).

the European Union. The basic reproduction number is largest in Austria and Ger-
many with R0 = 8.7 and R0 = 6.0 and smallest in Malta and Denmark with R0 = 3.0
and R0 = 2.7, with a mean of R0 = 4.62±1.32. The initial community spread is largest
in Italy and Spain with ⇢ = 18.4 and ⇢ = 15.2 and smallest in Malta and Cyprus with
⇢ = 0.2 and ⇢ = 0.1 with a mean of ⇢ = 3.53 ± 3.97. The a↵ected population is largest
in Ireland and Hungary with ⌘ = 2.73% and ⌘ = 1.21% and smallest in Slovakia and
Bulgaria with ⌘ = 0.04% and ⌘ = 0.02%, with a mean of ⌘ = 0.08 ± 0.26. Table 1
summarizes the means and standard deviations of our identified parameter values.
Figure 2 illustrates the reported infectious and recovered populations and the simu-
lated exposed, infectious, and recovered populations for all 27 countries. The simu-
lations use the basic reproduction number R0 = C/B, the initial community spread
⇢ = E0/I0, and the a↵ected population ⌘ = N⇤/N identified for each country using
disease specific latent and infectious periods of A = 2.56 days and C = 17.82 days.
Day d0 indicates the beginning of the outbreak at which 0.001% of the population are
infected. The outbreak delay across Europe spans a time window of 24 days, ranging
from February 28, 2020 in Italy to March 22, 2020 in Hungary.
Figure 3 highlights the e↵ects of the COVID-19 outbreak control across Europe. The
top row shows the simulated outbreak under constrained mobility with the current
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Fig. 1 Phases of the COVID-19 outbreak and their correlation to global and local mobility, reproduction number,
and reported cases. (a) Phase I: Exponential growth during initial disease outbreak; Phase II: Outbreak control with rapidly
reduced global and local mobility; Phase III: Reduced growth under lockdown with reduced local and global mobility; Phase IV:
Gradual exit with successively released lockdown measures, increased mobility, decreasing number of new cases, and low effective
reproduction number, indicating that many behavioral changes are still in place. Solid lines represent means values of all European
countries, shaded areas their standard deviations; (b) Global mobility network of European countries with 26 nodes and the 201
most traveled edges; (c) Phase evolution in 10 European countries; (d) Duration of individual phases: Dashed line indicates mean
duration of 31 ± 8 days to reach R(t) = 1; Phase I with duration of 6 ± 4 days, Phase II with 11 ± 7 days and Phase III with 14 ± 7
days.

When considered together, current mobility data
and disease indicators follow the typical pattern shown
in Figure 1 with four distinct phases: Phase I of expo-
nential growth during the initial outbreak of the disease;
Phase II of outbreak control during which global and
local mobility are rapidly reduced; Phase III of reduced
growth under lockdown with reduced local and global
mobility; and Phase IV of gradual exit during which
lockdown measures are successively released and mobil-
ity increases while the number of new cases continues

to decrease. The end of Phase IV marks the beginning
of the second wave with newly increasing case numbers.
An important feature of the outbreak dynamics is that
a reduction in the number of new cases is delayed by
about two weeks compared to the reduction in mobility
and that this feature appears systematically across all
countries. However, we will show that another key prop-
erty of the data is the high correlation between mobility
data and the reproduction number after lockdown. We
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can formally exploit this property to understand the
effects of human activity on the reproduction number.

Modeling has proven to be a key element to un-
derstand disease dynamics [12,13] and establish new
public health policies [14]. While most models rely on
standard population models such as the SEIR model,
there are many refinements and variations that take
into account contact between different groups, suscep-
tibility, the effect of air travel through networks, and
the effect of testing and lockdown [14,15]. These models
can be deterministic, representing average quantities,
or stochastic, associated with uncertainties in data and
disease dynamics. Due to the large uncertainties associ-
ated with model parameters, most of the actual work
consists in devising appropriate statistical methods to
infer parameters from incomplete data. This process
naturally generates confidence intervals for any predic-
tion based on these models. Precise predictions require
more fine-grained models [16]. These models consider
multiple effects and mirror the complexity of interaction
in societies; they include many parameters, including
mobility and proximity data, that are difficult to track,
especially since rapid changes in behavior often render
a-few-day-old studies and historic trends irrelevant [17].

A complementary approach is to consider coarse-
grained models with fewer parameters. While these mod-
els cannot be used to make precise long-term predictions
of the number of infections or deaths on a given day,
they are particularly valuable when predicting global
trends in a robust manner since they only rely on a
few parameters that are almost entirely determined by
the data alone. Here we adopt this approach to study
the relation between mobility and disease dynamics. We
use the well-established susceptible exposed infectious
recovered SEIR compartment model with a network
structure and evaluate the local disease dynamics at the
level of a node, which represents an individual coun-
try. We incorporate the local driving mobility at the
nodal level and the global mobility at the network level
through passenger air travel with diffusive transport. To
take full advantage of prior knowledge about the model
parameters and the available data of each country, we
combine our network model with a hierarchical Bayesian
parameter inference and apply Markov Chain Monte
Carlo sampling to obtain posterior distributions to our
model uncertainties.

2 Methods

The foundation of our modeling methodology, to account
for human activity at different scales, is the classical sus-
ceptible exposed infectious recovered SEIR compartment

model. We model the inter-country specific outbreak dy-
namics using a network of passenger air travel between
individual countries, combined with the local driving
mobility at the nodal level. To account for our prior
knowledge of the model parameters and the available
data for each country, we combine our network model
with a hierarchical Bayesian parameter inference by ap-
plying Markov Chain Monte Carlo sampling to obtain
posterior distributions for uncertainty quantification.

