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Abstract Robotic surgery is an attractive, minimally inva-
sive and high precision alternative to conventional surgical
procedures. However, it lacks the natural touch and force
feedback that allows the surgeon to control safe tissue manip-
ulation. This is an important problem in standard surgical
procedures such as clamping, which might induce severe tis-
sue damage. In complex, heterogeneous, large deformation
scenarios, the limits of the safe loading regime beyond which
tissue damage occurs are unknown. Here, we show that a con-
tinuum damage model for arteries, implemented in a finite
element setting, can help to predict arterial stiffness degra-
dation and to identify critical loading regimes. The model
consists of the main mechanical constituents of arterial tis-
sue: extracellular matrix, collagen fibres and smooth muscle
cells. All constituents are allowed to degrade independently
in response to mechanical overload. To demonstrate the mod-
ularity and portability of the proposed model, we implement
it in a commercial finite element programme, which allows
to keep track of damage progression via internal variables.
The loading history during arterial clamping is simulated
through four successive steps, incorporating residual strains.
The results of our first prototype simulation demonstrate sig-
nificant regional variations in smooth muscle cell damage.
In three additional steps, this damage is evaluated by simu-
lating an isometric contraction experiment. The entire finite
element simulation is finally compared with actual in vivo
experiments. In the short term, our computational simulation
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tool can be useful to optimise surgical tools with the goal to
minimise tissue damage. In the long term, it can potentially
be used to inform computer-assisted surgery and identify safe
loading regimes, in real time, to minimise tissue damage dur-
ing robotic tissue manipulation.
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1 Introduction

For the past two decades, computer-assisted surgery has rev-
olutionised surgical treatment in various different fields. Ini-
tially developed to surgically manipulate the brain, see Kwoh
et al. (1988), robotic surgery has now gained widespread use.
The da Vinci surgical system, for example, offers a com-
puter-enhanced surgical option for complex cardiovascular
procedures, see Mohr et al. (2001). Robotic surgery enables
minimally invasive and high-precision treatment. However,
in contrast to conventional surgeries, robotic surgery inher-
ently lacks the natural touch and force feedback. This is an
important problem during common surgical procedures such
as grasping, cutting, stapling, clipping and clamping, which
may induce severe tissue damage when not controlled appro-
priately.

To illustrate these effects, within this manuscript, we focus
in particular on arterial clamping, which always entails a cer-
tain degree of undesired iatrogenic tissue damage (Barone
et al. 1989). Research has been directed towards decreasing
this unnecessary intra-operative trauma, for example through
the design of less traumatic surgical instruments (Gupta et al.
1997). Obviously, the effectiveness of these new designs and
techniques depends on how well damage mechanisms are
understood and how accurately thresholds for safe tissue
loading can be defined.
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An important aspect is the accurate modelling of the load-
ing and the resulting damage process. This article describes
a new material model for cardiovascular tissue, which is an
extension of the Holzapfel-material model for arterial tissue
(Holzapfel et al. 2000), incorporating smooth muscle cell
activation according to Murtada et al. (2010) and damage
according to Balzani et al. (2006). The model is suitable
to simulate the damage process during the clamping of an
artery. It displays the decrease of active force generation in
smooth muscle cells due to the sustained damage. Embedded
in a finite element environment, this new model provides a
useful tool to define safe loading regimes for arterial tissue,
which could be used to inform computer-enhanced surgical
systems to minimise tissue damage in robotic surgery and, in
general, to optimise clamp design towards minimal trauma.

1.1 Physiology of the healthy artery

An artery consists of three distinct layers. In healthy
arterial tissue, the inner layer, or intima, consists of an endo-
thelial layer. The middle layer, the media, is the most impor-
tant load-bearing layer of the artery within the physiological
loading domain. It consists of collagen, elastin and smooth
muscle cells separated by fenestrated elastic laminae. The
outer layer, the adventitia, is surrounded by loose connective
tissue. It consists mainly of thick bundles of collagen fibres
arranged in a helical structure (Rhodin 1979). For a more
detailed description of arterial wall morphology, the reader
is referred to, for example, Rhodin (1979) and Holzapfel and
Ogden (2010b).

Arterial blood pressure is regulated acutely by altering the
luminal diameter, which is controlled by balancing vasocon-
stricting and vasodilating influences on the smooth muscle
cells in a mechanochemical process. Smooth muscle cells
contain actin and myosin filaments that slide relative to each
other, causing contraction and relaxation. This relative slid-
ing is accomplished by configurational changes of the cross-
bridges, or myosin heads, that connect the myosin to the
actin filament. These configurational changes are caused by
phosphorylation and dephosphorylation of the myosin heads,
as a function of the intracellular calcium concentration. For
a detailed description of the mechanochemical process of
smooth muscle cell contraction, the reader is referred to, for
example, Stålhand et al. (2008) or Murtada et al. (2010).

1.2 Material modelling

Constitutive models characterise the mechanical behaviour
of materials through a functional relation between stresses
and strains. A great number of models for cardiovascular tis-
sue exist, aimed at capturing its specific features (Vito and
Dixon 2003; Göktepe et al. 2011). For an overview of consti-
tutive models for cardiovascular tissue, or for biological soft

tissue in general, the reader is referred to, for example, Gasser
et al. (2006); Famaey and Vander Sloten (2008). Holzapfel
et al. (2000) have introduced one of the most commonly used
hyperelastic, anisotropic material models for arteries, which
accounts for two collagen fibre families along two symmet-
rically arranged directions and allows for a certain amount
of dispersion. This model nicely captures the typical nonlin-
ear behaviour as wavy collagen fibres are gradually recruited
when the tissue is stretched. In this baseline model, however,
the material behaves completely passive, that is, the model
does not account for the contractile nature of the smooth
muscle cells present in the arterial wall.

