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Anterior mitral leaflet curvature in the beating ovine heart
A case study using videoflouroscopic markers and subdivision surfaces
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Abstract The implantation of annuloplasty rings is a
common surgical treatment targeted to re-establish mi-
tral valve competence in patients with mitral regurgita-
tion. It is hypothesized that annuloplasty ring implan-
tation inuences leaet curvature, which in turn may
considerably impair repair durability. This research is
driven by the vision to design repair devices that op-
timize leaet curvature to reduce valvular stress. In
pursuit of this goal, the objective of this manuscript
is to quantify leaet curvature in ovine models with
and without annuloplasty ring using in vivo animal
data from videouoroscopic marker analysis. We rep-
resent the surface of the anterior mitral leaet based
on 23 radiopaque markers using subdivision surfaces
techniques. Quartic box spline functions are applied to
determine leaet curvature on overlapping subdivision
patches. We illustrate the virtual reconstruction of the
leaet surface for both interpolating and approximating
algorithms. Di�erent scalar-valued metrics are intro-
duced to quantify leaet curvature in the beating heart
using the approximating subdivision scheme. To explore
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the impact of annuloplasty ring implantation, we an-
alyze ring-induced curvature changes at characteristic
instances throughout the cardiac cycle. The presented
results demonstrate that the fully automated subdivi-
sion surface procedure can successfully reconstruct a
smooth representation of the anterior mitral valve from
a limited number of markers at a high temporal resolu-
tion of approximately 60 frames per minute.

Keywords Mitral valve, mitral regurgitation, annulo-
plasty ring, curvature, subdivision surfaces, continuitiy

1 Motivation

Mitral regurgitation is a progressive, valvular disor-
der that a�ects approximately 4 million people in the
United States with 250,000 new cases occurring each
year. Annually, more than 300,000 people worldwide,
44,000 in the US alone, undergo open heart surgery for
mitral valve treatment [2, 7]. The mitral valve is a bi-
cuspid heart valve consisting of two leaets, anterior
and posterior, surrounded by the mitral valve annulus.
A normal mitral valve allows unidirectional blood ow
from the left atrium into the left ventricle during di-
astole and prevents back ow during systole. In mitral
regurgitation, the valve fails to close properly and blood
leaks backward with each heartbeat, lowering pumping
e�ciency.
The most common surgical approach to repair a leaking
valve is to bring the leaets closer together by implant-
ing an annuloplasty ring around the mitral valve annu-
lus. Annuloplasty rings come in di�erent shapes, oval
versus dog-bone shaped, at versus saddle-contoured,
may be constructed from a rigid or exible material,
and are available in an assortment of sizes. One exam-
ple is the Edwards GeoFormR ring illustrated in Fig-
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ure 1. Specifically designed to restore leaflet coaptation
and treat mitral regurgitation, it has a characteristic
dogbone shape to significantly reduce the valve septal-
lateral dimensions [1, 29], shown as the middle vertical
dimension in the top view of Figure 1. Choosing the
optimal ring type and size depends primarily on the
surgeon’ s experience and personal preference. It is hy-
pothesized that both ring shape and stiffness consider-
ably influence leaflet and annular dynamics.
Elevated leaflet stresses have been postulated to cause
long-term repair failure. Unfortuantely, it is impossible
to measure leaflet stresses in the beating heart. Contin-
uum mechanics based descriptions of leaflet dynamics,
solved with finite element techniques, offer the poten-
tial to predict stress profiles in vivo. These approaches,
however, require a precise understanding of the mate-
rial properties, boundary conditions, and forces of the
entire mitral valve apparatus [13, 15, 19, 20, 30]. Early
finite element based stress analyses indicate that the
GeoFormR© ring might significantly reduce maximum
principal leaflet stresses [29]. The effect of annuloplasty
rings on leaflet stresses has only recently been quanti-
fied in vivo [1], but the complex interplay between ring
form and function is not fully understood to date.
Rather than determining leaflet material properties,
evaluating leaflet equilibrium, and then quantifying
leaflet stress [14], we propose a more straightforward
approach based on a direct analysis of leaflet kinemat-
ics [11, 25]. We hypothesize that mitral leaflet curva-
ture immediately influences leaflet stresses, and thus
has a direct impact on mitral valve function [26]. In
the literature, leaflet curvature has been accessed us-
ing three-dimensional echocardiography [24]. The re-
sulting images of the mitral leaflet were manually
segmented, manually merged, and approximated with
smooth splines. Based on a least squares fit, a param-
eterized surface representation was generated to de-

Fig. 1 Annuloplasty rings are a common surgical approach to
repair a leaking valve. The GeoFormR© ring has a characteristic
dogbone shape with a significantly elevated posterior segment to
bring the leaflets closer together and prevent back flow.