COVID-19 outbreak data, global and local mobility.
We draw the COVID-19 outbreak data for 26 European
countries from the reported confirmed cases from Febru-
ary 24, 2020 [23]. From these data, we extract the new
reported cases, ∆Î(t) = I(tn+1) − I(tn), as the differ-
ence between today’s and yesterday’s reported cases
[20]. To estimate global mobility, we use the passenger
air travel data between any two European countries
[25], normalized by the baseline mean air travel volume
from 15 January to 15 February 2020 [27]. To approxi-
mate local mobility, we use the Apple mobility data that
summarizes the relative volume of location requests per
country, region, subregion, or city, normalized by the
baseline volume on 13 January 2020 [26]. A comparison
with alternative provider-based mobility data [28] shows
that, at least for the example of Germany, the Apple
data overestimate the true reduction in mobility by up
to 25%. This suggests that the Apple data are biased
towards a wealthier subset of the population that has
the ability to respond more rapidly and more flexibly
to the new stay-at-home conditions. While we clearly
have to be careful to draw conclusions from mobility
in absolute numbers, the general trends observed are
indicative of a universal reduction in mobility within the
general population. We smoothen the weekday-weekend
fluctuations in outbreak and mobility data by applying
a moving averaging window of seven days. We analyze
the data from the country-specific first day of the out-
break on which 100 infected individuals are reported
in each of the 26 European countries as illustrated in
Figure A1a-d.

Local epidemiology modeling. We model the local epi-
demiology of the COVID-19 outbreak using an SEIR
model with four compartments, the susceptible, exposed,
infectious, and recovered populations, governed by a set
of ordinary differential equations [32],

Ṡ = −β(t)S I
Ė = +β(t)S I − αE

İ = + αE − γ I

Ṙ = + γ I .

(1)

The transition rates between the four compartments,
β(t), α, and γ are inverses of the contact period B(t) =
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1/β(t), the latent period A = 1/α, and the infectious
period C = 1/γ. We interpret the latent and infectious
periods A and C as disease-specific, and the contact
period B(t) as behavior specific. Using the dynamic
contact period B(t), we calculate the effective reproduc-
tion number R(t) = C/B(t) as an important measure
to quantify the current outbreak dynamics. In what
follows, we use the word local to characterize solutions
that relate to solving the local system of equations (1).

Global network modeling. We model global mobility
using European passenger air travel within a weighted
undirected graph G with N = 26 nodes and E = 201
edges [19]. The nodes represent the individual countries,
the edges the most traveled connections between them.
We weight the edges by the estimated annual incoming
and outgoing passenger air travel statistics [27] from
which we create the adjacency matrix, Aij, that repre-
sents the travel frequency between two countries i and
j, and the degree matrix,

Dii = diag
∑N

j=1,j6=iAij , (2)

that represents the number of incoming and outgoing
passengers for each country i. The difference between
the degree matrix Dij and the adjacency matrix Aij
defines the weighted graph Laplacian [31,19],

Lij = Dij −Aij . (3)

Figure 1(b) illustrates the discrete graph G of the
European Union. The size and color of the nodes repre-
sent the degree Dii, the thickness of the edges represents
the adjacency Aij. For our passenger travel-weighted
graph, the degree ranges from 222 million in Germany,
221 million in Spain, 162 million in France, and 153
million in Italy to just 3 million in Estonia and Slovakia,
and 2 million in Slovenia, with a mean degree of 48± 64
million per node. To calculate the weighted Laplacian
Lij, we use the air travel data across the European coun-
tries and the United Kingdom [27] normalize it such
that its largest coefficient is equal to one, and then scale
it with the air mobility coefficient ϑ. We discretize our
SEIR model on our weighted graph G and introduce
the susceptible, exposed, infectious, and recovered pop-
ulations Si, Ei, Ii, and Ri as global unknowns at the
i = 1, ..., N nodes of the graph G. This results in the
spatial discretization of the set of equations with 4N
unknowns,

Ṡi = − ϑ
∑N

j=1 Lij Sj − β(t)Si Ii

Ėi = − ϑ
∑N

j=1 Lij Ej + β(t)Si Ii − αEi

İi = − ϑ
∑N

j=1 Lij Ij + αEi − γ Ii

Ṙi = − ϑ
∑N

j=1 Lij Rj + γ Ii .

(4)

We discretize the systems of ordinary differential equa-
tions (1) and (4) in time by replacing the time deriva-
tives ˙( ◦ ) with the differences ∆( ◦ ) of the populations
at two consecutive days, ˙( ◦ ) ≈ ∆( ◦ ) = [ ( ◦ )(tn+1) −
( ◦ )(tn) ]/∆t, where ∆t = 1 day, and adopt an explicit
Euler forward time integration scheme. In what follows,
we use the word global to characterize solutions that
relate to solving the global system of equations (4).

Human mobility modeling. It is useful to capture the
general trend of mobility through simple mathematical
expressions so that they can be easily integrated within
the epidemiological model. Here, we introduce a sim-
ple ansatz for the global and local mobility. The early
phases of the outbreak are characterized by a smooth
mobility transition from the initial baseline mobility to
a reduced mobility induced by behavioral changes in
the population. Previously, we have modeled this transi-
tion by a hyperbolic tangent-type ansatz [32]. Here we
generalize this approach by taking into account policy re-
laxations and social adaptations through a combination
of exponentials,

y(t) = y0 e
−(t−t∗)/T + P (t) e(t−t∗)/T

e−(t−t∗)/T + e(t−t∗)/T (5)

with y(t) ∼
t→−∞

y0 and y(t) ∼
t→∞

P (t), where y0 denotes
the baseline value, t∗ is the adaptation time, T is the
transition time, and P (t) is the adaptation after the
initial drop. For the global mobility, European air traffic
dropped to a constant plateau of 5% until the end of
May 2020, and we select a constant P (t) to model this
plateau, see Figure 1(a). For the local mobility, driving
mobility steadily increased after an initial drop at the
end of March 2020, and we select a quadratic polynomial
P (t) to represent this increase, see Figure 1 (a). We
assume that the effective reproduction number follows
these mobility patterns and apply the same functional
relation for the effective reproduction number,

R(t) = R0 e
−(t−t∗)/T +Rt(t) e(t−t∗)/T

e−(t−t∗)/T + e(t−t∗)/T . (6)