The first mechanical representation of a muscle was pro-
posed by Hill (1938), which was extended to the three-ele-
ment Hill model by Fung (1970). This model consists of a
contractile element in series with a spring element, represent-
ing the contractile unit. Another spring in parallel represents
the surrounding material. For smooth muscle, Gestrelius and
Borgström (1986) proposed a variation of the three-element
Hill model. Yang et al. (2003) were the first to couple the
mechanical representation to an electrochemical model by
Hai and Murphy (1988), incorporating the calcium-driven
configurational changes of the cross-bridges. This approach
was also followed and improved for situations with large
deformations, by Stålhand et al. (2008), Murtada et al. (2010),
Kroon (2010) and Schmitz and Böl (2011). However, so far,
the active contribution of smooth muscle has not yet been
combined with the collagen fibre contribution, nor have the
models been implemented in a finite element framework.
The model proposed by Zulliger et al. (2004) does combine
the active contribution with a stochastic collagen fibre con-
tribution in a pseudoelastic-type strain energy function. In
Göktepe and Kuhl (2010) and Rausch et al. (2011), finite
element formulations were proposed in which mechanical
contraction was controlled via electrical and chemical fields,
respectively. Unfortunately, these models are phenomeno-
logical and thus less straightforward to populate with realis-
tic experiment-based material parameters. In this article, the
active contribution by Murtada et al. (2010) will be combined
with the collagen fibre contribution by Holzapfel et al. (2000)
and implemented in a finite element framework to account
for tissue heterogeneity. Moreover, the material parameters
related to the active constituent will be calibrated for rat
abdominal arteries by means of in vivo experiments.

Most existing material models are designed to describe the
material in its physiological state. These models, however,
fail to capture damage mechanisms that may occur when the
tissue is loaded in the sub- or supra-physiological domain,
for example, during surgical manipulation. Motivated by
the typical stress softening or Mullins effect in rubber-like
materials, Simo and Ju (1987) introduced a discontinuous
damage model that allows progressive degradation of an
isotropic material to be captured. Balzani et al. (2006) have
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adapted this approach to describe damage to arterial tissue
based on the Holzapfel-material model. Other approaches
exist to model damage in rubber-like materials, in a con-
tinuous manner (Miehe 1995), or pseudoelastically (Ogden
and Roxburgh 1999). Dargazany and Itskov (2009) proposed
a network evolution model to model anisotropic damage in
rubber which was later applied for biological tissues by Ehret
and Itskov (2009). Hokanson and Yazdani (1997) incorpo-
rated anisotropic damage in arteries by weighting an Ogden-
type strain energy function with a fourth order damage tensor.
Another suggestion for anisotropic damage to arterial tissue
controlled by material constants was made in Volokh (2008,
2011). Also for arterial tissue, damage to the collagen fibres
has been described in a stochastic, worm-like chain model
by Rodríguez et al. (2006). From the same group, Calvo et al.
(2007) presented a continuum damage model with discontin-
uous softening in matrix and collagen fibres. Viscoelasticity
was introduced in these damage models by Pena et al. (2010).
These damage models, however, neither include the active
smooth muscle contribution nor the damage to the smooth
muscle cells. In this article, damage will be incorporated in
a manner similar to Balzani et al. (2006), this time including
the contributions of healthy and potentially damaged smooth
muscle cells.

1.3 Experimental characterisation

Every constitutive model introduces a set of material parame-
ters that needs to be calibrated for the particular type of tissue.
Specific experimental setups, such as uniaxial and biaxial
tensile tests or extension-inflation tests can be performed to
calibrate the material parameters for standard passive hyper-
elastic models, as described, for example, in Sacks and Sun
(2003), Holzapfel and Ogden (2010a).

To quantify the active response of the smooth muscle, iso-
metric and/or isotonic contraction experiments can be per-
formed ex vivo, as described in Barone et al. (1989), Gleason
et al. (2004), Murtada et al. (2010) and Böl et al. (2012).
Recently, Itoh et al. (2009) and Tsamis et al. (2011) have
reported in vivo experiments to identify active muscle force
in cardiovascular tissue in situ.

Damage is frequently assessed through the evaluation of
histological images of the tissue, for example in Hsi et al.
(2002), Manchio et al. (2005) and De et al. (2007). For exam-
ple, live-dead stains can help to identify cell viability, and H
and E (haematoxylin and eosin) and collagen stainings can
visualise ruptures in the collagen fibres. Unfortunately, most
studies of tissue damage are qualitative in nature, both in
the application of the tissue load to induce the damage and
in the subsequent damage assessment. To calibrate the dam-
age material parameters, however, quantitative experiments
are essential. De et al. (2007) were the first to characterise
damage quantitatively for porcine liver. For cardiovascular

tissue, previous work (Famaey et al. 2010) reports on a study
in which the damage to the smooth muscle cells of rat abdom-
inal arteries is quantitatively assessed in an isometric contrac-
tion test after in vivo clamping to well-defined loading levels.
In this article, this quantitative damage information will be
used to calibrate the parameters of the new material model.

1.4 Outline

Section 2 introduces our new material model, accounting
for the three major tissue constituents: extracellular matrix,
collagen and smooth muscle cells. In particular, we allow
each constituent to degrade independently. The features of
the model are first illustrated in a simple homogeneous uni-
axial cyclic extension and compression test in Sect. 3. Section
4 then demonstrates how the model can be applied to predict
smooth muscle cell damage in rat abdominal arteries through
clamping and how the damage parameters can be identified
using actual experiments. Section 5 discusses the presented
model and suggests further directions for future work.

2 Governing equations for arteries

Through an additive decomposition of the strain energy, the
following constitutive model for active healthy and degraded
arterial tissue characterises the properties of (i) an isotro-
pic matrix material constituent, (ii) an anisotropic constit-
uent attributed to the dispersed collagen fibres and (iii) an
anisotropic smooth muscle cell constituent. The first two
constituents are motivated by the Holzapfel-material model
as proposed in Holzapfel et al. (2000), whereas the third com-
ponent is motivated by the mechanical smooth muscle-acti-
vation model described by Murtada et al. (2010). The damage
accumulating in the different constituents during mechanical
loading is characterised through a strain energy-driven dam-
age function for each individual constituent, motivated by the
formulation by Balzani et al. (2006). In the remainder of the
article, the model will be referred to as the three-constituent
damage model.

2.1 Kinematic prerequisites

Since soft biological tissues can undergo large physiological
deformations, the key kinematic quantity to characterise the
deformation process is the deformation gradient F, that is,
the gradient of the deformation map ϕ with respect to the
undeformed position X:

F = ∇Xϕ and J = det(F). (1)

Here, J denotes its Jacobian J , which is close to one, J ≈ 1,
for nearly incompressible materials. In that case, it proves
convenient to decompose the deformation gradient into a
deviatoric part, F̄, and a volumetric part, J 1/3I,
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F = J 1/3F̄. (2)

Typically, the deformation of incompressible materials is
characterised in terms of the invariants of the deviatoric part
C̄ of the right Cauchy-Green tensor C, with

C = FTF and C̄ = F̄TF̄. (3)

The basic deviatoric invariants Īi take the following explicit
representation:

Ī1 = tr(C̄),

Ī2 = 1
2 [ tr2(C̄) − tr(C̄2) ],

Ī3 = det(C̄).

