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Growing skin: Tissue expansion in pediatric forehead reconstruction
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Abstract Tissue expansion is a common surgical pro-
cedure to grow extra skin through controlled mechani-
cal over-stretch. It creates skin that matches the color,
texture, and thickness of the surrounding tissue, while
minimizing scars and risk of rejection. Despite intense
research in tissue expansion and skin growth, there is a
clear knowledge gap between heuristic observation and
mechanistic understanding of the key phenomena that
drive the growth process. Here, we show that a con-
tinuum mechanics approach, embedded in a custom-
designed finite element model, informed by medical
imaging, provides valuable insight into the biomechan-
ics of skin growth. In particular, we model skin growth
using the concept of an incompatible growth configu-
ration. We characterize its evolution in time using a
second-order growth tensor parameterized in terms of a
scalar-valued internal variable, the in-plane area growth.
When stretched beyond the physiological level, new skin
is created, and the in-plane area growth increases. For
the first time, we simulate tissue expansion on a patient-
specific geometric model, and predict stress, strain, and
area gain at three expanded locations in a pediatric skull:
in the scalp, in the forehead, and in the cheek. Our re-
sults may help the surgeon to prevent tissue over-stretch
and make informed decisions about expander geometry,
size, placement, and inflation. We anticipate our study to
open new avenues in reconstructive surgery, and enhance
treatment for patients with birth defects, burn injuries,
or breast tumor removal.
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1 Motivation

One percent of neonates is born with congenital
melanocytic nevi, dark-colored surface lesions present at

birth [10]. Congenital nevi may vary in size, shape, tex-
ture, color, hairiness, and location, but they have one
thing in common: their high malignant potential [23].
Birthmarks larger than 10 cm in diameter are classified
as giant congenital nevi and have a prevalence of one in
20,000 infants [45]. Because giant congenital nevi place
the child at an increased risk to develop skin cancer,
surgical excision remains the standard treatment op-
tion [20]. Cosmetic deformity, significant aesthetic disfig-
urement, and severe psychological distress are additional
compelling reasons for nevus removal, especially in the
craniofacial region [23].
To reconstruct the defect, preserve function, and main-
tain aesthetic appearance, tissue expansion has become
a major treatment modality in the management of gi-
ant congenital nevi [36]. Tissue expansion was first pro-
posed more than half a century ago to reconstruct a
traumatic ear and has since then revolutionized recon-
structive surgery [43]. Today it is widely used to repair
birth defects [5], correct burn injuries [3], and recon-
struct breasts after tumor removal [46]. Tissue expan-
sion is the ideal strategy to grow skin that matches the
color, texture, hair bearance, and thickness of the sur-
rounding healthy skin, while minimizing scars and risk
of rejection [49].
Figure 1, left, shows a one-year old boy who presented
with a giant congenital nevus concerning 25 percent of
his forehead, extending to the right temporal scalp and
cheek [21]. To resurface the nevus region and stimulate
in situ skin growth, three simultaneous forehead, cheek,
and scalp expanders are used. They are implanted in
subcutaneous pockets adjacent to the defect, where they
are gradually filled with saline solution. The amount of
filling is controlled by visual inspection of skin color and
capillary refill [49]. Multiple serial inflations stretch the
skin and stimulate tissue growth over a period of several
weeks [63]. Once enough skin is created, the expanders
are removed, the nevus is excised, and the newly grown
skin flaps are advanced to close the defect zone. Figure 1,
right, shows the boy at age three, after completed fore-
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Fig. 1 Tissue expansion for pediatric forehead reconstruction. The patient, a one-year old boy presented with a giant congenital
nevus involving 25 percent of his forehead, extending to the right temporal scalp and cheek. Simultaneous forehead, cheek,
and scalp expanders were implanted for in situ skin growth. This technique allows to resurface large anatomical areas with
skin of similar color, quality, and texture. The follow-up photograph shows the boy at age three, after completed forehead,
scalp, and cheek reconstruction.

head, scalp, and cheek reconstruction.
Figure 2 shows a schematic sequence of the mechanical
processes during tissue expansion. Initially, at biologi-
cal equilibrium, the skin is in a natural state of resting
tension [54]. When the expander is implanted and in-
flated, skin is loaded in tension. Stretch beyond a crit-
ical level triggers a series of signaling pathways even-
tually leading to the creation of new skin [57]. On the
cellular level, mechanotransduction affects a network of
several integrated cascades including growth factors, cy-
toskeletal rearrangement, and protein kinases [11]. On
the tissue level, skin growth induces stress relaxation
and restores the state of resting tension [54]. The cy-

unloaded - ungrown

loaded - ungrown loaded - grown

unloaded - grown

Fig. 2 Schematic sequence of tissue expander inflation. At
biological equilibrium, the skin is in a physiological state of
resting tension, unloaded and ungrown. When an expander
is implanted and inflated, the skin is stretched, loaded and
ungrown. Mechanical stretch beyond a critical level triggers a
series of signaling pathways eventually leading to the creation
of new skin to restore the state of resting tension, loaded and
grown. Upon expander removal, elastic deformations retract
and inelastic deformations remain, unloaded and grown.

cle of expander inflation, stretch, growth, and relax-
ation is repeated multiple times, typically on a weekly
basis [63]. As demonstrated by immunocytochemistry,
the expanded tissue undergoes normal cell differentiation
and maintains its characteristic phenotype [61]. Skin ini-
tially displays thickness changes upon expansion, how-
ever, these changes are fully reversible upon expander
removal [59]. When the expander is removed, the skin re-
tracts and reveals the irreversible nature of skin growth,
associated with growth-induced residual stresses [18,41].
Figure 3 shows a commonly used tissue expander to grow
skin in reconstructive surgery.
To predict stress, strain, and area gain during tissue ex-
pansion in pediatric forehead reconstruction, we adopt
a novel mechanistic approach [8, 9], based on the con-
tinuum framework of finite growth [50]. Originally de-
veloped for isotropic volumetric growth [14, 37], finite
growth theories are based on the multiplicative decom-
position of the deformation gradient into an elastic and
a growth part [15, 38], a concept adopted from finite

Fig. 3 Tissue expander to grow skin for defect correction in
reconstructive surgery. Typical applications are birth defects,
burn injuries, and breast reconstruction. Devices consist of a
silicone elastomer inflatable expander with a reinforced base
for directional expansion, and a remote silicone elastomer
injection dome. Courtesy of Mentor Worldwide LLC.