This functional form describes a smooth transition from
the basic reproduction number R0 at the beginning of
the outbreak to the current reproduction number Rt.
We model the effect of the individual mobility on the
outbreak dynamics after the initial mobility drop by
postulating that the current reproduction number (6)
is a function of the time-varying individual mobility,
Rt = f(xm(t)). To keep our mobility model simple, in-
terpretable, and capable of handling real-world data, we
adopt a stochastic process approach to define Rt(xm[t])
and construct a Gaussian process latent variable model.
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The Gaussian process model can be considered as a
prior distribution for the mapping function [33],

Rt(xm) ∼ GP {µ(xm), k [xm, x
′
m]} , (7)

which draws function values from a multivariate normal
distribution, parameterized by the mean function µ(xm)
and the covariance function k [xm, x

′
m], while assuming

Rt(xm) to be constant within a time window of two days.
To account for a smooth non-linear mapping from the
latent to the data space, we choose an exponentiated
quadratic form covariance function with the two kernel
hyperparameters η2 and `2 [34,35]. A powerful way to
stabilize time-series predicting models is to enable trend
changes at learned time points Sp with the aid of weakly
informative priors [36]. These change points can be at
any given time point sj with j = 1, 2, ..., Sp. Here we
apply a simple piecewise linear trend change in the mean
function [36],

µ(xm[t]) =
[
k + a(t)Tδ

]
t+m

[
m+ a(t)Tξ

]
(8)

with aj(t) =
{

1 if t ≥ sj
0 otherwise,

where m is the offset, δ is the rate adjustment, k is the
growth rate, and ξ enforces continuity as ξj = −sjδj .

Bayesian parameter inference. We need to estimate a
set of 12 parameters including a set of four parameters
for the local SEIR model, θSEIR = {α, γ, E0, I0}, a
set of seven parameters for the semi-parameteric model,
θRt = { t∗, T, η2, `2, k,m, δ}, and one parameter for the
network model ϑ(t). We estimate the mobility param-
eter ϑ(t) by fitting Eq. (5) against the aviation data
in Figure 1(a) and multiplying it with a scaling prior
ϑ0. We fix the latency period to A = 2.5 days and
the infectious period to C = 6.5 days. Previous studies
had reported a mean incubation period on the order of
A = 5.0 days [38,37,46], with the actual infectiousness
starting already A = 2.3 days after exposure [30], which
is well in line with our previous findings of A = 2.6
days [31] and with the value of A = 2.5 days we se-
lected here. The infectious period varies strongly in the
literature from C = 1.5 days to C = 4.0 days up to
distributions with a quick decline after C = 7.0 days [37,
30], which motivated our current choice of C = 6.5 days.
We estimate the remaining set of ten model parameters
θ = θSEIR ∪ θRt ∪ {ϑ0} using Bayesian inference with
Markov Chain Monte Carlo sampling. We adopt a Stu-
dent’s t-distribution for the likelihood between the new
daily reported cases, ∆Î(t) = Î(tn+1)− Î(tn), and the
model predictions, ∆I(t,θ) = I(tn+1,θ)− I(tn,θ), with
a new-case-number-dependent width [39,40],

p(∆Î(t) |θ) ∼ StudentTν=4( mean = ∆I(t,θ),
width = σI

√
∆I(t,θ)) (9)

Here, σI represents the width of the likelihood
p(∆Î(t) |θ) between the new daily reported cases ∆Î(t)
and the modeled cases ∆I(t,θ). We apply Bayes’ rule

p(θ |∆Î(t)) = p(∆Î(t) |∆I(t,θ)) p(θ)
p(∆Î(t))

, (10)

to obtain the posterior distribution of the parameters
on the basis of the prior distributions specified in Ta-
ble 1, and the reported cases themselves, which we infer
approximately by employing the NO-U-Turn sampler
(NUTS) [41] implementation of the Python package
PyMC3 [43]. We use two chains: The first 1000 samples
are used to tune the sampler, and are later discarded;
the subsequent 1000 samples are used to estimate the
set of parameters θ. Chain convergence requires a geo-
metric ergodicity between the Markov transition and the
target distribution. PyMC3 uses split R̂ statistics, which
identify convergence by comparing the variance between
the chains. From the converged posterior distributions,
we sample multiple combinations of parameters that
describe the time evolution of the reported cases. These
posterior samples allow us to quantify the uncertainty
on each parameter.

To account for variability between the individual
countries, while simultaneously taking advantage of the
entire dataset, we adopt a hierarchical model to learn the
effective reproduction number on the basis of the case
and mobility data. We postulate that during the initial
phase, the effective reproduction number is primarily
governed by the local political action in each country,
while during the later phases, it becomes strongly corre-
lated with local mobility that mimics the new levels of
social awareness. We apply hierarchical priors on the pa-
rameters of the initial phase, i.e., the basic reproduction
number R0, and the adaptation and transition times t∗
and T , and define shared priors on the semi-parametric

Table 1 Priors on semi-parametric model parameters.

variable prior distribution
R0 basic reproduction Normal(2, 1.5)
σR0 standard deviation HalfNormal(1.5)
t∗ adaptation time Normal(14, 14)
σt∗ standard deviation HalfNormal(15)
T transition time LogNormal(log(10), 0.8)
σT standard deviation HalfNormal(0.8)
`2 hyperparameter Gamma(2, 0.1)
η hyperparameter HalfCauchy(0.5)
k growth rate Normal(1, 1)
m offset Normal(1, 1)
δ rate adjustment Normal(0, 2, shape=Sp)
I0 initial infected LogNormal(log[∆Î(t = 0)], 1.0)
E0 initial exposed LogNormal(log[∆Î(t = 3)], 1.0)
ϑ0 travel coefficient Normal(0.4,0.3)
σI likelihood width HalfCauchy(β = 1)
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Gaussian process latent model of the later phases. For
each county i, we draw R0i and t∗i from normal dis-
tributions, R0i ∼ Ni(R0i, σR0) and t∗i ∼ Ni(t∗i , σt∗),
and Ti from a log-normal distribution, Ti ∼ Ni(T, σT ),
and model the hyper standard deviation priors by half-
normal distributions.