(4)

While the basic invariants characterise the isotropic material
behaviour, the anisotropic invariants Ī fib

4 , Ī fib
6 , and Ī smc

4 char-
acterise the stretches along the fibre and smooth muscle cell
directions, see Gasser et al. (2006):

Ī fib
4 = λ2

θ cos2αfib1 + λ2
z sin2αfib1,

Ī fib
6 = λ2

θ cos2αfib2 + λ2
z sin2αfib2 ,

Ī smc
4 = λ2

θ cos2αsmc + λ2
z sin2αsmc

(5)

Here, λθ and λz are the stretches in the circumferential and
axial directions, respectively. Moreover, αfib1, αfib2 and αsmc

denote the angles between the circumference and the mean
directions of the fibre and smooth muscle families. In the
case of arteries, two fibre families are oriented symmetri-
cally with respect to the cylinder axis, so that αfib1 = −αfib2

and, consequently, Ī fib
4 = Ī fib

6 . Finally, the pseudo-invariants
I fib�
4 and I fib�

6 are introduced to account for dispersion,

I fib�
4 = κ Ī1 + [ 1 − 3κ ] Ī fib

4 ,

I fib�
6 = κ Ī1 + [ 1 − 3κ ] Ī fib

6 ,
(6)

where the fibre dispersion κ characterises the degree of
anisotropy varying from κ = 0 in the anisotropic non-dis-
persed state to κ = 1

3 in the isotropic state.

2.2 Constitutive equations

Since the tissue is assumed to be nearly incompressible, it is
common to additively decompose the strain energy function
�,

� = �vol + �dev = �vol + �mat+�fib1+�fib2+�smc,

(7)

into a volumetric �vol and a deviatoric �dev part. The latter
consists of an isotropic contribution of the matrix material
�mat, an anisotropic contribution of two families of colla-
gen fibres �fib1 and �fib2 , and a contribution of the smooth
muscle cells �smc. The individual contributions will be spec-
ified in detail in the following section. All deviatoric com-
ponents are allowed to undergo degradation in the case of
physiological overload. Simo and Ju (1987) in general and
Balzani et al. (2006) for arteries have described the approach

of weighting the strain energy with a scalar valued damage
variable [ 1 − d ]. This model builds upon the classical dam-
age concept, and introduces an independent damage variable
for each individual constituent.

2.2.1 Volumetric bulk material

The volumetric free energy �vol can, for example, be
expressed as follows (Arruda and Boyce 1993):

�vol = Λ [ 1
2 [ J 2 − 1 ] − ln(J ) ]. (8)

The penalty parameter Λ corresponds to κ/2, with κ the bulk
modulus (in MPa), and should be set high enough to ensure
near-incompressibility.

Since this term is handled separately in an incompressible
finite element formulation, we will now focus on the four
contributions to the deviatoric energy �dev, which are the
primary descriptors of the material behaviour.

2.2.2 Extracellular matrix

The extracellular matrix is characterised through an isotropic
free energy �mat, which is allowed to degrade according to
the classical damage concept:

�mat = [ 1 − dmat ] ̂�mat. (9)

Here, ̂�mat denotes the elastic energy of the extracellular
matrix:

̂�mat = 1
2 c [ Ī1 − 3 ], (10)

where c > 0 characterises the matrix stiffness (in kPa). The
evolution of the damage variable of the extracellular matrix
dmat is driven by the undamaged elastic extracellular matrix
energy, as proposed by Balzani et al. (2006):

dmat = γ mat[ 1 − exp(−βmat/mmat) ]. (11)

The weighting factor γ mat (in kPa) can be used to tune the
sensitivity to damage, γ mat ∈ ]0, 1], or to turn the damage
off altogether, γ mat = 0. mmat is a dimensionless parameter
of the damage model. The variable βmat is an internal variable
keeping track of the maximum elastic strain energy experi-
enced so far, within the time interval 0 ≤ t ≤ τ (Balzani
et al. 2006):

βmat = max
0≤t≤τ

( ̂�mat(t) − �mat
0 ). (12)

Since it can be assumed that no damage occurs in the physi-
ological range, the damage threshold �mat

0 is initialised with
the strain energy in the extracellular matrix at systolic pres-
sure. For heterogeneous problems, �mat

0 may therefore differ
for each material point, and is thus not strictly a material
property.
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2.2.3 Collagen fibres

Collagen fibres will only contribute when under tension. Sim-
ilar to the free energy of the matrix, the free energy of the
collagen fibres accounts for both an elastic and a degrading
response,

�fibi = [ 1 − dfibi ] ̂�fibi i = 1, 2, (13)

where the energy contributions of the two families of colla-
gen fibres are formulated according to Gasser et al. (2006):

̂�fibi = k1

2 k2
[exp( k2 [ I fib�

i − 1 ]2 ) − 1]. (14)

Here, k1 > 0 characterises the fibre stiffness (in kPa) and
k2 > 0 is a dimensionless parameter. Damage of the two
fibre families dfibi can again be described in terms of the
elastic fibre energies ̂�fibi (Balzani et al. 2006):

dfibi = γ fib[ 1 − exp(−βfibi /mfib) ], (15)

where γ fib and mfib are the two fibre damage parameters and
βfibi are the internal variables of each fibre family keeping
track of the maximum value of the elastic fibre energies expe-
rienced so far (Balzani et al. 2006):

βfibi = max
0≤t≤τ

( ̂�fibi (t) − �fib
0 ). (16)

Again, the damage threshold �fib
0 is initialised with the strain

energy of the fibres at systolic pressure and may therefore dif-
fer for each material point. Since the internal variables βfibi

are driven by the elastic strain energies ̂�fibi , material degra-
dation will only take place when the fibres are under tension,
as the strain energy is zero when in compression.