termine Gaussian curvature in ovine models with and
without annuloplasty rings [23].
The present manuscript presents an alternative ap-
proach to quantify leaflet curvature based on a high
resolution videofluoroscopic marker analysis evaluated
with a novel subdivision surface algorithm. We illus-
trate the features of the proposed approach in terms of
two data sets, one with the GeoFormR© ring implanted
and one with the ring released in the same ovine heart.
To define leaflet curvature in terms of the acquired
marker coordinates, we adopt a subdivision surface ap-
proach. The concept of subdivision surfaces was intro-
duced in the late 1970s to address the challenge of gen-
erating smooth free-form surfaces of arbitrary topolo-
gies [3,9]. Rather than assembling individual patches of
tensor product splines, subdivision surface algorithms
generate a spline patch as the limit of a repeated uni-
form knot intersection. Initially developed in geometry
and applied mathematics [17,21,22,31], subdivision sur-
face algorithms are currently receiving a broad atten-
tion in computer graphics [27, 28]. Due to their inher-
ent C1-continuity, the structural mechanics community
has recently recognized subdivision surfaces as a new
paradigm to characterize higher order derivatives in ad-
vanced shell theories [4– 6]. In this manuscript, we apply
the generic idea of subdivision, to create a parameter-
ized surface representation of the anterior mitral leaflet.
We utilize local overlapping patches of subdivision tri-
angles to determine the global second order curvature
field with the help of quartic box splines [4]. In addi-
tion to the Gaussian curvature field discussed in the
literature [24], we also visualize the mean and principal
curvatures, and compare and discuss the different cur-
vature representations.
The manuscript is organized as follows: Section 2 briefly
summarizes our experimental technique to determine
four-dimensional leaflet marker coordinates. Section 3
compares interpolating and approximating schemes and
introduces the concept of subdivision surfaces. In Sec-
tion 4, we illustrate the curvature computation and
discuss different scalar-valued curvature measures. The
features of the proposed approach are demonstrated in
Section 5 by means of a characteristic leaflet curvature
analysis in an ovine model with and without annulo-
plasty ring. Potential applications of the proposed ap-
proach are discussed in Section 6.

2 Mitral leaflet coordinates

An adult Dorsett-hybrid male sheep was premedicated
with ketamine, anesthetized with sodium thiopental, in-
tubated, and mechanically ventilated with inhalational
isoflurane. A left thoracotomy was performed and the
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heart was suspended in a pericardial cradle. On car-
diopulmonary bypass, a total of 23 radiopaque tanta-
lum markers were sewn to the following sites: seven on
the anterior mitral annulus, seven on the mitral leaet
edge, and nine on the leaet belly, see Fig. 2. To iden-
tify maximum leaet opening, an addition marker was
sewn on the central edge of the middle scallop of the
posterior mitral leaet. Each tantalum marker weighed
3.2mg and had an inner and outer diameter of 0.6mm
and 1.1mm, respectively. After marker placement, a
true-sized GeoFormR annuloplasty ring was implanted
with a speci�cally-designed technique such that it could
be released in the catheterization laboratory while the
heart is beating [1]. After ring implantation, the left
atrium was closed, the animal was weaned from car-
diopulmonary bypass, and a micromanometer trans-
ducer was placed in the left ventricle through the left
atrium. The animal was then transferred to the experi-
mental catheterization laboratory. It was placed in the

Fig. 2 Intraoperative photograph showing some of the twenty-

three tantalum markers sewn to the mitral valve. Seven mark-
ers are sewn on the anterior mitral annulus, seven on the mitral

leaet edge, and nine on the leaet belly.

right lateral decubitus position for acquisition of data
under open-chest condition, see Fig. 3. For left ventricu-
lar and atrial pressure measurements, a micromanome-
ter pressure transducer and a calibrated catheter were
place in the left ventricle and left atrium, respectively.
Videouoroscopic images at 60 frames per second were
acquired of all radiopaque markers using a biplane vide-
ouoroscopy system with the heart in normal sinus
rhythm and ventilation transiently arrested at end ex-
piration.
First, images were acquired with the ring attached to
the annulus. Then the ring was released [1]. Ring re-
lease was veri�ed uoroscopically and another data ac-

Fig. 3 Data acquisition in the catheterization laboratory. The

sheep is imaged under open-chest conditions using biplane vide-
ouoroscopy at 60 frames per second. Four-dimensional marker

coordinates are generated by merging the time sequences from

both cameras.

quisition was performed under baseline conditions to
serve as control. Marker coordinates from each of the
biplane views were then merged to yield the 3D coordi-
nates of each marker centroid in each frame using semi-
automated image processing and digitization software
developed in our laboratory [8,18]. Left ventricular and
atrial pressure were digitally recorded simultaneously
during marker data acquisition and synchronized with
the marker coordinates. The above described procedure
generates four-dimensional marker coordinates for all
23 markers. In the following section we compare di�er-
ent techniques to represent the leaet surface in terms
of these marker coordinates.

3 Surface representation

Subdivision surface algorithms are a powerful tool
to mathematically de�ne arbitrary free-form surfaces
based on a given set of control points. A subdivision al-
gorithm consists of two ingredients, a topological split
algorithm de�ning how the connectivity of the control
mesh is re�ned, and a geometric re�nement algorithm
introducing the nodal coordinates of the new re�nement
level. The re�nement of a coarse mesh is carried out by
quadrisecting triangular elements in the coarser mesh.
During quadrisection, each edge connecting two nodes
in the coarse mesh is divided into two edges through
insertion of newly generated nodes. Depending on the
underlying geometric re�nement algorithm, surface rep-
resentation algorithms can be divided into two classes,
interpolating and approximating schemes. In what fol-
lows, we compare the geometric re�nement rules for
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these two schemes. Thereby we restrict ourselves to sur-
faces which consist of trianglar faces only.