Growing skin: Tissue expansion in pediatric forehead reconstruction 3

plasticity [34]. Depending on the format of their growth
tensor, continuum growth theories have been refined
to characterize isotropic [19, 32], transversely isotropic
[48,56], orthotropic [17], or generally anisotropic growth
[40, 42], either compressible [40] or incompressible [51].
Recent trends focus on the computational modeling of
finite growth [22], typically by introducing the growth
tensor as an internal variable within a finite element
framework [16, 25], a strategy that we also adopt here.
A recent monograph that compares different approaches
to growth and summarizes the essential findings, trends,
and open questions in this progressively evolving new
field [2]. Despite ongoing research in growing biologi-
cal systems, the growth of thin biological membranes
remains severely understudied. Only few attempts ad-
dress the growth of thin biological plates [12] and mem-
branes [40]. Motivated by a first study on axisymmetric
skin growth [55], we have recently established a proto-
type model for growing membranes to predict skin ex-
pansion in a general three-dimensional setting [8]. This
study capitalizes on recent developments in reconstruc-
tive surgery, continuum mechanics of growing tissues,
and computational modeling, supplemented by medical
image analysis. It documents our first attempts to model
and simulate skin expansion in pediatric forehead recon-
struction using a real patient-specific geometry.

2 Methods

2.1 Continuum modeling of skin growth

We adopt the kinematics of finite deformations and in-
troduce the deformation map ϕ, which, at any given
time t maps the material placement X of a physical
particle in the material configuration to its spatial place-
ment x in the spatial configuration, x = ϕ (X, t). We
choose a formulation which is entirely related to the ma-
terial frame of reference, and use ∇{◦} = ∂X{◦}|t and
Div {◦} = ∂X{◦}|t : I to denote the gradient and the
divergence of any field {◦} (X, t) with respect to the
material placement X at fixed time t. Here, I is the
material identity tensor. To characterize finite growth,
we introduce an incompatible growth configuration, and
adopt the multiplicative decomposition of the deforma-
tion gradient

F = ∇Xϕ = F e · F g (1)

into a reversible elastic part F e and an irreversible
growth part F g. This multiplicative decomposition, rem-
iniscent of the decomposition of the elastoplastic defor-
mation gradient [34], was first used to describe growth
of biologial tissues in [50]. Similarly, we can then decom-
pose the total Jacobian

J = det (F ) = Je Jg (2)

into an elastic part Je = det (F e) and a growth part
Jg = det (F g). We idealize skin as a thin layer charac-
terized through the unit normal n0 in the undeformed
reference configuration. The length of the deformed skin
normal n = cof(F ) ·n0 = J F−t ·n0 introduces the area
stretch

ϑ = || cof(F ) · n0 || = ϑe ϑg (3)

which we can again decompose into an elastic area
stretch ϑe = || cof(F e) · ng/||ng|| || and a growth area
stretch ϑg = || cof(F g) · n0 || [8]. Here, ng = cof(F g) ·
n0 = Jg F g − t · n0 denotes the grown skin normal, and
cof(◦) = det(◦) (◦)−t denotes the cofactor of the second
order tensor (◦). As characteristic deformation measures,
we introduce the right Cauchy Green tensor C in the un-
deformed reference configuration

C = F t · F = F gt · F et · F e · F g (4)

and its elastic counterpart Ce = F et · F e = F g − t ·C ·
F g − 1 in the intermediate configuration. This allows us
to rephrase the total area stretch as ϑ = J [n0 · C−1 ·
n0 ]1/2. Finally, we introduce the pull back of the spa-
tial velocity gradient l = Ḟ · F−1 to the intermediate
configuration,

F e− 1 · l · F e = Le +Lg (5)

which obeys the additive decomposition into the elastic
velocity gradient Le = F e−1 ·Ḟ e

and the growth velocity
gradient Lg = Ḟ

g · F g−1. Here, {◦̇} = ∂t{◦}|X denotes
the material time derivative of any field {◦} (X, t) at
fixed material placement X.

We characterize growing tissue using the framework of
open system thermodynamics in which the material den-
sity ρ0 is allowed to change as a consequence of growth
[26, 28]. The balance of mass for open systems balances
its rate of change ρ̇0 with a possible in- or outflux of
mass R and mass source R0 [29, 44].

ρ̇0 = Div (R) +R0 (6)

Similarly, the balance of linear momentum balances the
density-weighted rate of change of the velocity ρ0 v =
ρ0 ϕ̇, with the momentum flux P = F · S, and the mo-
mentum source ρ0 b,

ρ0 v̇ = Div (F · S) + ρ0 b (7)

here stated in its mass-specific form [27]. P and S are
the first and second Piola-Kirchhoff stress tensors. Last,
we would like to point out that the dissipation inequality
for open systems

ρ0D = S : 1
2Ċ − ρ0 ψ̇ − ρ0 S ≥ 0 (8)

typically contains an extra entropy source ρ0 S to ac-
count for the growing nature of living biological sys-
tems [26,41]. Equations (7) and (8) represent the mass-
specific versions of the balance of momentum and of the
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dissipation inequality which are particularly useful in the
context of growth since they contains no explicit depen-
dencies on the changes in mass [27].

To close the set of equations, we introduce the consti-
tutive equations for the mass source R0, for the mo-
mentum flux S, and for the growth tensor F g, assuming
that the mass flux R = 0, the momentum source b = 0,
and the acceleration v̇ = 0 are negligibly small. On the
cellular level, immunocytochemistry has shown that ex-
panded tissue undergoes normal epidermal cell differen-
tiation [61]. On the organ level, mechanical testing has
confirmed that the newly grown skin has the same mate-
rial properties as the initial tissue [63]. Accordingly, we
assume that the newly grown skin has the same density
as the initial tissue. This implies that the mass source

R0 = ρ0 tr (Lg) (9)

can be expressed as the density-weighted trace of the
growth velocity gradient tr (Lg) = Ḟ

g
: F g − t [22].