2.2.4 Smooth muscle cells

The smooth muscle cells form an integral part of the matrix
constituent, even in their passive state. Therefore, their deg-
radation is assumed to depend on both the passive damage
dsmc

pas in the surrounding matrix and the active damage dsmc
act

in the smooth muscle cells themselves:

�smc = [ 1 − dsmc
pas ][ 1 − dsmc

act ] ̂�smc. (17)

In the undamaged state, the energy of the smooth muscle cells
̂�smc can be expressed as follows (Murtada et al. 2010):

̂�smc = 1
2 μsmc [ nIII + nIV ][

√

I smc
4 + urs − 1 ]2, (18)

where μsmc characterises the stiffness of the actin-myosin
filament apparatus (in kPa). The kinetics of the actin-myo-
sin power stroke are modelled through a four-state model
described by Hai and Murphy (1988) and adopted by Mur-
tada et al. (2010), Kroon (2010) and Stålhand et al. (2011).
This model describes the transitions between the four states

nI, nII, nIII and nIV of the myosin heads as a function of the
calcium concentration as follows:
⎡

⎢

⎢

⎣

ṅI

ṅII

ṅIII

ṅIV

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

−κ1 κ2 0 κ7

κ1 −(κ2 + κ3) κ4 0
0 κ3 −(κ4 + κ5) κ6

0 0 κ5 −(κ6 + κ7)

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

nI

nII

nIII

nIV

⎤

⎥

⎥

⎦

(19)

Here, n are the fractions of the four states, which sum up
to one,

∑

ni = 1. The κi (in s−1) are the rate constants of
the model, where κ1 and κ7 are a function of the calcium
concentration. In particular, nI and nII, are the fractions of
dephosphorylated and phosphorylated myosin heads that are
not attached to the actin filament, and thus not mechanically
contributing. nIII and nIV are the fractions of phosphory-
lated and dephosphorylated myosin heads, or cross-bridges,
attached to the actin filaments, and thus contributing to the
stiffness. The power stroke occurs through a conformational
change in state III, after which the myosin heads transform
back into state II. As long as the myosin heads remain phos-
phorylated, they cycle back and forth between states II and
III, thus generating contraction. In state IV, the myosin heads
are still attached to the actin filament but dephosphorylated
and thus unable to perform a power stroke.

In Eq. (18), urs is the average normalised relative slid-
ing between the myosin and the actin filaments. It follows a
viscous evolution law:

u̇rs = 1

η
[ Psmc − Pmat ], (20)

where η is a viscosity parameter (in MPa s), Psmc denotes the
active stress exerted by the attached myosin heads and Pmat

denotes the stress from the surrounding matrix. The active
stress Psmc can be approximated by the following step func-
tion:

Psmc =
⎧

⎨

⎩

κc nIII for Pmat < κcnIII

Pmat else
κc[nIII + nIV] for κc[nIII + nIV] < Pmat,

(21)

where κc is a material parameter (in MPa) related to the driv-
ing force per myosin head, see Murtada et al. (2010) and
Kroon (2010) for details. Smooth muscle cell degradation is
governed by two damage variables, dsmc

pas characterising the
damage to the surrounding matrix and dsmc

act characterising
the damage to the smooth muscle cells themselves:

dsmc
pas = γ smc

pas [ 1 − exp(−βmat/msmc
pas ) ],

dsmc
act = γ smc

act [ 1 − exp(−βsmc/msmc
act ) ]. (22)

The internal variable for matrix damage βmat is defined in
Eq. (12), and the internal variable for smooth muscle cell
damage βsmc is defined as:

βsmc = max
0≤t≤τ

( ̂�smc(t) − �smc
0 ). (23)
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Both keep track of the loading history through the maximum
value of the elastic matrix and smooth muscle cell energies
experienced so far.

In the present application, damage values are relatively
low and no localised deformation has been observed. To
avoid the loss of uniqueness of the underlying boundary
value problem in the context of larger damage values, we
recommend the use of gradient enhanced damaged models,
see Kuhl and Ramm (1999), Mahnken and Kuhl (1999) for
details.

In general, it would be possible to also include viscous
effects. However, viscosity plays a rather minor role in arte-
rial clamping. Firstly, in view of the application of tissue
overload prevention in surgery, an overestimation is more
acceptable than an underestimation. Not including viscos-
ity will result in an overestimation of the loading. Secondly,
during surgery, the typical movements of a surgeon are at a
rather low frequency of maximally 2 Hz.

3 Computational modelling of arteries

This section addresses the implementation of the arterial
model into the finite element programme Abaqus.

3.1 Implementation

The constitutive model is implemented in the Abaqus user
subroutine UANISOHYPER_INV, a family of subroutines
designed for anisotropic, hyperelastic material models, in
which the strain energy density function � is formulated
as a function of the strain invariants. This subroutine
can handle and update solution-dependent internal vari-
ables and requires that the derivatives of the strain energy
function are defined with respect to the scalar invariants
Ī1, Ī2, Ī3, Ī fib

4 , Ī fib
6 , Ī smc

4 , which are provided as input. It is
called at each integration point during each load increment
to calculate the total strain energy � and its first and sec-
ond derivatives with respect to the invariants ∂�/∂ Īi and
∂2�/∂ Īi∂ Ī j for i, j = 1, 2, 3, 4fib, 6fib, 4smc.

Through the input file, a local coordinate system must
be set, containing the local directions αfib for the collagen
fibres and αsmc for the smooth muscle cells. When defin-
ing the material, memory must be allocated for nine solu-
tion-dependent state variables, namely the damage driving
forces βmat, βfib1 , βfib2 , and βsmc, and the damage thresholds
�mat

0 , �
fib1
0 , �

fib2
0 , and �smc

0 . The ninth state-dependent var-
iable is the relative sliding urs in the actin-myosin complex,
which needs to be stored because of its viscous nature.

The anisotropic, hyperelastic, user-defined material model
must be specified with all the material parameters described
above, choosing the options ‘formulation = invari-
ant’, ‘local directions = 3’ and ‘type =

Table 1 Parameter sets for cyclic uniaxial tension and compression test
in Sect. 3.2

Parameter Var 1 Var 2 Var 3 Var 4

μsmc 0.0 kPa 0.0 kPa 0.2 kPa 0.2 kPa

γ i 0.0 (–) 0.9 (–) 0.0 (–) 0.9 (–)

i = mat, fib, smcpas, smcact
All other material parameters can be found in Table 2

incompressible’. A conceptual drawback of the
UANISOHYPER_INV subroutine is that it does not provide
access to the time step of the solution process, which should
be known for correct programming of the viscous evolution
law described in Eq. (20). This implies that the exact time
step is only known if a fixed time increment is set, by adding
the option ‘direct’ to the keyword ‘static’ in
the input file. Otherwise, only the minimum and maximum
allowable time step can be externally prescribed.