3.1 Interpolating schemes

Interpolating schemes preserve the nodal positions of
the coarser mesh upon re�nement [31]. This implies
that nodes of the original control mesh and all recur-
sively generated nodes will always lie exactly on the
limit surface. Accordingly, interpolating schemes are
free of approximation errors, however, their limit sur-
faces do not have a well-de�ned curvature. Fig. 4 illus-
trates a typical sequence of interpolating surfaces. The
k+1-th level of re�nement is generated by maintaining
the coordinates of old nodes xk0 of the k-th level,

xk+1
0 = xk0 (1)

and by introducing new nodes xk+1
I on its edges. The

positions of the newly inserted nodes are calculated by
averaging the weighted nodal positions of the unre�ned
mesh.

xk+1
I = 1

8 [ 3 xk0 + xkI�1 + 3 xkI + xkI+1 ] (2)

Only the four nodes of two triangles that share the edge
of interest contribute the averaging equation (2). The
re�nement mask for the newly inserted nodes in Fig.6
(right) demonstrates the distribution of the weighting
factors 1=8 and 3=8 assigned to the four nodes [17].
Since the subdivision process itself is linear, the result-
ing limit surface is nothing but a linear combination of
fundamental solutions of the subdivision process.

3.2 Approximating schemes

Approximating schemes introduce an entirely new set of
nodal positions for each re�nement step. Accordingly,
nodes of the original control mesh may no longer be
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Fig. 6 Re�nement mask for di�erent algorithms. Existing nodes
are maintained for the interpolating scheme and re�ned for the

approximating scheme, left. New nodes are calculated by averag-
ing the weighted nodal positions of the unre�ned mesh for both
schemes, right.
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Fig. 7 Regular patch with twelve nodes used for the curvature
interpolation on triangle T .

part of the limit surface. Approximating subdivision
algorithms are thus associated with an approximation
error. In contrast to interpolating schemes, approximat-
ing schemes can generate C1-continuous limit surfaces
with a well-de�ned curvature provided that elements
with irregular vertices are recursively re�ned. A typ-
ical approximating series of subdivision surfaces is il-
lustrated in Fig. 5. The coordinates of the k + 1-th re-
�nement step are computed as weighted averages of the
nodal coordinates of the k-th re�nement level. The old
nodes xk0 are assigned new coordinates xk+1

0 according
the the following formula,

xk+1
0 = [ 1� vw ] xk0 + w

Pv
i=1 xkI (3)

while the newly generated nodes xk+1
I associated with

the edges of the k-th re�nement are computed similarly
to the interpolating scheme.

xk+1
I = 1

8 [ 3 xk0 + xkI�1 + 3 xkI + xkI+1 ] (4)

In equation (3), w is a weight function and v denotes
the valence of the node under consideration [17], i.e.,
the number of edges connected to it, see Fig. 6 (left).
In a perfectly regular triangular mesh, the valence of
all inner nodes is v = 6, but usually a few nodes of
the original control mesh are irregular with a valence
of v 6= 6. All newly generated nodes, however, have a
valence of v = 6 by construction.

Remark 1 (Special treatment at surface boundaries)
Special care needs to be taken at kinematic boundaries
where the subdivision algorithm needs to be modi�ed.
In our examples, we use the method of arti�cial nodes
which generates an arti�cial mirror image of the origi-
nal mesh along the boundary and applies the standard
subdivision rule as illustrated in [4].

Remark 2 (Error of the approximation) While the in-
terpolating scheme always keeps the marker positions
on the subdivision surface, the approximating scheme
inherently introduces an approximation error. This ap-
proximation error can be characterized through di�er-
ent error norms such as the root mean square error
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Interpolating scheme

control mesh 1st subdivision 2nd subdivision 3rd subdivision

Fig. 4 Interpolating scheme with a control mesh based on the 23 marker coordinates (left) and three levels of subdivision (right).
The interpolating algorithm generates surfaces which contain all control points but are not C1-continuous.

Approximating scheme

control mesh 1st subdivision 2nd subdivision 3rd subdivision

Fig. 5 Approximating scheme with a control mesh based on the 23 marker coordinates (left) and three levels of subdivision (right).
The approximating algorithm generates surfaces which are C1-continuous but only approximate the control points.

norm | | e| | L2 or the average error norm | | e| | L1 . In the
following examples, we will explore the average error
norm

| | e| | L1 =
1

nmrk

∑ nmrk

i=1 | x
k+1
0 − x1

0 | (5)

which characterizes the average distance between the
originally measured marker positions x1

0 and their re-
fined position on the subdivision surface of level k.

4 Curvature computation

The key objective of the approximating subdivision al-
gorithm outlined in Section 3.2 is the reconstruction of a
suffi ciently smooth leaflet surface that allows for curva-
ture tensor field evaluation. At the end of the kth subdi-
vision, our database contains the nodal coordinates and
the connectivity of each triangle on the approximated
surface. The curvature field within each triangle T is
computed based on the coordinates of its own nodes and
those of its immediate neighboring triangles, see Fig. 7.
A regular patch consists of twelve nodes with nodal co-
ordinates xI for I = 1, .., 12. The local parametrization
of the limit surface can be expressed in terms of quartic
box-spline shape functions

x(θ1, θ2) =
∑ 12
I=1NI(θ

1, θ2) xI (6)

where (θ1, θ2) are the barycentric coordinates of the
master triangle T = (θ1, θ2) with θ1,2 ∈ [0, 1] and

θ1 +θ2 ≤1, see Fig. 8. For a regular twelve node patch,
the box-spline shape functions are given in [4]. Irregu-
lar triangles with nodal valences different from six re-
quire special treatment. These irregular patches have
to be locally refined one-step further to obtain regu-
lar subpatches on which the parametrization (6) can be
applied.