We model skin as a hyperelastic material characterized
through the Helmholtz free energy ψ = ψ̂ (C,F g), which
we use to evaluate the dissipation inequality (8).

ρ0D=

[
S−ρ0

∂ψ

∂C

]
: 1
2Ċ+M e : Lg−ρ0

∂ψ

∂ρ0
R0−ρ0S0 ≥ 0

(10)
We observe that the Mandel stress of the intermediate
configuration M e = Ce · Se is energetically conjugate
to the growth velocity gradient Lg = Ḟ g · F g − 1. From
the dissipation inequality (10), we obtain the definition
of the second Piola Kirchhoff stress S as thermodynam-
ically conjugate quantity to the right Cauchy Green de-
formation tensor C.

S = 2 ρ0
∂ψ

∂C
= 2

∂ψ

∂Ce
:
∂Ce

∂C
= F g − 1 ·Se ·F g − t (11)

According to this definition, the first derivative of the
Helmholtz free energy ψ with respect to the elastic right
Cauchy Green tensor Ce introduces the elastic second
Piola Kirchhoff stress Se, while the second derivative
defines the elastic constitutive moduli Le.

Se = 2 ρ0
∂ψ

∂Ce
and Le = 2

∂Se

∂Ce
= 4 ρ0

∂2ψ

∂Ce ⊗ ∂Ce

(12)
To focus on the impact of growth, rather than adopting a
sophisticated anisotropic material model for skin [9,30],
we assume a classical Neon-Hookean free energy ρ0 ψ =
1
2 λ ln2(Je)+ 1

2 µ [Ce : I−3−2 ln(Je) ], introducing the
elastic second Piola Kirchhoff stress Se = [λ ln(Je) −
µ ]Ce−1 + µ I, and the elastic constitutive moduli Le =
λCe−1 ⊗ Ce−1 + [µ − λ ln(Je) ] [Ce⊗Ce + Ce⊗Ce ].
Motivated by clinical observations [49], we classify skin
growth as a strain-driven, transversely isotropic, irre-
versible process. It is characterized through one single
growth multiplier ϑg that reflects the irreversible area
increase perpendicular to the skin normal n0.

F g =
√
ϑg I + [ 1−

√
ϑg ] n0 ⊗ n0 (13)

For this particular type of transversely isotropic growth,
for which all thickness changes are reversibly elastic
[59], area growth is identical to volume growth, i.e.,
ϑg = det(F g) = Jg. Because of the simple rank-one
update structure in (13), we can invert the growth ten-
sor explicitly, F g − 1 = 1/

√
ϑg I + [ 1− 1/

√
ϑg ]n0 ⊗n0,

using the Sherman-Morrison formula. This explicit rep-
resentation introduces the following simple expression
for the growth velocity gradient,

Lg =
√
ϑ̇g/
√
ϑ
g
I + [ 1−

√
ϑ̇g/
√
ϑ
g

]n0 ⊗ n0 (14)

which proves convenient to explicitly evaluate the mass

source in equation (9) as R0 = ρ0 [ 1+2
√
ϑ̇g/
√
ϑg ]. Mo-

tivated by physiological observations of stretch-induced
skin expansion [21], we adopt the following evolution
equation for the growth multiplier,

ϑ̇g = kg(ϑg)φg(ϑe) (15)

which follows a well-established functional form [37], but
is now rephrased in a strain-driven format [17]. To con-
trol unbounded growth, we introduce the weighting func-
tion

kg =
1

τ

[
ϑmax − ϑg

ϑmax − 1

]γ
(16)

where 1/τ controls the adaptation speed, the exponent γ
calibrates the shape of the growth curve, and ϑmax > 1 is
the maximum area growth [22,37]. The growth criterion

φg =
〈
ϑe − ϑcrit

〉
=
〈
ϑ/ϑg − ϑcrit

〉
(17)

is driven by the elastic area stretch ϑe = ϑ/ϑg, such
that growth is activated only if the elastic area stretch
exceeds a critical physiological stretch limit ϑcrit. Here,
〈◦〉 denote the Macaulay brackets.
Figure 4 displays the constitutive response of the four-
parameter growth model in equi-biaxial stretch. At a
prescribed piecewise constant total stretch ϑ, the growth
stretch ϑg increases gradually while the elastic stretch
ϑedecreases. This induces stress relaxation. Horizontal
dashed lines represent the elastic stretch limit beyond
which skin growth is activated ϑcrit and the maximum
area growth ϑmax. Increased adaptation speeds 1/τ ↑
and decreased growth exponents γ ↓ both accelerate
convergence towards the biological equilibrium [22], but
do not affect the final equilibrium state [48, 51]. At all
times, the multiplicative decomposition of the deforma-
tion gradient F = F e · F g introduced in equation (1)
carries over to the multiplicative decomposition of the
total area stretch ϑ = ϑe ϑg of equation (3).

2.2 Computational modeling of skin growth

We solve the coupled biological and mechanical equi-
librium for skin growth within an incremental iterative
finite element setting [58]. To characterize the growth
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Fig. 4 Tissue expansion in equi-biaxial stretch. Temporal
evolution of total, elastic, and growth area stretch ϑ, ϑe, and
ϑg for displacement driven skin expansion at varying growth
exponents γ. At a piecewise constant total stretch, the growth
stretch increases gradually while the elastic stretch decreases.
This induces stress relaxation. Horizontal dashed lines rep-
resent the elastic stretch limit beyond which skin growth is
activated ϑcrit, and the maximum area growth ϑmax.

process at each instant in time, we introduce the growth
multiplier ϑg as an internal variable, and solve the bio-
logical equilibrium (15) locally at the integration point
level. For the temporal discretization, we partition the
time interval of interest T into nstp subintervals, T =
U

nstp

n=1 [ tn, tn+1 ] and focus on the interval [ tn, tn+1 ] for
which ∆t = tn+1−tn > 0 denotes the current time incre-
ment. Our goal is to determine the current growth mul-
tiplier ϑg for a given deformation state F at time t, and
a given growth multiplier ϑgn at the end of the previous
time step tn. For the sake of compactness, we omit the
index (◦)n+1 for all quantities at the end of the current
time step tn+1. We evaluate the material time derivative
of the growth multiplier ϑ̇g = [ϑg − ϑgn ] /∆t using a
finite difference approximation. In the spirit of implicit
time integration schemes, we now reformulate the evolu-
tion equation (15), introducing the discrete residual Rϑ

in terms of the unknown growth multiplier ϑg.