3.2 Model problem of cyclic uniaxial tension
and compression

The new constitutive model was tested for the simple model
problem of cyclic uniaxial tension and compression using a
hexahedral C3D8H element. Homogeneous boundary condi-
tions were applied, namely a gradually increasing, sawtooth
stretch pattern, as shown in Fig. 1. To explore the parame-
ter sensitivity of the model, four different sets of material
parameters were compared in tension by altering the smooth
muscle cell stiffness μsmc and the damage weighting factor
γ i , see Table 1. All other parameters were selected according
to the rationale explained in Sect. 4.2 as shown in Table 2.

As a first benchmark test, the three-constituent damage
model was compared with the Abaqus implementation of the
standard Holzapfel–Gasser–Ogden model, where the smooth
muscle cell stiffness μsmc and the damage weighting factors
γ i were set to zero (variation 1). Both simulations yielded
exactly the same results, verifying the correct implementa-
tion of the baseline model. Next, different features of the
model were gradually added and evaluated for consistency.
Figure 2 shows the stress–strain curves for the prescribed
loading pattern from Fig. 1 for four variations of the new
material model in tension and two variations in compression.
By turning off the smooth muscle contribution μsmc and the
damage γ i = 0 in variation 1, the model captures the Hol-
zapfel–Gasser–Ogden material by Abaqus as a special case.
When the damage material parameter γ i is increased to 0.9
(–) in variation 2, the dashed red curve is obtained, showing
the progressive failure of the fibres and matrix material. When
the smooth muscle stiffness μsmc is increased to a value of
0.2 MPa in variation 3, the solid green curve is obtained. It
shows how, in the fully contracted state, the smooth muscle
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Table 2 Parameters used in the finite element model

Parameter Value Source

Matrix material

c 23.63 kPa Famaey et al. (2012)

γ mat 0 (–) Not studied

mmat / kPa Not studied

Collagen fibres

αfib ±5◦ O’Connell et al. (2008)

k1 32.51 kPa Famaey et al. (2012)

k2 3.05 (–)

κ 0.16 (–)

γ fib 0 (–) Not studied

mfib / kPa Not studied

Smooth muscle cells—chemical rate constants

κ1, κ6 0.14 s−1 Hai and Murphy (1988)

κ2, κ5 0.5 s−1

κ3, 4κ4 0.44 s−1

κ7 0.01 s−1

Smooth muscle cells—mechanical constants

μsmc 0.25 MPa Fitted to experiments

κc 0.93 MPa Fitted to experiments

η 60 MPa s Murtada et al. (2010)

αsmc 0◦ O’Connell et al. (2008)

γ smc
act 0 (–) Not studied

msmc
act / kPa Not studied

γ smc
pas 0.9 (–) Fitted to experiments

msmc
pas 3.00 kPa Fitted to experiments

cells actively contribute to the stiffness. A slight effect of the
contractile element can be observed. When the damage mate-
rial parameter γ i is increased to 0.9 (–) in variation 4, the
solid red curve with arrows is obtained, clearly demonstrat-
ing the progressive smooth muscle cell degradation as well
as the degradation of the fibres and the smooth muscle cells.
By increasing or decreasing the damage weighting factor γ i

within the range 0 < γ i < 1, the solid red curve with arrows
decreases or increases, respectively, bounded from above and
below by the solid green and dashed blue lines.

The solid black curve is obtained when loading variation
1 or variation 3 of the model in compression. In this regime,
the smooth muscle cells do not contribute and the fibres con-
tribute only very slightly due to their small angle with respect
to the loading direction. The grey curve, finally, is obtained
when variations 2 or 4 are loaded in compression. Again, pro-
gressive degradation (of the matrix material) can be observed.
Note that in these last two curves the absolute values of the
stress and the strain are provided.
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Fig. 1 Strain profile for homogeneous cyclic uniaxial tension and
compression test. ε11, ε22 and ε33 are the strains in the three princi-
pal directions. The lines in the block depict the average direction of the
two collagen fibre families and the smooth muscle cells
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Fig. 2 Stress–strain curve for a homogeneous cyclic uniaxial tension
test and a compression test. Curves correspond to healthy smooth mus-
cle, fibres and matrix material (solid green), progressively damaging
smooth muscle, fibres and matrix (solid red with arrows), no smooth
muscle with healthy fibres and matrix (dashed blue), and progressively
damaging fibres and matrix (dashed red), all in tension. The solid black
curve corresponds to healthy material in compression, and the solid grey
curve to progressively damaging material in compression. Note that the
absolute values of the stress and the strain are provided. The prescribed
loading profile is shown in Fig. 1. The different sets of material param-
eters are summarised in Table 1

4 Smooth muscle cell damage through clamping

The three-constituent damage model is put to use to simulate
the damage process occurring during the clamping of a rat
abdominal artery. To test the realism of the model, the results
were compared with actual experiments, more thoroughly
described in Famaey et al. (2010), in which the abdominal
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Fig. 3 Mechanical clamping device

arteries of rats were clamped up to a defined clamping force.
Subsequently, to quantify the degradation of the smooth mus-
cle cells, the contracting capability of the clamped segment
was measured in a myograph as explained in Sect. 4.1. Both
experimental processes, that is, arterial clamping and subse-
quent myograph testing, were simulated numerically using
the three-constituent damage model as described in Sect. 4.2.

4.1 Experimental model

4.1.1 Arterial clamping

In order to correlate the degree of damage to the degree of
mechanical loading to which the tissue was previously sub-
jected, loading should be applied in a controllable way. Ide-
ally, loading should be applied in vivo, so that the induced
damage can be solely attributed to the loading and not to non-
physiological ex vivo conditions. Since subsequent damage
quantification requires excision of tissue, undamaged con-
trol segments should also be excised and tested as controls,
to rule out damage due to the excision process. To clamp the
artery in a controlled way, a hand-held mechanical device,
shown in Fig. 3, was designed that allows clamping of a rat
abdominal artery in an in vivo setting to a known force, mea-
sured with strain gauges on the clamping arms (Famaey et al.
2010).