θ1

θ2

a1

a2a3

T

x

S

Fig. 8 Surface base vectors a1, a2, the surface normal a3 at the
integration point x of an element T on the surface S. The local
curvilinear coordinates θ1, θ2 are assumed to be identical to the
barycentric coordinates of an element.

Having the position vectors x at hand, we can deter-
mine the covariant base vectors aα as

aα(θ1, θ2) =
∑ 12
I=1NI,α(θ1, θ2) xI for α = 1, 2 (7)



6

where NI,α := ∂NI/∂θ
α. The normalized vector prod-

uct of base vectors yields the unit surface normal a3.

a3(θ1, θ2) :=
a1 × a2

| a1 × a2 |
(8)

The key quantity describing the local curvature char-
acteristics of a surface is the second fundamental form
[12],

B = Bαβ aα⊗aβ where Bαβ := aα,β · a3 (9)

with aα,β := ∂aα/∂θ
β. Due to the definition (8) the

covariant base vectors aα are orthogonal to the sur-
face normal a3, see Fig. 8. Hence, the identity Bαβ =
aα,β · a3 = −aα · a3,β holds, and so does the equality
Bαβdθ

αdθβ= − dx · da3. The latter statement clearly
illustrates the geometrical interpretation of the coeffi -
cients Bαβ. Recall that the contra-variant base vectors
aα are related to the covariant base vectors aβ through
the inverse of the local surface metric gαβ.

aα := gαβaβ (10)

The symmetric, positive definite surface metric gαβ and
its inverse gαβ are defined as follows.

gαβ := aα · aβ
gαβ := aα · aβ = (gαβ)− 1

(11)

The surface metric gαβ, also referred to as the first fun-
damental form, is another key quantity required to eval-
uate length measures. In light of the definitions given
above, it can readily be shown that contra- and covari-
ant bases are orthogonal aα · aβ = δβα with δβα denoting
the Kronecker delta.

The principal curvatures κ at point x on the surface S,
Fig. 8, satisfy the principal value problem of the second
fundamental form,

B · n = κ g · n or Bαβn
β = κ gαβn

β (12)

where n are the corresponding contravariant principal
directions. Non-trivial solutions of (12) are obtained for
det(Bαβ−κ gαβ) = 0 leading to the characteristic equa-
tion of the principal curvature problem.

κ2 − IB κ+ IIB = 0 (13)

Its coeffi cients IB and IIB

IB := tr(B) = Bαβ g
αβ = κ1 + κ2

IIB := det(B) = det(Bαβ)/det(gαβ) = κ1κ2

(14)

are the first and the second principal invariants of the
second fundamental form B. Since B is symmetric, the
principal curvatures κ1, κ2 are real-valued and the cor-
responding principal directions n1,n2 are orthogonal.
The principal curvatures κ1,2 can be determined as the
roots of the characteristic equation (13).

κ1,2 = 1
2 [ IB ±

√
I2
B − 4 IIB ] (15)

Next to the principal curvatures κ1,2, the mean curva-
ture κmean and the Gaussian curvature κgauss are com-
monly employed in the literature to characterize a cur-
vature distribution. In the forthcoming subsections, we
introduce the definitions of these curvature measures,
illustrate their features in terms of contour plot repre-
sentations, and discuss their physical interpretation. To
this end, we evaluate the second fundamental form B
at the barycenter of each triangle θ1 = θ2 = 1/3 using
the isoparametric box-spline parametrization (6).

4.1 Mean curvature

The mean curvature is defined as the arithmetic mean
of the principal curvatures

κmean := 1
2 [κ1 + κ2 ] (16)

which is equivalent to κmean = 1
2IB = 1

2 tr(B) according
to (14)1. A surface for which the mean curvature κmean

End Systole

End Diastole

��
Annulus

��
Annulus

��
Free Edge

��
Free Edge

κmean

[cm − 1]−0.5 0 0.5

Fig. 9 Mean curvature κmean at end systole (top) and at end
diastole (bottom) for third subdivision with 1017 nodes.

vanishes at every point is called a minimal surface. It
can be shown that the minimal part of a surface with
κmean = 0, bounded by a closed curve Γ , possesses the
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End Systole

End Diastole

κgauss

[cm − 2]−0.5 0 0.5

Fig. 10 Gaussian curvature κgauss at end systole (top) and at
end diastole (bottom) for third subdivision with 1017 nodes.

smallest area compared to any other part of the sur-
face bounded by the same curve Γ , see [12], p.244. The
contours of κmean in Fig. 9 illustrate the distribution
of the mean curvature field over the anterior leaflet at
end diastole and at end systole for the third subdivision
level with 1017 nodes.

4.2 Gaussian curvature

Another widely used curvature measure is the Gaussian
curvature that is defined by the product of principal
curvatures.

κgauss := κ1κ2 (17)

It can also be expressed in terms of the second invari-
ant κgauss = IIB = det(B), see (14)2. The sign of the
local Gaussian curvature is used to classify the shape
of a surface in the neighborhood of a point x. Surface
points with positive κgauss > 0 are called elliptic, points
with negative κgauss < 0 are called hyperbolic or sad-
dle points, and points with vanishing κgauss = 0 are
referred to as parabolic. The contours of the Gaussian
curvature κgauss over the leaflet at end diastole and at
end systole are depicted in Fig. 10. The chosen color

End Systole

End Diastole

κmax

[cm − 1]−0.5 0.25 1

Fig. 11 Maximum principal curvature κmax at end systole (top)
and at end diastole (bottom) for third subdivision with 1017
nodes.

code clearly demonstrates the elliptic and hyperbolic
domains on the leaflet. Although the Gaussian curva-
ture has been used previously to illustrate the surface
characteristics of the leaflet [23,24], it does not readily
reflect the leaflet curvature observed on echocardiogra-
phy. A typical example is an elliptic point with positive
κgauss > 0, which can be obtained either for κ1 > 0 and
κ2 > 0 or for κ1 < 0 and κ2 < 0. Accordingly, convex
or concave areas can be assigned the same color code.