Rϑ = ϑg − ϑgn − kg φg∆t
.
= 0 (18)

We solve this nonlinear residual equation using a local
Newton iteration. Within each iteration step, we calcu-
late the linearization of the residual Rϑ with respect to
the growth multiplier ϑg,

Kϑ =
∂Rϑ

∂ϑg
= 1−

[
∂kg

∂ϑg
φg + kg

∂φg

∂ϑg

]
∆t (19)

with the derivatives of the weighting function ∂kg/∂ϑg =
− γ k / [ϑmax−ϑg ] and the growth criterion ∂φg/∂ϑg =
−ϑ /ϑg 2 introduced in equations (16) and (17). Within
each iteration step, we iteratively update the unknown

growth multiplier ϑg ← ϑg − Rϑ /Kϑ until convergence
is achieved, i.e., until the local growth update ∆ϑg =
−Rϑ /Kϑ reaches a user-defined tolerance.

To explore the interplay between growth and mechan-
ics, we discretize the deformation map ϕ as nodal de-
gree of freedom, and solve the mechanical equilibrium
(7) globally at the node point level. To solve the quasi-
static mechanical equilibrium, Div (F · S) = 0, we cast
it into its weak form,

∫
B0
∇δϕ : [F ·S ] dV = 0, through

multiplication with the test function δϕ and integration
over the domain of interest B0. For the spatial discretiza-
tion, we partition the domain of interest B0 = Unel

e=1 Be0
into nel finite elements Be0. Our goal is to determine the
deformation state ϕ for a given load at time t. To ap-
proximate the test function δϕ =

∑nen

i=1N
i δϕi, the un-

known deformation ϕ =
∑nen

j=1N
j δφj , and their gradi-

ents∇δϕ =
∑nen

i=1 δϕi⊗∇N iϕ and∇ϕ
∑nen

j=1 ϕj⊗∇N j ,
we apply an isoparametric Bubnov-Galerkin based fi-
nite element interpolation, where N i and N j are the
element shape functions and i, j = 1, ..,nen are the ele-
ment nodes. We now reformulate the weak form of the
balance of linear momentum (7) with the help of these
finite element approximations, introducing the discrete
residual RϕI in terms of the unknown nodal deformation
ϕJ .

RϕI =
nel

A
e=1

∫
Be
∇N i

ϕ · [F · S ] dVe
.
= 0 (20)

Here, the operator A symbolizes the assembly of all ele-
ment residuals at the j = 1, ..,nen element nodes to the
global residual at the global node points J = 1, ..,nel.
We evaluate the global discrete residual (20), once we
have iteratively determined the growth multiplier ϑg for
the given deformation state F and the given history ϑgn
as described in the previous section. Then we succes-
sively determine the growth tensor F g from equation
(13), the elastic tensor F e = F · F g − 1 from equation
(1), the elastic stress Se from equation (12), and lastly,
the second Piola Kirchhoff stress S from equation (11).
Again, we suggest an incremental iterative Newton al-
gorithm to solve the nonlinear residual equation for the
unknown deformation (20). The consistent linearization
of the residual RϕI with respect to the nodal vector of
unknowns ϕJ introduces the global stiffness matrix.

KϕIJ =
∂RϕI
∂ϕJ

=
nel

A
e=1

∫
Be
∇N i

ϕ · S · ∇N j
ϕ I

+ [∇N i
ϕ · F ]sym · L · [F t · ∇N j

ϕ]symdVe

(21)

The fourth order tensor L denotes the Lagrangian consti-
tutive moduli which, we can determine directly from the
linearization of the Piola Kirchhoff stress S with respect
to the total right Cauchy Green tensor C [16].

L = 2
dS

dC
= 2

∂S

∂C

∣∣∣∣
F g
+ 2

[
∂S

∂F g
:
∂F g

∂ϑg

]
⊗ ∂ϑg

∂C

∣∣∣∣
F

(22)
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The first term

2
∂S

∂C
= [F g − 1⊗F g − 1 ] : Le : [F g − t⊗F g − t ] (23)

represents the pull back of the elastic moduli Le in-
troduced in equation (12) onto the reference configura-
tion. Here we have used the abbreviations {•⊗◦}ijkl =
{•}ik {◦}jl and {•⊗◦}ijkl = {•}il {◦}jk for the non-
standard fourth order products. The second term

∂S

∂F g
=− [F g−1⊗S + S⊗F g−1 ]

− [F g−1⊗F g−1] : 1
2L

e :[F g−t⊗Ce +Ce⊗F g−t]
(24)

consists of two terms that resemble a geometric and a
material stiffness in nonlinear continuum mechanics. The
third term

∂F g

∂ϑg
=

1

2
√
ϑg

[ I − n0 ⊗ n0 ] (25)

and the fourth term

∂ϑ

∂C

g

=
1

τ

1

ϑg

[
ϑmax − ϑg

ϑmax − 1

]γ
1

Kg ∆t

1

2
ϑC−1 − 1

2

J2

ϑ
[C−1 · n0]⊗ [C−1 · n0]

(26)

depend on the particular choice for the growth tensor F g

in equation (13) and on the evolution equation for the
growth multiplier ϑg in equation (15), respectively. For
each global Newton iteration step, we iteratively update
the current deformation state ϕ← ϕ−Kϕ−1IJ · RϕI until
we achieve algorithmic convergence. Upon convergence,
we store the corresponding growth multipliers ϑg at the
integration point level. Table 1 summarizes the algorith-
mic treatment of skin growth at the integration point
level.