4.1.2 Functional damage assessment

One damage quantification method is to compare the degree
of functionality of a damaged tissue to that of an intact one.
For the specific case of arterial tissue, functionality refers to
the vasoregulating capability of the tissue, that is, the poten-
tial of the smooth muscle cells to contract or relax in order
to regulate the blood pressure. This vasoregulating capabil-
ity can be quantified in an experimental setup, known as a
‘myograph’.

Schematically shown in Fig. 4, the myograph consists of
a water-jacketed organ chamber in which an excised cylin-
drical section of an artery can be mounted. Two rods slide

Force 
cell

O2 / CO2

Fig. 4 Custom made functional testing device. Two rods slide into the
lumen of the sample, one rod is connected to the base of the set-up, the
other to a load cell suspended above the set-up, so that isometric ten-
sion can be recorded. The sample is immersed in water-jacketed organ
chamber filled with Krebs buffer

into the lumen of the sample, whereby one rod is connected
to the base of the setup, and the other to a load cell suspended
above the set-up, so that isometric tension can be recorded.
The height of the load cell can be manually adjusted to set
an optimal preload on the sample. The sample is immersed
in a Krebs buffer at 37 ◦C and continuously gassed with a
mixture of 95% oxygen and 5% carbon dioxide. After stabi-
lisation at the optimal preload level, Phenylephrine (PE) at
10−6M is added to the solution to induce contraction. PE is
a contracting agent that acts directly on the smooth muscle
cells. Sodium nitroprusside (SNP) (10−6M) induces an endo-
thelium-independent relaxation so consequently an adequate
level of SNP-induced relaxation will indicate intactness of
the smooth muscle cells (Callera et al. 2000). Absolute val-
ues of relaxation as well as the percentage of relaxation rel-
ative to the amount of contraction are recorded and provide
a quantitative measure of the damage to the smooth muscle
cells when comparing these values to those of an intact sam-
ple. More details on the experimental setup can be found in
Famaey et al. (2010). A similar custom-designed device to
test active force generation in response to electrical stimula-
tion is reported in Böl et al. (2012).

4.2 Computational model

4.2.1 Arterial clamping

A three dimensional finite element model was built in Aba-
qus/Standard 6.10-2. Here, an idealised cylindrical geometry
was used with an outer radius of 0.58 mm, a wall thickness
of 0.14 mm and an initial length of 0.1 mm. These values
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Fig. 5 Schematic overview of the seven steps in the FE simulation
representing the loading history of arterial clamping (steps 1–4) and the
functional damage assessment (steps 5–7)

were obtained from measurements on rat abdominal arter-
ies described in Famaey et al. (2012). The mesh density was
chosen according to the rule of thumb that in bending sit-
uations, there should be at least four elements through the
thickness. Here, because of severe bending, six instead of
four elements were taken across the thickness, and seeding
in other dimensions was chosen to ensure regular elements.
For the generation of real patient-specific models, we refer to
Kuhl et al. (2007) or Balzani et al. (2011). C3D8H elements
were assigned to the mesh. The numerical implementation
of arterial clamping is subdivided into two steps, (i) the set-
ting of the initial damage level and (ii) the clamping process.
Figure 5 shows all steps of the clamping simulation.

In the first part, an opened cylindrical segment with an
opening angle of 60◦ is closed to account for the circumferen-
tial residual stresses (Balzani et al. 2007). Next, the segment
is longitudinally stretched by 50%, to account for residual
stresses in the longitudinal direction. These values for the
residual stresses were obtained from experiments described
in Famaey et al. (2012). In the third step, the segment is
inflated to an internal pressure of 16 kPa. The material model
used in this step is the undamaged three-constituent damage
model, however, without accumulation of damage. At the end

of the third step, the undamaged elastic strain energy of each
of the four constituents is written into a matrix of internal
or ’solution-dependent variables’ for each integration point,
using Python scripting. These are the initial damage thresh-
old levels � i

0, described in Eqs. (12), (16) and (23) to be used
in step 4.

Step 4 starts with a new input file, in which the state of
the artery after the first three steps is imported. By import-
ing, the deformations are included as ’initial values’ for the
model. The solution-dependent variables defined earlier con-
tain the damage threshold levels � i

0 specified as ’initial con-
ditions’ in the input file. The material model is now updated
to enable damage accumulation, γ i > 0, and four extra solu-
tion-dependent variables, representing the β i described in
Eqs. (12), (16) and (23) are added. In addition, two extra
parts are added to the assembly of the system, namely an
upper and lower clamp, which are gradually moved towards
each other during step 4, until a clamping force of 5 mN
is reached. A friction coefficient of μclamp = 0.5 is used
between the clamp and the outer arterial surface. Finally,
also the internal pressure boundary conditions are modified
to a pulsating pressure between 10 and 16 kPa, that gradu-
ally decays to zero when the vessel is completely closed. To
keep track of the maximum energy level reached for each
constituent at every integration point of the system, the four
extra solution-dependent variables are updated and stored at
each step as internal variables β i . At the end of the simula-
tion, these solution-dependent variables are again written to
a matrix using Python scripting to inform the next step.

4.2.2 Functional damage assessment

After clamping, damage has accumulated in the different
constituents. For the smooth muscle cells, this amount of
damage can be calibrated and validated in a myograph, as
explained in Sect. 4.1. The simulation starts from the same
mesh as in step 1 of Sect. 4.2. This time, however, the initial
conditions are specified for the solution-dependent variables
taking into account the earlier loading history through the
internal variables β i . The material model is adapted, such
that damage due to the energy accumulation of clamping is
present, but no further damage is induced. Similar to step 1
of Sect. 4.2, the segment is closed to form a half cylinder in
step 5, thus incorporating the circumferential residual stress.
To reproduce the experimental situation, this time, no longi-
tudinal stretch or internal pressure was added. Next, in step
6, a rod is translated radially from inside the section, pulling
it until it exerts a certain load, corresponding to the exper-
imentally measured value after complete relaxation due to
the addition of SNP. A friction coefficient of μrod = 0.5 is
used between the rod and the outer arterial surface. Up to the
end of step 6, no smooth muscle cell contribution is added
in the material model. This is accomplished by multiplying
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the fractions nIII and nIV with a switch function that is set to
zero in steps 5 and 6.

After reaching the relaxed state, in the final step, the switch
function is smoothly ramped to one, so that the smooth mus-
cle cells reach the completely contracted state. Physiologi-
cally, this situation corresponds to the state after the addition
of PE. In this step only, because of the time dependence
of the evolution law for the relative sliding urs, the time
step of the implicit solution scheme is fixed to dt = 10−5.
Figure 5 gives a schematic overview of all seven steps of the
simulation.