4.3 Maximum principal curvature

To make curvature interpretation readily accessible and
distinguish convex and concave areas, we propose to use
the maximum principal curvature κmax.

κmax := max{ κ1, κ2 } (18)

The maximum principal curvature contours over the
leaflet at end diastole and at end systole are depicted
in Figs. 11 and 12. Compared to the Gaussian curva-
ture contours in Fig. 10, the κmax contours in Fig. 11
transparently distinguish convex and concave regions
in the elliptic domains of the leaflet surface at end di-
astole. However, special attention should be paid to
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End Systole

End Diastole

�
��

Annulus

�
��

Annulus

�
�

Free Edge

� � �
Free Edge

κmax

[cm − 1]−0.5 0.25 1

Fig. 12 Maximum principal curvature κmax at end systole (top)
and at end diastole (bottom) for third subdivision with 1017
nodes.

the points where the maximum principal curvature is
positive. Positive κmax > 0 might represent both hy-
perbolic and convex regions of the surface, and a clear
distinction can only be made by analyzing both the
Gaussian and the maximum principal curvature con-
tours, see Figs. 10 and 11. Another illustrative feature
associated with the maximum principal curvature κmax

is the maximum principal direction n(κmax) according
to the principal value problem in equation (12). Fig. 13
illustrates the maximum principal directions, i.e., the
directions with maximum curvature. These are orthog-
onal to the directions of minimum curvature n(κmin)
which, in turn, might be correlated to the preferred mi-
crostructural orientations of the leaflet, see, e.g., [10,16],
for a discussion on leaflet anisotropy, histological stain-
ing, and a conceptual model of the leaflet microstruc-
ture, respectively.

End Systole

End Diastole

Fig. 13 Maximum principal directions at end systole (top) and
at end diastole (bottom) for third subdivision with 1017 nodes.

4.4 Circumferential and radial curvatures

Apart from the curvature measures considered above,
we now consider the projection of the second fundamen-
tal form B on the circumferential and radial axes of the
leaflet at end diastole. For this purpose, we introduce
the circumferential κcc and radial κrr curvatures

κcc := nc · B · nc and κrr := nr · B · nr (19)

where the vectors nc and nr denote the unit vectors
in the circumferential and radial directions, shown in
Fig. 14. Contour plots of these curvature measures are
depicted in Figs. 14 and 15, separately. Apparently,
the contour plots in these figures partially resemble
the κmax distribution, Fig.11, at points where the prin-
cipal maximum curvature directions, Fig. 13, become
nearly parallel to the circumferential and radial direc-
tions. Overall, we feel that if we were to pick a single
curvature contour plot, the maximum principal curva-
ture κmax, Fig. 11, may give the best picture of the
leaflet shape. In the following examples, for the sake of
completeness, we utilize the circumferential and radial
curvature plots besides the maximum principal curva-
ture distribution to characterize ring-induced changes
in leaflet kinematics.
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End Systole

End Diastole

c

c

r

r

c

c

r

r

κcc

[cm − 1]−0.5 0.25 1

Fig. 14 Circumferential curvature κcc at end systole (top) and
at end diastole (bottom) for third subdivision with 1017 nodes.

5 Example: Ring-induced kinematic changes

In this section, we explore the impact of annuloplasty
rings on mitral leaflet kinematics. In particular, we com-
pare the leaflet surface area and curvature after the in-
sertion of a true-sized 28 mm Edwards GeoFormR© ring
with the baseline leaflet kinematics without ring. For
the acquired data sets of 23 control points at a reso-
lution of 16.6ms, we perform the approximating subdi-
vision up to third level and calculate the total surface
area and curvature over a representative cardiac cycle
for ring on and ring off, respectively. We focus in par-
ticular on three representative configurations of the mi-
tral leaflet that correspond to maximum opening (MO),
end diastole (ED), and end systole (ES) as indicated in
the left ventricular pressure vs. time curve in Fig. 16.
Maximum opening is defined as the maximum distance
between the central anterior and posterior leaflet edge
markers. End diastole and end systole are identified as
the peak R-wave on the EKG and as the time frame
preceding the maximum negative pressure gradient, re-
spectively.

End Systole

End Diastole

c

c

r

r

c

c

r

r

κrr

[cm − 1]−0.5 0.25 1

Fig. 15 Radial curvature κrr at end systole (top) and at end
diastole (bottom) for third subdivision with 1017 nodes.