Table 1 Algorithmic flowchart for strain-driven transversely
isotropic area growth.

given F and ϑgn

initialize ϑg ← ϑgn

local Newton iteration

check growth criterion φg = ϑe − ϑcrit ≥ 0 ? (17)

calculate residual R = ϑg − ϑgn − kg φg∆t (18)

calculate tangent K = ∂R / ∂ϑg (19)

update growth stretch ϑg ← ϑg − R /K

check convergence R ≤ tol ?

calculate growth tensor F g (13)

calculate elastic tensor F e = F · F g−1 (1)

calculate elastic right Cauchy Green tensor Ce (4)

calculate elastic second Piola Kirchhoff stress Se (12)

calculate second Piola Kirchhoff stress S (11)

calculate Lagrangian moduli L (22)

2.3 Geometric modeling of skin growth

To simulate skin growth on an anatomically exact ge-
ometry, we create a finite element mesh on the basis of
three-dimensional computer tomography images shown
in Figure 5. Figure 6 summarizes the sequence of steps to
generate our patient-specific geometric model. First, we
identify the skin region by a distinct grey scale value in
the computer tomography scans and extract point cloud
data of its boundary. Figure 6, left, mimics the discrete
nature of the extracted point cloud, with high point den-
sities in the scanning plane and low point densities be-
tween the distinct planes. To smoothen the data and de-
creases the overall number of points, we homogenize the
point cloud using a median filter. Next, we create a tri-
angular surface mesh from the smoothened point cloud
by applying a ball-pivoting algorithm [7]. Ball-pivoting
algorithms are particularly suited for surface reconstruc-
tion of large data sets. After placing an initial seed ele-
ment, the ball-pivoting algorithm rotates a sphere over
the edges of this element and sequentially creates new
elements whenever the sphere touches three data points.
However, since our data are based on plane-wise com-
puter tomography scans, ball-pivoting algorithms typi-
cally fail to automatically create smooth surfaces. Unfor-
tunately, other fully automated meshing strategies such
as convex hull or shrink wrap algorithms are not suitable
for non-convex geometries like the face, which possesses
several non-convexities in the eye, nose, mouth, and ear
regions [24]. Accordingly, we smoothen the triangular
surface mesh semi-manually, as illustrated in Figure 6,
middle.
From the smoothened surface mesh, we finally create a
one-element thick volume mesh of the pediatric skull,
discretized with 61,228 nodes, 183,684 degrees of free-
dom, and 30,889 tri-linear brick elements. As a first ap-
proximation, we assume that all eight integration points
within each element posses the same skin plane normal
n0, corresponding to the normal from the initial sur-
face mesh. We virtually implant three tissue expanders
as shown in Figure 6, right, motivated by the tissue ex-

Fig. 5 Three-dimensional computer tomography scans from
the skull of a one-year old child. We create a patient-specific
geometric model using discrete boundary points extracted
from sliced image sections across the skull.
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Fig. 6 Mesh generation from clinical images. From the computer tomography scans, we extract discrete point cloud data
(left), which we filter and mesh using a ball-pivoting algorithm. This generates a triangular surface mesh, which is further
smoothened (middle) and turned into a final volume mesh (right). The final discretization of the skull consists of 61,228 nodes,
183,684 degrees of freedom, and 30,889 tri-linear brick elements. We virtually implant three tissue expanders, one in the scalp,
discretized with 4,356 nodes, 13,068 degrees of freedom, and 2,088 brick elements (red), one in the cheek, discretized with
2,542 nodes, 7,626 degrees of freedom, and 1,200 brick elements (yellow), and one in the forehead, discretized with 3,782 nodes,
11,346 degrees of freedom, and 1,800 brick elements (blue).

pansion case illustrated in Figure 1. First, we implant
an expander in the scalp, discretized with 4,356 nodes,
13,068 degrees of freedom, and 2,088 tri-linear brick ele-
ments, covering an initial area of 50.4 cm2, shown in red.
Second, we implant an expander in the cheek, discretized
with 2,542 nodes, 7,626 degrees of freedom, and 1,200 tri-
linear brick elements, covering an initial area of 29.3 cm2,
shown in yellow. Third, we implant and expander in the
forehead, discretized with 3,782 nodes, 11,346 degrees
of freedom, and 1,800 tri-linear brick elements, covering
an initial area of 48.5 cm2, shown in blue. To simulate
tissue expansion, we fix all nodes and release only the
expander degrees of freedom, which we then pressurize
from underneath.

3 Results

We illustrate the impact of tissue expansion at three
characteristic locations of the skull, in the scalp, the fore-
head, and the cheek. For the elastic model, we assume
Lamé constants of λ = 0.7141 MPa and µ = 0.1785 MPa,
which would correspond to a Poisson’s ratio of ν = 0.4
and a Young’s modulus of E = 0.5 MPa in the linear
regime [1, 52]. For the growth model, we assume a criti-
cal threshold of ϑcrit = 1.1, a maximum area growth of
ϑmax = 4.0, a growth exponent of γ = 3.0, and an adap-
tation speed of 1/τ = 12. We gradually pressurize the
tissue expanders, 0.0 < t ≤ 0.125, then hold the pressure
constant to allow the tissue to grow, 0.125 < t ≤ 0.75,
and finally remove the pressure to visualize the grown
area, 0.75 < t ≤ 1.0.

3.1 Tissue expansion in the scalp

Figures 7, 8, and 9 illustrate the tissue expansion pro-
cess in the scalp. Figure 7 displays the temporal evo-
lution of the normalized total area, elastic area, and
growth area upon subsequent expander inflation, con-
stant pressure, and expander removal. Once the elastic
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Fig. 7 Tissue expansion in the scalp. Temporal evolution
of normalized total area, elastic area, and growth area upon
gradual expander inflation, 0.0 < t ≤ 0.125, constant pres-
sure 0.125 < t ≤ 0.75, and deflation 0.75 < t ≤ 1.0. The
final fractional area gain is 2.44, corresponding to 122.8 cm2.
Vertical dashed lines correspond to the time points displayed
in Figure 8.

area stretch reaches the critical threshold of ϑcrit = 1.1,
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Fig. 16 Tissue expansion in the scalp. Spatio-temporal evolution of area growth displayed at t = 0.225, t = 0.300, t = 0.375
and t = 0.750. The initial area of 50.4 cm2 increases gradually as the grown skin area increases from 70.07 cm2, to 84.25 cm2,
to 95.73 cm2, and finally to 121.87 cm2, from left to right.