We design the Gaussian process latent variable model
with shared priors for all countries and inform it by the
time-varying local mobility data. Here we make use of
two hyperparameters for the kernel functions η2 and
`2. For the forecasting models, we construct a linear-
piecewise means functions defined by three parameters
drawn from normal distributions to stabilize the pre-
dictive capabilities. We select three equidistant change
points, Sp = 3, for the piecewise linear function. Rather
than using a change point detection to identify the
number and location of change points, we select three
equidistant points to prevent overfitting and keep the
prior distributions at a moderate level and to maintain
flexibility in adjusting the change rate by using a sparse
prior on the rate adjustment δ. For the network model,
we include one additional weakly informative prior for
the scaling of the travel coefficient as a normal distribu-
tion ϑ0 ∼ Ni(0.4, 0.3). Table 1 summarizes all priors on
the model parameters.

3 Results

Reduced mobility drastically reduces the effective re-
production number. Figure 2 shows the relative change
in air and car traffic with respect to baseline before the
outbreak in early February 2020. Each dot represents
the day at which the corresponding country reached 100
or more cases. We notice that different countries share
the same overall dynamics: an initial plateau followed by
a sudden drop in air traffic and a rapid drop in car traffic
followed by a gradual increase. The data reveal three
interesting trends: First, local mobility decreases before
global mobility with minima in the week of March 17-24
for car and March 24-31 for air traffic. Second, many
countries experience a dramatic reduction of mobility,
it seems almost voluntary, before the national outbreak
becomes apparent. Third, there is a clear South-North
divide in reduction of local mobility with Spain and
Italy experiencing the largest reduction and Sweden and
Finland the smallest.

Increased mobility only very gradually increase the
effective reproduction number. Figures 2(a & b) show,
side by side, the weekly average of the effective repro-
duction number and the relative driving mobility. At the
early phase of the outbreak, this heatmap shows that a
reduction of driving mobility is followed by a reduction

of the effective reproduction number with a typical delay
of about two weeks. At the later phases, however, an
increase in driving mobility in response to a gradual
exit from lockdown does not initiate an equally steep
increase in the effective reproduction number. This lack
of symmetry between reduction and increase in mobility
suggests that some other non-pharmaceutical interven-
tions that were adopted in that period may have taken
a more prominent role in controlling the effective repro-
duction number.

Local mobility is highly correlated with the reproduc-
tion number. Following the suggestion of Figure 2(a &
b) that there is an association between mobility and
disease dynamics, we show in Figure 3 the evolution of
both local mobility and effective reproduction number
for all countries that had at least 100 cases on March
10. To ensure similar initial conditions, we begin each
simulation at the individual date the country hit 100
confirmed cases. We compute the effective reproduction
number, R(t), by the semi-parametric Gaussian process
model and use only the country-specific mobility data
over time as input. We train the Gaussian process model
in a hierarchical manner and share the priors for the
model between all countries. The close agreement of the
fit in Figure 3 indicates that the model is capable of
learning the individual behavior based on shared pos-
teriors. The hierarchical posterior distribution of the
adaption time t∗ in Figure 3 shows a mean response
time of 18.8 ± 2.2 days, with regional variations rang-
ing from 11.2 days in Austria to 26.7 days in Sweden.
We also determined the associated cross-correlation be-
tween the local mobility and the effective reproduction
number. The time lag ∆t varies from the shortest time
interval with 14.6± 5.6 days to the longest interval with
30.3 ± 6.3 days. Figure 4(a) suggests a gradual loss
of correlation between reproduction and mobility with
increasing time interval length. The ten graphs of the
ten countries compare the correlation versus time lag
for six different time intervals, all starting on March
1, and 72, 87, 102, 117, 132, 147 days long, from red
to blue, as highlighted in Figure 4(d). Increasing the
time interval decreases the correlation and increases the
time lag ∆t, indicated by the peak of the individual
curves. Figure 4(b) summarizes these results across all
ten countries as box plots for all six intervals. Figure 4(c)
shows a similar box plot, but now for three intervals
as defined by the effective reproduction number, the
first wave with R(t) ≥ 1, the trough with R(t) < 1, and
the second wave with R(t) ≥ 1. Figure 4(d) shows the
dynamics of the relative infectious population for each
country, and, on top, the six different interval lengths
used for the analysis in Figure 4(a & b). All ten coun-
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Fig. 2 Global and local mobility across Europe. (a) weekly average relative driving mobility; (b) weekly average effective
reproduction number; (c) relative air traffic; (d) relative driving mobility; (e) box plot of country-specific relative driving mobility;
(f) contour plot of country-specific relative driving mobility. All mobility values are normalized with respect to baseline in early
February; dots represent time point beyond which the number of cases exceeded 100, color code indicates relative mobility.

tries display a similar strong correlation between the
effective reproduction number and the local mobility,
albeit with varying time lags ∆t. Strikingly, with in-
creasing time, this correlation decreases, i.e., the blue
curves have lower peaks than the red curves, and the
time lag increases, i.e., the peaks of the blue curve are
further to the right than those of the red curves.

Mobility and reproduction number define pandemic
staging. We can now combine both global and local
mobility data together with the effective reproduction
number to define typical staging dynamics. In Figure 1,
we use a network model for global mobility coupled
with the local mobility data at each node. Following
the disease outbreak in phase I, the first transition oc-
curs following a drop in local mobility associated with
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Fig. 3 Local mobility, reproduction number, and reported cases across Europe. The hierarchical model learns the
time-varying effective reproduction number R(t) (blue curve) from the reported cases (black circles) and simulated new cases
(orange curve) for varying adaptation times t∗. Dots in the top plots indicate the adaptations times t∗ of local mobility (red dot)
and reproduction (blue dot)); vertical dashed lines highlight the date of stay-home order; gray regions indicate first and second
waves with R(t) ≥ 1, white band in between indicates the wave trough with R(t) < 1.