4.2.3 Parameter selection

Table 2 gives an overview of all parameters of the material
model. The first set of parameters are related to the extra-
cellular matrix with two embedded fibre families. For the rat
abdominal aorta, the main direction of the collagen fibres
αfib is set to ±5◦, that is, it is almost aligned with the cir-
cumferential direction, see O’Connell et al. (2008). The four
remaining parameters are set to κ = 0.16 (–), k1 = 32.51
kPa, k2 = 3.05 (–) and c = 23.63 kPa, using experimental
data from extension-inflation tests as described in Famaey
et al. (2012). Alternatively, a parameter set from human arter-
ies can be found in Stålhand (2009).

The next set of parameters are the rate constants of the
chemical model defining the fractions nIII and nIV in equation
(see Eq. 19). They are chosen according to Hai and Murphy
(1988). These values led to the fractions of nIII = 0.164
and nIV = 0.547, which were used as fixed input values
into the mechanical model. Additional parameters are related
to the mechanical model of the smooth muscle cell contri-
bution. According to O’Connell et al. (2008), the smooth
muscle cells of rat abdominal arteries are oriented circum-
ferentially with αsmc = 0◦. The parameter μsmc depend-
ing on the stiffness of the actin-myosin filament structure
and the parameter κc related to the driving force per cross-
bridge were both tuned to fit the experimental contraction
measured in the myograph due to addition of PE for a pre-
viously undamaged segment, as described in Sect. 4.1. The
viscous damping constant η was set to 60 MPa s, correspond-
ing to the value used in Murtada et al. (2010).

To characterise damage progression appropriately, two
parameters need to be calibrated for each constituent, plus
two additional ones for the smooth muscle cells, totalling
ten parameters. Since the myograph experiment only allows
for damage quantification in the smooth muscle cells, with
the current setup, no reasonable damage parameters can be
defined for the extracellular matrix and the collagen fibres.
Additional complementary experiments will be needed for
this task, as discussed in Sect. 5. Accordingly, here, γ mat and
γ fib were set to zero, such that mmat and mfib can take any

arbitrary value. Secondly, the assumption was made that, dur-
ing clamping, the smooth muscle cells were completely pas-
sive, and thus not contributing to the stiffness. Consequently,
no damage could accumulate here, so that γ smc

act could also be
set to zero, and msmc

act to an arbitrary value. The two remain-
ing parameters γ smc

pas and msmc
pas were then calibrated using

the experimental data. For a systematic approach to calibrate
damage material parameters in a heterogeneous setting, the
reader is referred to Mahnken and Kuhl (1999).

4.3 Results

The top image in Fig. 6a shows the maximum principal stress
in an arterial segment in the systolic physiological state. This
state defines the damage threshold above which damage is
initiated. In the lower image of Fig. 6a, the maximum prin-
cipal stress is shown for the same arterial segment when
clamped up to a clamping force of 5 mN. Figure 6b shows
the same set of images, this time displaying the elastic strain
energy in the matrix material, ̂�mat, that is, the driving force
for both isotropic matrix damage dmat and passive smooth
muscle cell damage dsmc

pas . As shown in the lower image of
Fig. 6c, the clamping has induced an inhomogeneous damage
pattern to the smooth muscle cells. Even when the segment
returns to its reference state (top image in Fig. 6c), this dam-
age is irreversible and remains.

Figure 7 shows snapshots of the myograph experiment,
with the colour code depicting the maximum principal stress.
The left graph of Fig. 8 shows the force measured in the
rods of the myograph as a function of time, for a previously
undamaged segment, solid line, and for a segment that was
previously clamped at 5 mN, dashed. The letters along the
curve correspond to the stages shown in Fig. 7. The first
section of the graph corresponds to step 6 of the simula-
tion, that is, the pulling of the rod to the passive state. After
2 s, the smooth muscle cells are activated, corresponding to
step 7.

The right graph of Fig. 8 shows the force measured in
the rod for a segment that was previously clamped with the
device described in Sect. 4.1 to a level of 5 mN, normalised
to the width of the numerical model, and for a segment that
was undamaged. The force in the rod was also normalised to
the width of the numerical model. Again, in the first section
of the graph, the rod is gradually pulled to reach the passive
preload state. At the point indicated with the arrow, PE is
added to the Krebs solution, triggering the activation of the
smooth muscle cells. Note that the time scales in the two
graphs do not agree. To calibrate the model appropriately,
an additional time parameter would have to be included into
the model. Here, however, we were only interested in the end
result of the curve, rather than in calibrating the model to real
physical times.
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a b c

Fig. 6 a Maximum principal stress in an arterial segment in systolic
physiological state (top image), and when clamped up to a clamping
force of 5 mN (lower image). b Strain energy in the same two segments
as in (a). c Damage variable dsmc

pas in the same two segments as in (a),

when clamped up to a clamping force of 5 mN (lower image). This dam-
age remains, even when the segment returns to its reference state (top
image)
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Fig. 7 Different stages of the myograph experiment, with the colour
code depicting the maximum principal stress. In stages a, b and c, the
rods are being pulled to the preload force (step 6 of the numerical sim-

ulation). In stages d, e and f, the rods remain in position and the smooth
muscle cells are activated (step 7 of the numerical simulation)
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Fig. 8 The left graph shows the force measured in the rod of the myo-
graph as a function of time, for a previously undamaged segment (solid
line) and for a segment that was previously clamped at 5 mN (dashed).
The letters along the curve correspond to the snapshots shown in Fig.

7. The right graph shows the force measured in the rod during an
experiment, for a segment that was previously clamped with the device
described in Sect. 4.1 to a level of 5 mN and for a segment that was
undamaged, both normalised to the width of the numerical model
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5 Discussion

In this article, a three-constituent damage constitutive model
was proposed to simulate the damage process in arterial tis-
sue. After testing the model in a homogeneous model prob-
lem under cyclic uniaxial tension and compression, it was
used in a finite element simulation for the clamping of an
artery and the subsequent damage evaluation in a myograph.
The model enables the analysis of the inhomogeneous dam-
age profile in the artery due to loading, quantitatively showing
which constituents and which sections are overloaded, com-
pared with the physiological state. In response to overload,
driven by the free energy, anisotropic damage develops in the
smooth muscle cells. The three-constituent damage model
and numerical simulation provide a useful tool to explore
safe loading of arterial tissue. Being able to reliably predict
loading regimes which initiate tissue damage is important
in view of robotic surgery, which lacks the natural feedback
of human touch, by which the experienced surgeon today
guarantees safe tissue loading.