5.1 Approximation error of subdivision surface scheme

We begin our analysis by quantifying the approxima-
tion error that provides information about the average
distance of the original marker positions from the final
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Fig. 16 Evolution of left ventricular pressure (LVP) during a
representative cardiac cycle. Filled circles indicate stages of max-
imum opening (MO), end diastole (ED) and end systole (ES).
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Fig. 17 Evolution of approximation error jjejjL1 during a repre-

sentative cardiac cycle. Filled circles indicate stages of maximum

opening (MO), end diastole (ED) and end systole (ES).

subdivision surface. In Fig. 17, we illustrate the tempo-
ral evolution of the average approximation error jjejjL1

according to equation (5) for the third level subdivision
of a representative leaet without ring. The maximum
average approximation error jjejjL1 = 0:0862 cm oc-
curs in early stages of the cardiac cycle when the valve
is open. Given that the mean circumferential dimen-
sion of an ovine mitral leaet is approximately 4 cm,
the average error of the approximating third subdivi-
sion surface is on the order of 2.3% with respect to the
mean circumferential dimension. The average approxi-
mation error jjejjL1 is approximately on the order of the
digitalization error edig = 0:01�0:03 cm of the videou-
oroscopic marker technique [8]. We thus conclude that
the average error of the approximating subdivision al-
gorithm lies within a tolerable range.

5.2 E�ect of annuloplasty ring on leaet surface area

The temporal evolution of the surface area of the ante-
rior mitral leaet with ring and without ring is depicted
in Fig. 18. The kinematic constraint imposed by the
implanted ring initiates a surface area reduction of ap-
proximately 0.25 cm2. The most signi�cant reduction in
surface area occurs at end systole when the area ratio of
the leaet with ring to the leaet without ring is 93%.
This ratio becomes 97% at maximum opening and 98%
at end diastole. The observed ring-induced area surface
reduction might become even more pronounced in real
clinical applications in which down-sized rather than
true-sized rings are applied to restore valvular function.
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Fig. 18 Evolution of anterior mitral leaet surface area during

a representative cardiac cycle. Filled circles indicate stages of

maximum opening (MO), end diastole (ED) and end systole (ES).

5.3 E�ect of annuloplasty ring on leaet curvature

The impact of annuloplasty ring implantation on the
maximum principal curvature, and on the circumferen-
tial and radial curvatures is illustrated in Figs. 19, 20
and 21, respectively. The top row in each of these �gures
depicts the curvature at maximum opening (left), end
diastole (middle), and end systole (right) for the leaet
with ring. The bottom rows illustrate the corresponding
baseline values for the same leaet without ring. The
comparison of the di�erent curvature contours for the
anterior leaet with and without ring suggests that the
true-sized 28 mm Edwards GeoFormR ring has a small
inuence on the overall curvature distribution on the
anterior leaet. The sequence of snapshots clearly doc-
uments the tremendous shape changes of the leaet dur-
ing the cardiac cycle. The displayed stages of maximum
opening, end diastole, and end systole mimic the under-
lying blood ow and chord anatomy. Maximum opening
manifests itself in a T-channel-shaped convex domain
guiding blood ow from the left atrium to left ventricle,
shown in red in Fig. 19 (left). The slight increase in left
ventricular pressure generates a slightly modi�ed cur-
vature pattern at end diastole. This pressure-induced
curvature change is more pronounced for the leaet
without ring Figs. 19{21 (bottom row, middle) than for
the leaet with ring Figs. 19{21 (top row, middle). At
end systole, the leaet adapts to the signi�cantly higher
pressure by changing its curvature contours from T-
channel-shaped to funnel-shaped, see also Fig.12. The
maximum curvature is now aligned with the circumfer-
ential direction rather than with the radial direction as
it was at end diastole. This characteristic funnel shape
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Fig. 19 Maximum principal leaflet curvature at maximum opening (left), end diastole (middle), and end systole (right) with ring
(top row) and without ring (bottom row) for third subdivision with 1017 nodes.

at end systole shown in red in Fig. 19 (right) is be-
lieved to guide the blood flow underneath the leaflet,
from the left ventricle to aorta. Overall, we conclude
that ring-induced curvature changes for this particular
animal are less pronounced than surface area changes.

6 Discussion

Annuloplasty ring implantation is a common surgical
treatment to repair a leaking valve. The shape and size
of the ring have been postulated to play a major role in
long-term repair durability. Accordingly, annuloplasty
rings come in different sizes, shapes, and stiffnesses. To
date, the appropriate ring choice is mainly based on
the surgeon’ s experience, and is thus purely empirical.
Although it is intuitive that ring size and shape might
influences leaflet geometry there is no quantitative ev-
idence showing how leaflet kinematics are affected by
ring implantation.
The goal of this study was to create a virtual test en-
vironment to classify mitral annular rings based on
their effect on leaflet curvature. We acquired four-
dimensional mitral leaflet coordinates using a specific
videofluoroscopic marker technique that allowed us to
study leaflet dynamics with and without ring in the
same animal. Since curvature calculations require a
non-standard C1-continuous surface representation, we
explored smooth surface generation algorithms which

had originally been developed for computer graphics
applications. Amongst different surface representation
schemes, we chose a triangular approximating scheme
capable of generating smooth C1-continuous surfaces
from a set of control points. On patches of neighbor-
ing triangles, we interpolated the curvature tensor for
each triangle, and assembled the elementwise curva-
ture interpolation to the global curvature field for the
entire leaflet. From the resulting second order curva-
ture tensor field, we extracted and compared different
scalar-valued curvature measures. We concluded that
the maximum principal curvature visualizes leaflet dy-
namics most illustratively. To demonstrate the features
of the proposed approach, we compared maximum prin-
cipal curvatures in an ovine model with and without
ring at three characteristic points in the cardiac cy-
cle. For the ovine model considered in this study, we
found that the implantation of a true-sized GeoFormR©