changes in behavior such as working at home or limit
on gatherings, and corresponds to an inflection point in
the local mobility curve. In most countries, governmen-
tal outbreak control and some level of lockdown were
established during the following phase II as indicated
through the vertical dashed lines in Figures 3 and 1(c).
The second transition occurs when, similarly, air traffic
drops with its corresponding inflection point. During
phase III, there is a slow increase in local mobility as-
sociated with a decrease in the overall reproduction
number, which is still larger than one R(t) ≥ 1. The
third transition between phases III and IV marks the
end of the first wave and corresponds to the peak of the
number of new cases. After this transition, in phase IV,
the reproduction number remains consistently smaller
than one, R(t) < 1, despite a gradual increase in mo-
bility, resulting in a noticeable reduction of new active

cases. Phase IV marks the trough, the valley between
the first and second waves. As all countries gradually
release their control measures, the increasing mobility
will ultimately trigger an increase of new cases beyond
a point, where the effective reproduction number will
again become larger than one, R(t) ≥ 1. This marks
the beginning of the second wave. Figure 3 illustrates
the first and second waves with R(t) ≥ 1 in grey and
the wave trough with R(t) < 1 in white and Figure 4
(c) illustrates the clear distinction of the time lag ∆t

during these three intervals.

Mobility data can be used to forecast reproduction.
The observed high correlation between mobility data
and the effective reproduction number, with a typical
delay of around 14 days, suggests that we can use mobil-
ity data as a barometer for the reproduction number. In
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Fig. 4 Cross-correlation between effective reproduction and local mobility. (a) correlation vs. time lag for six intervals
all starting on March 1, and ranging from 72 days (red) to 147 days (blue); ∆t is the time lag with the highest correlation, i.e., the
peak of the highest curve; (b) box plot of time lags for six intervals; (c) box plot of time lags for first and second wave with R(t) ≥ 1
and wave trough with R(t) < 1; (d) six time intervals for correlation analysis and relative infectious population in all ten countries.

Figure 5 we show two different training scenarios where
we tested the prediction for the 14 days from April 19
to May 2 for Germany and the United Kingdom. In the
first scenario, we used data from February 28 until April
19 for training. This period includes a rapid change in
car traffic and the implementation of several different
control strategies. The second period starts at the point
where local mobility is close to a minimum in Europe,
therefore we included case data after March 25 into the
training dataset. We observe that, although a smaller
training set is used, the model prediction for the effec-
tive reproduction number is better and fully captures
the reproduction dynamics. Figure A4 demonstrates the
predictive potential of the model for all ten countries.

Local mobility data can be used to identify possi-
ble super-spreading events. Super-spreading events are
characterized by a local outbreak when a large popula-

tion comes in close contact for a significant period of
time. Examples include sporting events, parades, festi-
vals, religious ceremonies, and carnivals. Unavoidably,
these events are associated with large population move-
ment that can be captured by mobility data. For in-
stance, the Carnival season between February 20 and
26 in the Heinsberg district drew large crowds and it
is believed to be the first COVID-19 hotspot in Ger-
many [18]. Figure 6 shows the mobility data of the city
of Cologne, approximately 70km from Heinsberg. The
spike in mobility is directly followed by the epidemic
outbreak and correlated with a change in the reproduc-
tion number with an adaptation time of 17 days. This
highly-localized event rippled across the entire country
with an adaptation time of about 40 days.
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a
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Fig. 5 Local mobility, reproduction number, reported
cases, and forecasting for Germany and the United
Kingdom. Both models are trained on the full data set and
on the data points after the mobility break down. Histograms
show posterior distributions of last time step of predicted effec-
tive reproduction number R(t). Orange dashed curve indicates
the 14-day forecast, orange zones indicate the 95% and 75%
confidence intervals and associated mean absolute errors.

4 Discussion

The objective of this study was to explore to which
extent global and local mobility are correlated with
the effective reproduction number, and, accordingly,
with the local outbreak dynamics. Using passenger air
travel, cell phone mobility data, and reported COVID-19
cases across Europe, we showed that mobility and re-
production are correlated during the early stages of the
outbreak, but become decorrelated during later stages.
Interestingly, our study identified five distinct phases of
the outbreak across all European countries that imple-
mented political counter measures.

Outbreak: During the early stages of the pandemic,
global mobility modulates the initial outbreak pattern.
Various studies have shown that, especially during the
very early stages of an outbreak, there is a close corre-
lation between mobility and spreading of an infectious
disease. For instance, the early pattern of COVID-19
closely mimics passenger air travel [19]. Global mobility
is key to seed the disease in new locations before its

local growth. Tight travel restrictions and border con-
trol in the United States and in the entire European
Union mark the end of this phase in Mid March. In
response, air travel within the European Union dropped
by 95% within less than two weeks. Yet, it is becoming
increasingly clear now that most travel restrictions were
implemented too late to protect most countries from
a local outbreak of COVID-19 [7]. While global mobil-
ity as in Figure A1 can be an important modulator at
very low or zero case numbers [20], our study suggests
that a country-specific analysis based on local mobility
alone as in Figure 3 is probably sufficient to explain
the major outbreak dynamics. In addition the current
study focuses only on mobility, while other factors, for
example, self-adopted human behavioral changes, could
show similar correlation patterns.

Phase I: Once a location is hit by the pandemic, expo-
nential growth governs the local outbreak dynamics.
After local seeding, the outbreak dynamics become
decorrelated from global mobility. Instead, the local
number of cases increases rapidly and the question of
health care resources becomes the focal point in political
decision making. At this point, without any additional
measures, the outbreak would naturally peak and decay
towards the endemic equilibrium [29]. The timing of the
peak, its magnitude, and condition of herd immunity
are determined by the basic reproduction number [22].
For COVID-19, the basic reproduction number R0 is on
the order of three to six [21], for which models would
predict a peak of active cases from 21% to 39% of the
population, occurring between days 46 and 23, and herd
immunity after 67% to 86% of the population have be-
come infected.