Fig. 8 Tissue expansion in the scalp. Spatio-temporal evolution of area growth displayed at t = 0.225, t = 0.300, t = 0.375
and t = 0.750. The initial area of 50.4 cm2 increases gradually as the grown skin area increases from 70.07 cm2, to 84.25 cm2,
to 95.73 cm2, and finally to 121.87 cm2, from left to right.

ϑe 0.95 1.00 1.05 ϑg 1.00 2.25 3.50

Fig. 9 Tissue expansion in the scalp. Remaining defor-
mation upon expander removal. The elastic area strain of
0.95 ≤ ϑe ≤ 1.05 indicates an area change of ±5% giving
rise to residual stresses (left). The area growth of 1.0 ≤ ϑg ≤
3.5 shows that skin has more than doubled its initial area
(right). The final fractional area gain is 2.44, corresponding
to 122.8 cm2.

slightly before the total pressure is applied, at t = 0.125,
the tissue starts to grow. As the expander pressure is
held constant, growth increases gradually causing the
total area to increase as well. Then, at t = 0.75, the
pressure is decreased to remove the expander. The elas-
tic area retracts gradually, while the grown area remains
constant. The vertical dashed lines correspond to the
discrete time points, t = 0.225, t = 0.300, t = 0.375
and t = 0.750, displayed in Figure 8. Figure 8 illus-
trates the spatio-temporal evolution of area growth ϑg.
Growth is first initiated at the center of the expander,
where the elastic stretch is largest. As growth spreads
throughout the entire expanded area, the initial area of
50.4 cm2 increases gradually as the grown skin area in-
creases from 70.07 cm2, to 84.25 cm2, to 95.73 cm2, and
finally to 121.87 cm2, from left to right. Figure 9 sum-
marizes the final outcome of the expansion in the scalp
in terms of the remaining deformation upon expander
removal. The elastic area strain of 0.95 ≤ ϑe ≤ 1.05 in-

dicates an area change of ±5% giving rise to residual
stresses, left. The area growth of 1.0 ≤ ϑg ≤ 3.5 shows
that skin has more than doubled its initial area, right.
This is in agreement with the final fractional area gain
of 2.44, corresponding to an area growth in the scalp of
122.8 cm2.

3.2 Tissue expansion in the forehead

Figures 10, 11, and 12 summarize the tissue expan-
sion process in the forehead. Figure 10 displays the
temporal evolution of the normalized total area, elas-
tic area, and growth area upon gradual expander infla-
tion, constant pressure, and gradual expander removal.
Similar to the expansion in the scalp, growth begins

at stretches beyond the critical threshold level, then in-
creases gradually upon constant pressure, and remains
constant upon expander removal. Figure 11 illustrates
the spatio-temporal evolution of area growth ϑg at four
characteristic time points indicated through the verti-
cal dashed lines in figure 10. The growth process starts
in the center of the forehead and spreads out through-
out the entire forehead area. As it does, the initial area
of 48.5 cm2 increases gradually as the grown skin area
increases from 66.56 cm2, to 76.54 cm2, to 85.96 cm2,
and finally to 116.55 cm2, from left to right. Figure 12
displays the remaining deformation upon expander re-
moval. The final fractional area gain during forehead
expansion is 2.44, corresponding to an area growth of
118.1 cm2.

3.3 Tissue expansion in the cheek

Figures 13, 14, and 15 document the tissue expansion
process in the cheek. Figure 13 summarizes the tempo-
ral evolution of the normalized total area, elastic area,
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Fig. 17 Tissue expansion in the forehead. Spatio-temporal evolution of area growth displayed at t = 0.225, t = 0.300,
t = 0.375 and t = 0.750. The initial area of 48.5 cm2 increases gradually as the grown skin area increases from 66.56 cm2, to
76.54 cm2, to 85.96 cm2, and finally to 116.55 cm2, from left to right.

Fig. 11 Tissue expansion in the forehead. Spatio-temporal evolution of area growth displayed at t = 0.225, t = 0.300,
t = 0.375 and t = 0.750. The initial area of 48.5 cm2 increases gradually as the grown skin area increases from 66.56 cm2, to
76.54 cm2, to 85.96 cm2, and finally to 116.55 cm2, from left to right.
16 Alexander M. Zoellner, Adrian Buganza Tepole, Arun K. Gosain, Ellen Kuhl

Fig. 18 Tissue expansion in the cheek. Spatio-temporal evolution of area growth displayed at t = 0.225, t = 0.300, t = 0.375
and t = 0.750. The initial area of 29.3 cm2 increases gradually as the grown skin area increases from 42.74 cm2, to 52.03 cm2,
to 59.39 cm2, and finally to 76.86 cm2, from left to right.

Fig. 14 Tissue expansion in the cheek. Spatio-temporal evolution of area growth displayed at t = 0.225, t = 0.300, t = 0.375
and t = 0.750. The initial area of 29.3 cm2 increases gradually as the grown skin area increases from 42.74 cm2, to 52.03 cm2,
to 59.39 cm2, and finally to 76.86 cm2, from left to right.

and growth area upon gradual expander inflation, con-
stant pressure, and gradual expander removal. Again,
the growth process is initiated once the stretches reach
the critical threshold of ϑcrit = 1.1. Upon constant pres-
sure, growth increases gradually. Upon pressure removal,
growth remains constant displaying the irreversible na-
ture of the growth process. Figure 14 illustrates the
spatio-temporal evolution of area growth ϑg in the cheek.
Again, growth begins in center of cheek, where the elas-
tic area stretch is largest. As the growth process spreads
out throughout the entire cheek area, the initial area of
29.3 cm2 increases gradually as the grown skin area in-
creases from 42.74 cm2, to 52.03 cm2, to 59.39 cm2, and
finally to 76.86 cm2, from left to right. Figure 15 sum-
marizes the outcome of the expansion in the cheek with
a final fractional area gain of 2.64, corresponding to an
area growth of 77.4 cm2.