ring had rather small effects on curvature profiles of the
anterior leaflet of the particular animal under investi-
gation.
The proposed methodology offers many advantages
with respect to other classification schemes proposed
in the literature: (i) In contrast to leaflet stress calcu-
lations, the proposed leaflet curvature calculation uses
exclusively raw data. It does not imply assumptions
about constitutive equations, boundary conditions, and
forces acting on the mitral valve apparatus. (ii) In con-
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Fig. 20 Circumferential leaflet curvature at maximum opening (left), end diastole (middle), and end systole (right) with ring (top
row) and without ring (bottom row) for third subdivision with 1017 nodes. The circumferential direction nc corresponding to the end
systolic and end diastolic configurations is depicted in Fig. 14.
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Fig. 21 Radial leaflet curvature at maximum opening (left), end diastole (middle), and end systole (right) with ring (top row) and
without ring (bottom row) for third subdivision with 1017 nodes. The radial direction nr corresponding to the end systolic and end
diastolic configurations is depicted in Fig. 15.
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trast to echocardiography-based data acquisition, the
proposed marker technique is semi-automated. It does
not require manual sectioning or manual merging of
two-dimensional slices, and is thus less likely to gener-
ate errors. (iii) The proposed technique enables us to
study curvature with and without ring in the same ani-
mal and quantitatively compare curvature changes. (iv)
The method o�ers a high spatial and temporal resolu-
tion. This allows us to answer where and when annulo-
plasty rings a�ect leaet curvature most, and how ring
geometry could potentially be improved. (v) The un-
derlying smooth surface generations follow well-de�ned
schemes common in computer graphics. They are eas-
ily reproducible, and allow for a quantitative assess-
ment of the approximation error. (vi) The generic de-
termination of the curvature tensor �eld allows us to
access di�erent curvature measures, e.g., mean curva-
ture, Gaussian curvature, and maximum principal cur-
vature, and identify the one that is most useful for the
current application. The disadvantage of the proposed
approach is that it is inherently invasive and based on
ovine data. The suggested subdivision surface and cur-
vature calculation, however, is fairly generic and can
easily be adapted to control points generated from any
other data source, e.g., from echocardiography.
This manuscript has demonstrated the potential of
combined experimental/computational approaches to
quantify ring-induced curvature changes in the anterior
mitral leaet. Curvature changes in the mitral leaet
have been associated with surgical repair durability.
The proposed algorithm is currently being applied to
quantify ring-induced leaet curvature changes in 60
sheep. These animals were divided in �ve groups of
twelve animals each to compare �ve di�erent ring types.
The proposed methodology could potentially serve as a
design tool for novel annuloplasty rings with a more
physiological shape. The overall goal of this project is
to predict curvature changes based on patient-speci�c
mitral valve geometries and identify the optimal ring
shape and size on a patient-speci�c individual basis.
This must, of course, be based on non-invasive image
modalities that do not require physical markers on the
valve.

Acknowledgments

We thank Paul A. Chang, Eleazar P. Briones, and Lauren R.

Davis for technical assistance, Maggie Brophy and Sigurd Hart-

nett for careful marker image digitization, and George T. Daugh-
ters, and T.J. and W.S. Hart for extraction of four-dimensional

data from marker coordinates. This work was supported in part
by the US National Science Foundation grant EFRI-CBE 0735551
to Ellen Kuhl, by US National Institutes of Health grants R01

HL29589 and R01 HL67025 to D. Craig Miller, by the Deutsche

Herzstiftung, Frankfurt, Germany, Research Grant S/06/07 to

Wolfgang Bothe, by the U.S.- Norway Fulbright Foundation and

the Swedish Heart-Lung Foundation to John-Peder Escobar Kvit-
ting, and by the Western States A�liate American Heart Asso-

ciation Fellowship to Julia C. Swanson.

References

1. Bothe W, Krishnamurthy G, Chang PA, Swanson JC, Briones

EP, Davis LR, Itoh A, Ingels NB, Miller CD (2009) E�ects
of the GeoformR annuloplasty ring on anterior mitral leaet

strains and stresses in the normal ovine heart. submitted for
publication.

2. Bornow RO, Carabello BA, Chatterjee K, deLeon AC, Faxon
DP, Freed MD, Gaasch WH, Lytle BW, Nischimura RA,

O'Gara PT, O'Rourke RA, Otto CM, Shah PM, Shanewise

JS (2006) ACC/AHA 2006 Guidelines for the management of
patients with valvular heart disease. Circulation 114: E84-E231.

3. Catmull E, Clark J (1978) Recursively generated B-spline sur-

faces on arbitrary topological meshes. Computer Aided Design

10: 350355.
4. Cirak F, Ortiz M, Schr•oder P (2000) Subdivision surfaces: A

new paradigm for thin-shell Finite-element analysis. Int J for
Numerical Methods Engineering 47: 20392072.