The material model described in Sect. 2 introduces a large
set of parameters, which need to be experimentally defined
for each tissue type. Extensive experimental data from a range
of different experiments is required to correctly calibrate all
parameters. Section 4.2 comments on the rationale behind
the parameter selection for this study. The goal of this study
was to demonstrate the feasibility of the proposed model
and to illustrate a conceptual methodology for the damage
characterisation in smooth muscle cells. Accordingly, less
emphasis was placed on the exact parameter identification
for the other model parameters. As explained in Sect. 2.2,
four damage processes can be captured by the model, one
for each constituent. Each damage process is assumed to
be driven by the individual free energy of that constituent.
For smooth muscle cells, passive damage is also affected
by the energy in the matrix constituent. Here, we focus in
particular on this last passive part of damage, assuming that
smooth muscle cells are inactive during the real clamping
process. The damage parameters were chosen to correspond
to the results of an ex vivo experiment. In the future, further
experiments will be performed with different clamping force
levels to calibrate the model for a wider loading range. To
enable numerical comparison with higher clamping force lev-
els, it might become relevant to remesh the clamped segment
to avoid excessive element distortion. However, remeshing
would require the mapping of the solution, both from the node
points and from the integration points, onto the new mesh,
a feature currently still lacking for anisotropic materials in
Abaqus 6.10.

In order to accurately identify the damage parameters
for the different constituents, different, ideally orthogonal,
experiments are required that enable the extraction of this
specific information. Damage in the collagen fibres under

tension can possibly be studied using microscopic images
of the tissue at different stages in the stretching process
and assessing the images for collagen rupture. In fact, the
extension-inflation tests that were used here to calibrate the
undamaged baseline parameters of the Holzapfel model most
probably already induced damage to both collagen fibres and
matrix in the higher pressure regimes. Damage in the colla-
gen fibres and matrix should therefore ideally be calibrated
simultaneously, possibly through extension-inflation tests.
Damage to the smooth muscle cells is assumed to depend
on both damage of the passive extracellular matrix and dam-
age of the active smooth muscle cells themselves. Damage
in the passive regime has been observed and characterised
experimentally in Famaey et al. (2010) and calibrated in this
manuscript using these data. It results in a reduced activation
capability, which will only become apparent upon activation.
Damage in the active regime is caused by excessive tension
in the direction of the contractile unit, which might cause
ruptures in the myosin cross-bridges or rupture of the actin
and myosin filaments. It is included here merely theoretically
for the sake of completeness, but has not been calibrated yet.
We are currently in the process of further investigating these
phenomena to characterise the mechanisms underlying active
damage.

Note also that in the finite element model, the artery was
modelled as a single homogeneous layer, even though the
wall consists of two solid mechanically relevant layers, that
is, the media and the adventitia. However, in the case of a rat
abdominal artery, the complete wall thickness is only approx-
imately 0.14 mm thick, and in contrast to human tissue, it
is impossible to separate these two layers from each other.
Therefore, the most accurate approach was to model the wall
as a single layer. The assumption was also made that damage
initiates once the energy level exceeds that of the energy level
at systolic blood pressure. This was motivated by the fact that
the morphology and properties of the arterial wall change due
to chronic hypertension (Matsumoto and Hayashi 1994), but
whether this actually justifies this assumption for acute dam-
age scenarios should still be experimentally validated.

Although the three-constituent damage model already
captures a number of typical features of cardiovascular tis-
sue, some characteristic aspects are still not included, and
a few limitations remain. When qualitatively comparing the
simulated homogeneous cyclic tension test described in Sect.
3.2 to the experimental results of a uniaxial tensile test on a
sheep carotid artery, shown in Fig. 9, several features, for
example, tissue nonlinearity and discontinuous softening are
accurately captured. However, in the tensile test on the sheep
carotid artery, cycling up to a certain strain level was per-
formed five times before the next strain level was reached,
and clearly softening does continue in these cycles, even
though the maximum energy level, the parameter β in our
model is not increased. This continuous damage behaviour
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Fig. 9 Uniaxial tensile test on a circumferentially oriented strip of
a sheep carotid artery. The test was performed on a tensile test bench
(INSTRON 5567). Cyclic loading at gradually increasing levels of elon-
gation was applied at a crosshead speed of 1 mm/s. The tests were per-
formed with continuous recording of tensile force, with a 1 kN load
cell and gauge length, based on crosshead displacement, at a sampling
frequency of 10 Hz. Cycling up to a certain strain level was performed
five times before the next strain level was reached, for six increasing
levels of strain

was not captured with the damage model used here. More-
over, the damage variables introduced in this model mainly
capture acute effects, while chronic effects such as repair
and/or remodelling have not been considered for the time
being. These effects should be investigated, keeping in mind
the trade-off between realism of the model and its usability.
The correct identification of the material parameters obvi-
ously becomes more challenging as more effects are incor-
porated in the model.

The ultimate goal of this research project is to minimise
tissue trauma during surgery, for which damage thresholds
need to be identified. These thresholds should be defined in
close collaboration with surgeons and biomedical research-
ers, experimentally assessing the level of damage due to load-
ing and defining which damage levels are still acceptable,
taking into account long-term effects of damage accumula-
tion but also self healing. These critical damage levels can
then be correlated to the internal damage variables d. Once
the damage variable of a constituent has reached a certain
level, the damage is set to be unacceptable, and robotic load-
ing should be stopped automatically. Future research will
therefore also be directed towards algorithm speed-up, for
example, through parallelised implementation in the GPU
with NVIDIA Compute Unified Device Architecture.

Predictive computational modelling of tolerable damage
thresholds is clinically relevant in two ways: on the one hand,
in the short term, the proposed model can be used as a simu-
lation tool to optimise surgical tools, for example, to improve
clamp design to minimise tissue damage. On the other hand,

in the long term, the proposed model could enable the pre-
diction of surgically induced damage evolution in real time.
This would allow loading thresholds to be imposed on surgi-
cal instruments during an operation in a robotic teleoperation
setting.
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