4 Discussion

Tissue expansion is one of the basic treatment modalities
in modern reconstructive surgery. Inducing controlled
tissue growth through well-defined overstretch, it creates
skin that matches the color, texture, hair bearance, and
thickness of the surrounding healthy skin, while minimiz-
ing scars and risk of rejection [21]. Despite its widespread
use, the choice of the appropriate tissue expander is al-
most exclusively based on the surgeon’s personal prefer-
ence, and the discrepancy between recommended shapes,
sizes, and volumes remains enormous [36]. The current
gold standard for expander selection is to predict tis-
sue growth by calculating the difference between the in-
flated and non-inflated expander surface [13, 53]. From
an engineering point of view, it is quite intuitive, that
this purely kinematic approach severely overestimates
the net gain in surface area [60]. With a discrepancy
of up to a factor four, these models assume that the en-
tire deformation can be attributed to irreversible growth,
completely neglecting the elastic deformation, which is
reversible upon expander removal [36]. In an attempt
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Fig. 10 Tissue expansion in the forehead. Temporal evolu-
tion of normalized total area, elastic area, and growth area
upon gradual expander inflation, 0.0 < t ≤ 0.125, constant
pressure 0.125 < t ≤ 0.75, and deflation 0.75 < t ≤ 1.0. The
final fractional area gain is 2.44, corresponding to 118.1 cm2.
Vertical dashed lines correspond to the time points displayed
in Figure 11.
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Fig. 12 Tissue expansion in the forehead. Remaining de-
formation upon expander removal. The elastic area strain
of 0.95 ≤ ϑe ≤ 1.05 indicates an area change of ±5%
giving rise to residual stresses (left). The area growth of
1.0 ≤ ϑg ≤ 3.5 shows that skin has more than doubled its
initial area (right). The final fractional area gain is 2.44, cor-
responding to 118.1 cm2.

to account for this error, empirical correction factors
of 6.00, 3.75, and 4.50 have been proposed for circular,
rectangular, and crescent-shaped expanders [60]. This
demonstrates the vital need to rationalize criteria for a
standardized device selection.
Motivated by a first study on axisymmetric skin growth
[55], we have recently established a prototype model for
growing membranes to simulate tissue expansion in a
general three-dimensional setting [8]. We have applied
our model to quantitatively compare four commonly
available tissue expander geometries, round, square,
rectangular, and crescent [9], however, only on initially
flat geometries. Here, for the first time, we demostrate
the potential of the model during tissue expansion in
pediatric forehead reconstruction using a real patient-
specific model. To embed the solution into a nonlinear
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Fig. 13 Tissue expansion in the cheek. Temporal evolution
of normalized total area, elastic area, and growth area upon
gradual expander inflation, 0.0 < t ≤ 0.125, constant pres-
sure 0.125 < t ≤ 0.75, and deflation 0.75 < t ≤ 1.0. The
final fractional area gain is 2.64, corresponding to 77.4 cm2.
Vertical dashed lines correspond to the time points displayed
in Figure 14.
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Fig. 15 Tissue expansion in the cheek. Remaining defor-
mation upon expander removal. The elastic area strain of
0.95 ≤ ϑe ≤ 1.05 indicates an area change of ±5% giving
rise to residual stresses (left). The area growth of 1.0 ≤ ϑg ≤
3.5 shows that skin has more than doubled its initial area
(right). The final fractional area gain is 2.64, corresponding
to 77.4 cm2.

finite element environment, we discretize the governing
equations for in-plane area growth in time and space.
To solve the nonlinear set of equations, we apply an in-
cremental iterative Newton-Raphson solution strategy
based on the consistent algorithmic linearization. The
resulting algorithm is remarkably efficient, stable, and
robust. It is capable of predicting tissue expander infla-
tion, tissue growth, and expander deflation at different
locations of a human skull within the order of minutes
on a standard laptop computer. Because of its geometric
flexibility, our general algorithm could also be adapted
to predict tissue expansion in the trunk [4] or in the up-
per and lower extremities [20].
Although the proposed model for skin growth represents
a significant advancement over the axisymmetric growth
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model previously proposed [55], we would like to point
out that some limitations remain. First, motivated by
experimental observations, which report normal cell dif-
ferentiation upon tissue expansion [61], we have assumed
that the material microstructure remains unaffected by
the growth process, F g =

√
ϑgI + [1 −

√
ϑg]n0 ⊗ n0.

Here, for the sake of simplicity, we have modeled this
microstructure as isotropic and elastic. We have recently
shown that it is straightforward combine our growth
model with in-plane anisotropy, introduced through pro-
nounced stiffness along Langer’s lines [9, 30]. It might
also be interesting to elaborate out-of-plane anisotropy
and model the different skin layers individually [39]. We
have demonstrated how to model the growth process it-
self as anisotropic as well [16]. This could imply growth
ϑ|| exclusively along specific microstructural directions

such as Langer’s lines, F g = I + [ϑ|| − 1]ν
||
0 ⊗ ν

||
0 , or

major in-plane growth ϑ|| along Langer’s lines combined
with minor in-plane growth ϑ⊥ orthogonal to Langer’s