5. Cirak F, Ortiz M (2001) Fully C1-conforming subdivision ele-

ments for �nite deformation thin-shell analysis. Int J Numerical

Methods Engineering 51: 813833.
6. Cirak F, Scott MJ, Antonsson EK, Ortiz M, Schr•oder P (2002)

Integrated modeling, �nite-element analysis, and engineering

design for thin-shell structures using subdivision. Computer

Aided Design 34: 137148.
7. Cosgrove D (2004) Review: View from North America's car-

diac surgeons. Eur J Cardiothoracic Surgery 26: S27S31.
8. Daughters G, Sanders W, Miller DC, Schwarzkopf A, Mead C,

Ingels NB (1989) A comparison of two analytical systems for

3-D reconstruction from biplane videoradiograms. IEEE Com-

puters in Cardiology, 15: 79-82.
9. Doo D, Sabin M (1978) Behavior of recursive division surfaces

near extraordinary points. Computer Aided Design 10: 356-360.
10. Itoh A, Krishnamurthy G, Swanson J, Ennis D, Bothe W,

Kuhl E, Karlsson M, Davis L, Miller DC, Ingels NB (2009)

Active sti�ening of mitral valve leaets in the beating heart.

Am J Physiol Heart Circ Physiology 296: H1766-1773.
11. Karlsson MO, Glasson JR, Daughters GT, Komeda M, Fop-

piano LE, Miller DC, Ingels NB (1998) Mitral valve opening in

the ovine heart. Am J Physiology Heart Circularory Physiology

274: H552-H563.
12. Kreyszig E (1991) Di�erential Geometry. Dover Publica-

tions, Inc., New York
13. Krishnamurthy G, Ennis DB, Itoh A, Bothe W, Swanson

JC, Karlsson M, Kuhl E, Miller DC, Ingels NB (2008) Mate-

rial properties of the ovine mitral valve anterior leaet in vivo

from inverse �nite element analysis. Am J Physiology Heart
Circulatory Physiology 295: H1141-H1149.

14. Krishnamurthy G, Itoh A, Bothe W, Swanson J, Kuhl E,

Karlsson M, Miller DC, Ingels NB (2009) Stress-strain behav-

ior of mitral valve leaets in the beating ovine heart. J Biome-
chanics, in press.

15. Krishnamurthy G, Itoh A, Swanson J, Bothe W, Karlsson
M, Kuhl E, Miller DC, Ingels NB (2009) Regional sti�ening of

the mitral valve anterior leaet in the beating ovine heart. J
Biomechanics, accepted for publication.

16. Kunzelman KS, Cochran RP (1992) Stress/strain character-
istics of porcine mitral valve tissue: Parallel versus perpendic-

ular collagen orientation. J Cardiac Surgery 7: 71-78.



14

17. Loop C (1987) Smooth subdivision surfaces based on trian-
gles. Masters Thesis, University of Utah, Department of Math-

ematics.

18. Niczyporuk MA, Miller DC (1991) Automatic tracking and
digitization of multiple radiopaque myocardial markers. Comp

Biomed Res 24: 129-142.
19. Prot V, Skallerud B, Holzapfel GA (2007) Transversely

isotropic membrane shells with application to mitral valve me-

chanics. Constitutive modelling and �nite element implemen-
tation. Int J Numerical Methods Engineering 71: 987-1008.

20. Prot V, Haaverstad R, Skallerud B (2009) Finite element

analysis of the mitral apparatus: Annulus shape e�ect and
chordal force distribution. Biomech Model Mechanobiol 8: 43-

55.

21. Reif U (1995) A uni�ed approach to subdivision algorithms
near extraordinary points. Computer Aided Geometric Design

12: 153174.

22. Reif U, Schr•oder P (2001) Curvature integrability of subdivi-
sion surfaces. Advances Computational Mathematics 14: 157-

174.
23. Ryan LP, Jackson BM, Hamamoto H, Eperjesi TJ, Plappert

TJ, St John-Sutton M, Gorman RC, Gorman JH III (2008)

The inuence of annuloplasty ring geometry on mitral leaet
curvature. Ann Thoracic Surgery, 86: 749-760.

24. Ryan LP, Jackson BM, Eperjesi TJ, Plappert TJ, St John-

Sutton M, Gorman RC, Gormann JH III (2008) A method-
ology for assessing human mitral leaet curvature using real-

time 3-dimensional echocardiography. J Thoracic Cardiovascu-

lar Surgery, 136: 726-734.
25. Sacks MA, Enomoto Y, Graybill JR, Merryman WD, Zee-

shan A, Yoganathan AP, Levy RJ, Gorman RC, Gorman JH

III (2006) In-vivo dynamic deformation of the mitral valve an-
terior leaet. Ann Thorac Surg, 82: 1369-1377.

26. Salgo IS, Gorman JH III, Gorman RC, Jackson BM, Bowen
FW, Plappert T, St John Sutton MG, Edmunds LH (2002)

E�ect of annular shape on leaet curvature in reducing mitral

leaet stress. Circulation, 106: 711-717.
27. Schr•oder P (2002) Subdivision as a fundamental building

block of digital geometry processing algorithms. J Computa-

tional Applied Mathematics 149: 207-219.
28. Umlauf G (2000) Analyzing the characteristic map of tri-

angular subdivision schemes. Constructive Approximation 16:

145-155.
29. Votta E, Maisano F, Bolling SF, Al�eri O, Montevecchi FM,

Redaelli A (2007) The Geoform disease-speci�c annuloplasty

system: A �nite element study. Ann Thoracic Surgery 84: 92-
101.

30. Votta E, Caiani E, Veronesi F, Soncini M, Montevecchi FM,
Redaelli A (2008) Mitral valve �nite-element modelling from
ultrasound data: A pilot study for a new approach to under-

stand mitral function and clinical scenarios. Phil Trans Royal
Soc A 366: 3411-3434.

31. Zorin D (2000) A method for analysis of C1-continuity of sub-

division surfaces. SIAM J Numerical Analysis 37: 1677-1708.