Phase II: Outbreak control modulates the effective
reproduction number by reducing local mobility. To
stop the period of exponential growth, political mea-
sures, including local lockdown and limit to gatherings,
have been implemented in almost all European countries
to limit contact between infectious and susceptible indi-
viduals. The rapid reduction of car traffic to 40±21%
within less than two weeks in early March is an indi-
cator for a successful contact reduction. Strikingly, in
most countries, this reduction emerged naturally, well
ahead of political intervention, as a result of voluntary
behavioral changes in the population, see Figure 2a-d.

Phase III: Reduced mobility reduces the number of
new cases and initiates a flattening of the curve. In
the outbreak dynamics, reduced local mobility induces
a reduction of the effective reproduction number Rt and
with it convergence to an enforced equilibrium state,
a converged state under given constraints, long before
herd immunity is achieved in the entire population. The
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a b

Fig. 6 Local mobility, reproduction number, and reported cases of a super-spreading event. (a) The Heinsberg
Carnival took place between February 20 and 26 (shaded region) and is associated with a large spike in mobility data in the nearby
city of Cologne. (b) It is correlated with a local increase of the reproduction number in Cologne, approximately 17 days delayed,
and a national increase, approximately 40 days delayed. Cases are depicted as cumulative case numbers.

speed and magnitude by which the reproduction number
drops are a measure of the effectiveness of public health
interventions [4,32]. For example, in Austria, a country
that is known for its strict response to the pandemic
Rt dropped from 4.0 to 1.1 in only 16 days; in Sweden,
a country that implemented relatively lose public re-
strictions, it dropped from 2.0 to 1.1 in as much as 33
days. Figure 4 (d) highlights the special role of Swe-
den, experiencing an early second wave, or rather not
leaving the first wave at all. In the hypothetical case of
complete lockdown, the number of new cases, and with
it the effective reproduction number, would go to zero.
However, Figure 1(c) shows that even under the strict
restrictions enforced in most European countries, the
average duration from the point a country hit 100 cases
until the reproduction number went down to one is 38
± 8 days. As long as Rt remains lower than one, the
number of new cases continues to decrease, although
gradually. A limitation of our study is its sensitivity
with respect to the date of reporting, which can vary
significantly between different countries. We illustrate
the impact of drawing the data from two different days
of reporting, the onset of symptoms and the reported
test results, and show a significant resulting time shift
for the example of Germany in Figure A3.

Phase IV: The gradual exit from lockdown reveals the
effect of social learning. Following a period of rigorous

lockdown, most European governments have begun to
slowly relax the strict measures to reduce movement
and contacts. This relaxation is clearly reflected in the
mobility data in Figure 2 as a slow increase of local
mobility. Strikingly, in early June, the local mobility
index in Figure 2 (d) increases even beyond its initial
value in early March, which could suggest a seasonal
trend or, probably more likely, the effect that driving has
now taken over from flying. Two important features are
now becoming apparent: First, there is an asymmetry
in the decrease and increase of the reproduction number
before and after lockdown that can be attributed to
social learning and soft political intervention including
face masks, physical distancing, and no large gatherings.
Second, variations in the reproduction number during
the early phases are highly correlated with changes in
local mobility, while later they are not. Our analysis
with training and testing suggests that, as long as the
disease remains endemic, trends in local mobility allow
us to forecast the outbreak dynamics for a two-week
window. This correlation has potentially important con-
sequences: Some proposed exit strategies suggest either
periodic or on-demand lockdown once the number of
new cases begins to rise again. The general objective of
most outbreak control strategies is to keep the effective
reproduction number either strictly below one or slightly
above. The problem with this approach is that by the
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time a critical rise becomes observable, the inertia of
the exponential dynamics is already difficult to control
and long periods of lockdown would become necessary
to regain control. Our study shows that mobility can
serve as a barometer to adjust particular sectors of the
economy, in real time, to manage future effective re-
production numbers. Similar to a barometer that can
indicate short-term changes in the weather, mobility
can indicate short-term changes in the reproduction
number. However, proper management would still re-
quire some local interpretation of these indicators, since
every individual government might attempt to optimize
different parameters under different constraints. For ex-
ample, once the mobility index reaches a certain level,
a local government could decide to increase or decrease
gathering sizes or opening hours. Importantly, in this
approach, the forecast of the reproduction number, the
correlation levels, and the window of correlation can be
updated in real time as new data become available.

2nd Wave: Complete decorrelation between mobility
and reproduction indicates the end of the first wave.
In the case of COVID-19, during the early stages of
exponential growth, almost all European countries expe-
rienced a strong reduction in local mobility. Around Mid
March, numerous political measures were implemented
in different stages, ranging from prohibiting gatherings
to complete lockdown, with a restriction to essential busi-
ness only. During this period, the virus spread across
Europe at low level in a non-trivial way, see Figure 3
and Figure 4(d). Throughout this time window, indi-
vidual mobility had a massive potential to accelerate
the outbreak and generate large effective reproduction
numbers. This observation agrees well with the existence
of a distinct time lag and associated strong correlations
between mobility and reproduction among all European
countries within the full dataset, see Figure 4(a). Due to
behavioral changes after the first phase of the outbreak,
our analysis suggests that the time lag increased from
initially 14.6 ± 5.6 to 30.3 ± 6.3 days, before mobility
and reproduction decorrelate. This is clearly visible in
the cross-correlation for different time intervals of the
dataset in Figure 4(a & b). The decorrelation begins
after the infectious curve peaks at R(t) ≤ 1, and the dy-
namics of traffic and reproduction become increasingly
independent as the effective reproduction approaches
zero, while local mobility keeps increasing. In this range,
the number of infectious individuals is too low to be am-
plified by human mobility. For example, for the case of
Austria, which was among the first countries in Europe
to aggressively implement outbreak control, we observe
an early peak at the end of April in Figure 4(d). Austria
was one of the first countries worldwide to report an

effective reproduction number below one, which resulted
in an early decorrelation and a vanishing distinct time
shift between local mobility and reproduction, see Fig-
ure 4(a). The effect of decorrelation at low new case
numbers is inherently built into our model: The latent
variable formulation of the effective reproduction num-
ber R(t), as a function of local mobility within the SEIR
model, becomes increasingly less sensitive to mobility
changes for a low infectious population. This trend is
robust and also holds for more complex compartment
models including the SEIIRD model with an undetected
population of asymptomatic individuals and a simulta-
neously fitted deceased population as we show in Figure
A2. Interestingly, the new increase of the effective repro-
duction number beyond one, R(t) ≥ 1, in response to
the gradual exit marks a new increase in cases and the
beginning of the second wave, that we can clearly see
in Figures 1 and 3.