lines, F g = ϑ|| ν
||
0 ⊗ ν

||
0 + ϑ⊥ ν⊥0 ⊗ ν⊥0 + n0 ⊗ n0. Simi-

larly, we could even introduce a progressive reorientation
of the collagen network to allow for the material to align
with the maximum principal strains [33,42]. Ideally, the
growth law would be tied to the underlying mechanobi-
ology [11]. Comparative tissue histology of grown and
ungrown tissue samples could help to identify the mech-
anisms that trigger skin growth to validate or, if neces-
sary, refine our evolution equation (13) for the growth
tensor.
Second, for the sake of simplicity, our finite element mesh
consists of one single brick element with two integra-
tion points across the skin thickness. We have previ-
ously studied the sensitivity of growth with respect to
thickness refinement using a higher resolution across the
thickness [8, 9]. However, our results were rather insen-
sitive to mesh refinement. This insensitivity might be
explained by the fact that, upon expander inflation, the
skin is almost in a pure membrane state. During defla-
tion, however, we observe buckling associated with strain
gradients across the skin thickness, which might play a
critical role in the development of residual stresses. To
explore these residual stresses further, we are currently
refining our model utilizing a shell kinematics [47] with
a higher resolution across the thickness direction. This
will also allow us to simulate the individual skin lay-
ers [35, 54] and their interaction during the expansion
process, which we believe to be a major source of resid-
ual stress in real tissue expansion cases [41,62].
Third, for the sake of simplicity, we have modeled tis-
sue expansion only implicitly through controlling the ap-
plied pressure. In real tissue expansion, the external con-
trol parameter is the expander volume [36]. This implies
that our virtual tissue expansion displays creep under
constant loading, while clinical tissue expansion might
rather display relaxation under constant deformation [9],
similar to our parameter study in Figure 4.
Fourth, here, we have assumed that the expander is con-

nected tightly to the expanded tissue, neglecting effects
of interface sliding and shear [55]. This seems to be a
reasonable first assumption though, since most current
expanders have well-designed textures to promote mild
tissue in-growth, primarily to prevent expander migra-
tion [6]. To address these potential limitations, we are
currently refining the elastic model, the growth model,
and the boundary conditions, to render our future sim-
ulations more realistic.
Last, while our computational model seems well suited to
provide qualitative guidelines and trends, at its present
state, it is not recommended for quantitative statements.
We will need to perform acute and chronic in vitro and
in vivo experiments to truly calibrate the underlying ma-
terial parameters, to potentially refine and fully validate
our model, to eventually make it applicable for clinical
practice. Nevertheless, we believe that using the equa-
tions on nonlinear continuum mechanics represents a sig-
nificant advancement over the current gold standard to
predict tissue growth exclusively in terms of kinematic
quantities [53,60].

Conclusion

We have presented a novel computational model to pre-
dict the chronic adaptation of thin biological membranes
when stretched beyond their physiological limit. Here,
to illustrate the features of this model, we have demon-
strated its performance during tissue expansion in pe-
diatric forehead reconstruction. We have quantified re-
versibly elastic and irreversibly grown area changes in
response to skin expansion in the scalp, the forehead,
and the cheek of a one-year-old child. In general, our
generic computational model is applicable to arbitrary
skin geometries, and has the potential to predict area
gain in skin expansion during various common proce-
dures in reconstructive surgery. A comprehensive under-
standing of the gradually evolving stress and strain fields
in growing skin may help the surgeon to prevent tissue
damage and optimize clinical process parameters such as
expander geometry, expander size, expander placement,
and inflation timing. Ultimately, through inverse mod-
eling, computational tools like ours have the potential
to rationalize these parameters to create skin flaps of
desired size and shape. Overall, we believe that predic-
tive computational modeling might open new avenues
in reconstructive surgery and enhance treatment for pa-
tients with birth defects, burn injuries, or breast tumor
removal.
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12 Alexander M. Zöllner, Adrian Buganza Tepole, Arun K. Gosain, Ellen Kuhl

National Science Foundation CAREER award CMMI-
0952021 and the National Institutes of Health Grant U54
GM072970 to Ellen Kuhl.

References

1. Agache PG, Monneur C, Leveque JL, DeRigal J. Me-
chanical properties and Young’s modulus of human skin
in vivo. Arch Dermatol Res. 1980;269:221-232.

2. Ambrosi D, Ateshian GA, Arruda EM, Cowin SC, Du-
mais J, Goriely A, Holzapfel GA, Humphrey JD, Kemke-
mer R, Kuhl E, Olberding JE, Taber LA, Garikipati
K. Perspectives on biological growth and remodeling. J
Mech Phys Solids. 2011;59:863-883.

3. Argenta LC, Watanabe MJ, Grabb WC. The use of tissue
expansion in head and neck reconstruction. Annals Plast
Surg. 1983;11:31-37.

4. Arneja JS, Gosain AK. Giant congenital melanocytic
nevi of the trunk and an algorithm for treatment. J Cran-
iofac Surg. 2005;16:886-893.

5. Arneja JS, Gosain AK. Giant congenital melanocytic
nevi. Plast Reconstr Surg. 2007;120:26e-40e.

6. Barone FE, Perry L, Keller T, Maxwell GP. The biome-
chanical and histopathologic effect of surface texturing
with silicone and polyurethane in tissue implantation
and expansion. Plast Reconstr Surg. 1992;90:77-86.

7. Bernardini F, Mittleman J, Rushmeiner H, Silva C,
Taubin G. The ball-pivoting algorithm for surface recon-
struction. IEEE Trans Vis Comp Graph. 1999;5:349-359.

8. Buganza Tepole A, Ploch CJ, Wong J, Gosain AK, Kuhl
E. Growing skin - A computational model for skin ex-
pansion in reconstructive surgery. J Mech Phys Solids.
2011;59:2177-2190.

9. Buganza Tepole A, Gosain AK, Kuhl E. Stretching skin:
The physiological limit and beyond. Int J Nonlin Mech.
doi: 10.1016/j.ijnonlinmec.2011.07.006.

10. Castilla EE, da Graca Dutra M, Orioli-Parreiras IM.
Epidermiology of congenital pigmented naevi: I. Inci-
dence rates and relative frequencies. Br J Dermatol.
1981;104:307-315.

11. De Filippo RE, Atala A. Stretch and growth: the molec-
ular and physiologic influences of tissue expansion. Plast
Reconstr Surg. 2002;109:2450-2462.

12. Dervaux J, Ciarletta P, Ben Amar M. Morphogenesis of
thin hyperelastic plates: A constitutive theory of biologi-
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