Taken together, the strong correlation between mobility
and reproduction in the endemic phase, and the loss of
correlation in the later phases, suggest that mobility is
a reliable predictor of outbreak dynamics. Our study
suggests that biweekly mobility trends can be used to
stratify different phases of the pandemic, identify super-
spreading events, and guide political decision making.
Mobility is a suitable pandemic barometer.
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Appendix

Network modeling. Figure A1 shows results of the net-
work model including both global and local mobility.
The global mobility represents the air traffic data in
each country, the local mobility represents the driving
mobility.

Prior selection. We constrain our models by an appro-
priate selection of model parameter prior distributions.
We distinguish between a set of informative and uninfor-
mative priors. The set of informative priors contains the
initial populations I0 and E0, the basic reproduction
number R0, the adaptation time t∗ and the transition
time T . We model the initial infectious population I0

and the initial exposed population E0 by broad log-
normal prior distributions. As median values, we select
the number of new cases from the initial time point for
the initial infectious population I0 and the number of
new cases from day three of our simulations for the ini-
tial exposed population E0 to represent a latency period
of A = 2.5. Since both, I0 and E0, represent the total
number of infectious and exposed individuals, their num-
bers cannot be directly inferred from case data alone
and we model them both as unknown parameters. We
assume a broad normal prior for the basic reproduction
number R0 with a median of 2, a normal prior for the
adaptation time t∗ with a median of 14 days, and a
log-normal prior of the transition time T with a median
of 10 days [32], both with a fairly wide uncertainty on
the priors. The set of flat-uninformative priors contains
the priors of the Gaussian process model η, `, k, m,
and δ, the travel coefficient ϑ0, and the width of the
likelihood function σI . For the priors of the Gaussian
process model are the two kernel hyperparameters η2

and `2 to define the exponentiated quadratic form of the
covariance function and the priors of the piecewise lin-
ear trend change in the mean function of the covariance
function k, m, and δ. We select a flat normal prior for
the travel coefficient ϑ0 and a scale factor of the width
of the likelihood function as σI ∼ HalfCauchy(1), which
implies that the daily change in reported cases can be
up to ten times larger than actually reported. Tables
1 and 2 summarize our priors for the SEIR and SEIIR
models.

Local epidemiology modeling - SEIIRD model. To il-
lustrate that our method is robust to disease parameters
beyond the classical SEIR model, we expand the SEIR
model for the local epidemiology of COVID-19 from
Eq. (1) to an SEIIRD model with six compartments,
the susceptible, exposed, detected infectious, hidden
infectious, recovered, and deceased populations. These
six compartments are governed by the following set of
ordinary differential equations,

Ṡ =−β(t)S[Id + Ih]
Ė =+β(t)S[Id + Ih] −αE
İd = +νdαE − [1− νf ]γId−νfκId
İh = +[1− νd]αE−γIh
Ṙ= +γIh +[1− νf ]γId
Ḋ= +νfκId

(A.1)

The transition rates between the compartments, β(t), α,
γ, and κ are inverses of the contact period B(t) = 1/β(t),
the latent period A = 1/α, the infectious period
C = 1/γ, and the survival period K = 1/κ. The SEI-
IRD model splits the initial infectious group of the SEIR
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Fig. A1 Global and local mobility, reproduction number, and reported cases across Europe using the network
model. The model learns the time-varying effective reproduction number R(t) (blue curves) from the reported cases (black circles)
and simulated new cases (orange curves). Global mobility (red curves) and local mobility (black curves) highlight the reduction in
air traffic and driving mobility.
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model in Eq. (1) into a detected group, Id = νd I, and
a hidden undetected group, Ih = νh I, where νd is the
detection fraction and νh = 1− νd. From the detected
group Id, individuals can transition into the recovered
group R at a fraction [1− νf ] or into the deceased group
D at a fraction νf , where νf is the case fatality rate. We
interpret the latent, infectious and survival periods A,
C, and K as disease-specific and static, and the contact
period B(t) as behavior specific and dynamic. Using the
dynamic contact period B(t), we calculate the effective
reproduction number R(t) = C/B(t) to quantify the
outbreak dynamics.

Bayesian parameter inference. We need to esti-
mate a set of 15 parameters including a set of
eight parameters for the SEIIRD model, θSEIIRD =
{α, γ, κ, νd, νf , E0, Id,0, Ih,0}, and a set of seven
parameters for the semi-parametric model, θRt =
{ t∗, T, η2, `2, k,m, δ}. As before, we fix the latency
and infectious periods to A = 2.5 days and C = 6.5
days and estimate the remaining set of 13 model pa-
rameters θ∗ = θSEIIRD ∪ θRt using Bayesian inference
with Markov Chain Monte Carlo sampling. In con-
trast to the SEIR model, we now fit two data sets
simultaneously [44,45], the new daily detected cases,
∆Îd(t) = Îd(tn+1) − Îd(tn), and the daily new deaths,
∆D̂(t) = D̂(tn+1)− D̂(tn), which we extract as the dif-
ferences between the today’s and yesterday’s confirmed
cases and deaths [23] and smoothen using a seven-day
moving average on the data. For both fits, we adopted
a Student’s t-distribution for the likelihood between the
new daily reported data, ∆Îd(t) and ∆D̂(t), and the
model predictions, ∆Id(t,θ∗) and ∆D(t,θ∗), with new-

Table A2 Priors on SEIIRD model parameters.

variable prior distribution
R0 basic reproduction Normal(2, 1.5)
σR0 standard deviation HalfNormal(1.5)
t∗ adaptation time Normal(14, 14)
σt∗ standard deviation HalfNormal(15)
T transition time LogNormal(log(10), 0.8)
σT standard deviation HalfNormal(0.8)
`2 hyperparameter Gamma(2, 0.1)
η hyperparameter HalfCauchy(0.5)
k growth rate Normal(1, 1)
m offset Normal(1, 1)
δ rate adjustment Normal(0, 2, shape=Sp)
K survival period Normal(6.5,1)
νd detection fraction LogNormal(log[0.15], 0.1)
νf case fatality rate LogNormal(log[0.01], 1.0)
Id,0 initial detected inf LogNormal(log[∆Î(t=0)],1.0)
Ih,0 initial hidden inf Deterministic(17/3 Id,0)
E0 initial exposed LogNormal(log[∆Î(t=3)],1.0)
σI likelihood width HalfCauchy(β = 1)
σD likelihood width HalfCauchy(β = 1)

case- and new-deaths-number-dependent widths [39],

p(∆Îd(t)|θ∗) ∼ StudentTν=4(mean=∆Id(t,θ∗),
width = σI

√
∆Id(t,θ∗))

p(∆D̂(t)|θ∗) ∼ StudentTν=4(mean=∆D(t,θ∗),
width = σD

√
∆D(t,θ∗))

(A.2)

where σI and σD represent the widths of the likelihoods
p(∆Îd(t)|θ∗) and p(∆D̂(t)|θ∗) between the daily new re-
ported cases and deaths ∆Îd and ∆D̂ and the associated
modeled new cases and deaths ∆Id and ∆D. Again, we
apply Bayes’ rule to obtain the posterior distributions
of the parameters on the basis of the prior distributions
specified in Table A2, and the reported cases and deaths
themselves, which we infer approximately by employing
the NO-U-Turn sampler (NUTS) [41] implementation of
the Python package PyMC3 [43]. Table A2 summarizes
the priors on our SEIIRD model parameters.

Reported and simulated cases and deaths. Figure A2
shows the reported and simulated cases and deaths
across Europe. The hierarchical SEIIRD model learns
the time-varying effective reproduction number R(t)
from both the reported cases and deaths in Figure A2
(a) for varying adaptation times t∗. The learnt survival
period is K = 6.62 ± 0.14 days. The adaptation time
distribution in Figure A2 (b) indicates an adaptation
time of t∗ = 16.6± 2.8 days. The box plots in Figures
A2 (c & d) show the country-specific case fatality rates
νf and detection fractions νd. These results suggest that
our method is not only applicable to the classical SEIR
model but extends equally to more sophisticated models
like the SEIIRD model with additional hidden and de-
ceased compartments, and can not only fit the reported
case data, but also simultaneously reported cases and
deaths.

Sensitivity with respect to date of reporting. In our
main study, we interpret the daily reported case number
∆Î(t) from a central European data base [23] as the
infectious population and fit this case number against
the daily change of the infectious population ∆I(t,θ) of
our SEIR model. Arguably, the “date of reporting” can
mean different things for different countries, and it can
vary hugely between infection, symptom onset, testing,
positive confirmed, and reporting. This implies that our
time delay between mobility and reproduction is highly
sensitive to the local testing logistics.

Table A3 illustrates difference between symptom
onset and reporting for four representative countries
[24]. For example, in Germany, the “date of reporting”
represents the date at which a sample swab is sent to
laboratory testing, although the actual date at which
authorities are notified will be several days later. To
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a

b

c d

Fig. A2 Local reported and simulated cases and deaths across Europe. (a) The hierarchical SEIIRD model learns the
time-varying effective reproduction number R(t) from the reported cases (black circles) and deaths (blue circles) for varying
adaptation times t∗; (b) adaptation time distribution indicates an adaptation time of t∗ = 16.6 ± 2.8 days; (c) box plots of
country-specific case fatality rates νf ; (d) box plots of country-specific detection fractions νd.

illustrate the difference between symptom onset and
reporting, we perform the same SEIR model analysis
based on two different reported data sets Î(t), symp-
tom onset data from the Robert Koch Institute [42]
and reporting data from European Centre for Disease
Prevention and Control [23], which includes the data
that we used throughout this study.

Figure A3 illustrates the learned time-varying effec-
tive reproduction numbers for both symptom onset and
reporting data, and the model fit of the simulated cases
to the two data sets. The time shift in the two data
sets results in a time shift of the model fit, and with
it, a time shift in the effective reproduction number
curves. The resulting adaptation time distributions vary
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Fig. A3 Local mobility, reproduction number, and reported cases in Germany comparing data at day of symptom
onset vs. day of reporting. The model learns the time-varying effective reproduction number for symptom onset (red curve)
from the symptom onset cases (black boxes) and the simulated cases (orange curve) and the time-varying effective reproduction
number for reporting (blue curve) from the reported cases (black circles) and the simulated cases (brown curve). Distributions of
the adaptation time t∗ for symptom onset (blue) and reported data (green), and of difference between symptom onset and reported
data (red).

Table A3 Time delay between symptoms and reporting.

country median [days] mean [days]
EU/EEA and UK 5 7
Estonia 5 6
Luxembourg 5 6
Romania 5 7
United Kingdom 4 4

between t∗ = 8.10± 0.52 days for the system onset data
and t∗ = 16.80± 1.49 days for the reported data with a
mean difference of 8.7 days. This study highlights the
sensitivity of the data to the reporting logistics. Unfor-
tunately, system onset data were not available for all
countries in the European Union, and we can only show
the sensitivity here, rather than using system onset data
throughout our entire study, which would have been
more unified and accurate.

Forecasting. Figure A4 compares the results of a two-
week forecasting with different training sets for all ten
European countries. Figure A4 (a) uses the full available
data set, whereas Figure A4 (b) uses only a reduced
data set beginning on April 1, 2020 to train the model.
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a

b

Fig. A4 Local mobility, reproduction number, reported cases, and forecasting with different training sets. (a)
Two-week forecast with training on the full available data set; and (b) Two-week forecast with training on reduced data set beginning
on April 1, 2020.
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