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Abstract Robotic surgery is an attractive, minimally

invasive and high precision alternative to conventional

surgical procedures. However, it lacks the natural touch

and force feedback that allows the surgeon to control

safe tissue manipulation. This is an important problem

in standard surgical procedures such as clamping, which

might induce severe tissue damage. In complex, hetero-

geneous, large deformation scenarios, the limits of the

safe loading regime beyond which tissue damage occurs

are unknown. Here, we show that a continuum damage

model for arteries, implemented in a finite element set-

ting, can help to predict arterial stiffness degradation

and to identify critical loading regimes.

The model consists of the main mechanical constituents

of arterial tissue: extracellular matrix, collagen fibres,

and smooth muscle cells. All constituents are allowed to
degrade independently in response to mechanical over-

load. To demonstrate the modularity and portability of

the proposed model, we implement it in a commercial

finite element program, which allows to keep track of

damage progression via internal variables.

The loading history during arterial clamping is simu-

lated through four successive steps, incorporating resid-

ual strains. The results of our first prototype simulation

demonstrate significant regional variations in smooth

muscle cell damage. In three additional steps, this dam-

age is evaluated by simulating an isometric contraction

experiment. The entire finite element simulation is fi-

nally compared to actual in vivo experiments.

In the short term, our computational simulation tool

can be useful to optimize surgical tools with the goal to
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minimize tissue damage. In the long term, it can poten-

tially be used to inform computer-assisted surgery, and

identify safe loading regimes, in real time, to minimize

tissue damage during robotic tissue manipulation.
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1 Introduction

For the past two decades, computer-assisted surgery

has revolutionised surgical treatment in various differ-

ent fields. Initially developed to surgically manipulate

the brain, see Kwoh et al. [1988], robotic surgery has

now gained widespread use. The da Vinci surgical sys-

tem, for example, offers a computer-enhanced surgical

option for complex cardiovascular procedures, see Mohr

et al. [2001]. Robotic surgery enables minimally invasive

and high precision treatment. However, in contrast to

conventional surgeries, robotic surgery inherently lacks

the natural touch and force feedback. This is an impor-

tant problem during common surgical procedures such

as grasping, cutting, stapling, clipping, and clamping,

which may induce severe tissue damage when not con-

trolled appropriately.

To illustrate these effects, within this manuscript, we

focus in particular on arterial clamping, which always

entails a certain degree of undesired iatrogenic tis-

sue damage [Barone et al., 1989]. Research has been

directed towards decreasing this unnecessary intra-

operative trauma, for example through the design of

less traumatic surgical instruments [Gupta et al., 1997].

Obviously, the effectiveness of these new designs and

techniques depends on how well damage mechanisms

are understood and how accurately thresholds for safe
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tissue loading can be defined.

An important aspect is the accurate modelling of the

loading and the resulting damage process. This arti-

cle describes a new material model for cardiovascular

tissue, which is an extension of the Holzapfel-material

model for arterial tissue [Holzapfel et al., 2000], incorpo-

rating smooth muscle cell activation according to Mur-

tada et al. [2010] and damage according to Balzani et al.

[2006]. The model is suitable to simulate the damage

process during the clamping of an artery. It displays

the decrease of active force generation in smooth mus-

cle cells due to the sustained damage. Embedded in a

finite element environment, this new model provides a

useful tool to define safe loading regimes for arterial tis-

sue, which could be used to inform computer-enhanced

surgical systems to minimize tissue damage in robotic

surgery and, in general, to optimize clamp design to-

wards minimal trauma.

Physiology of the healthy artery

An artery consists of three distinct layers. In healthy

arterial tissue, the inner layer, or intima, consists of an

endothelial layer. The middle layer, the media, is the

most important load-bearing layer of the artery within

the physiological loading domain. It consists of colla-

gen, elastin and smooth muscle cells separated by fen-

estrated elastic laminae. The outer layer, the adventi-

tia, is surrounded by loose connective tissue. It consists

mainly of thick bundles of collagen fibres arranged in

a helical structure [Schriefl et al., 2011]. For a more

detailed description of arterial wall morphology, the

reader is referred to, for example, Rhodin [1979] and

Holzapfel et al. [2000].

Arterial blood pressure is regulated acutely by alter-

ing the luminal diameter, which is controlled by bal-

ancing vasoconstricting and vasodilating influences on

the smooth muscle cells in a mechanochemical pro-

cess. Smooth muscle cells contain actin and myosin fil-

aments that slide relative to each other, causing the

contraction and relaxation. This relative sliding is ac-

complished by the configurational changes of the cross-

bridges, or myosin heads, that connect the myosin to

the actin filament. These configurational changes are

caused by the phosphorylation and dephosphorylation

of the myosin heads, as a function of the intracellular

calcium concentration. For a detailed description of the

mechanochemical process of smooth muscle cell con-

traction, the reader is referred to, for example, St̊alhand

et al. [2008] or Murtada et al. [2010].

Material modelling

Constitutive models characterize the mechanical be-

haviour of materials through a functional relation be-

tween stresses and strains. A great number of models

for cardiovascular tissue exist, trying to capture its spe-

cific features [Vito and Dixon, 2003, Göktepe et al.,

2011]. For an overview of constitutive models for car-

diovascular tissue, or for biological soft tissue in gen-

eral, the reader is referred to, for example, Gasser et al.

[2006], Famaey and Vander Sloten [2008]. Holzapfel

et al. [2000] have introduced one of the most commonly

used hyperelastic, anisotropic material models for ar-

teries, which accounts for two collagen fibre families

along two symmetrically arranged directions and allows

for a certain amount of dispersion. This model nicely

captures the typical nonlinear behaviour as wavy col-

lagen fibres are gradually recruited when the tissue is

stretched. In this baseline model, however, the material

behaves completely passive, i.e., the model does not ac-

count for the contractile nature of the smooth muscle

cells present in the arterial wall.

The first mechanical representation of a muscle was

proposed by Hill [1938], which was extended to the

three-element Hill model by Fung [1970]. This model

consists of a dashpot representing the contractile ele-

ment in series with a spring element representing the

contractile unit. Another spring in parallel represents

the surrounding material. For smooth muscle, Gestre-

lius and Borgström [1986] proposed a variation of the

three-element Hill model. Yang et al. [2003] were the

first to couple the mechanical representation to an elec-

trochemical model by Hai and Murphy [1988], incor-

porating the calcium-driven configurational changes of

the cross-bridges. This approach was also followed and

improved for situations with large deformations, by

St̊alhand et al. [2008], Murtada et al. [2010], Kroon

[2010] and Schmitz and Böl [2011]. However, so far,

the active contribution of smooth muscle has not yet

been combined with the collagen fibre contribution, nor

have the models been implemented in a finite element

framework. The model proposed by Zulliger et al. [2004]

does combine the active contribution with a stochas-

tic collagen fibre contribution in a pseudoelastic-type

strain-energy function. In Göktepe and Kuhl [2010]

and Rausch et al. [2011] finite element formulations

where proposed in which mechanical contraction was

controlled via electrical and chemical fields, respec-

tively. Unfortunately, these models are phenomenolog-

ical and thus less straightforward to populate with re-

alistic experiment-based material parameters. In this

paper, the active contribution by Murtada et al. [2010]

will be combined with the collagen fibre contribution
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by Holzapfel et al. [2000] and implemented in a finite

element framework to account for tissue heterogeneity.

Moreover, the material parameters related to the active

constituent will be calibrated by means of suitable ex-

periments.

Most existing material models are designed to describe

the material in its physiological state. These models,

however, fail to capture damage mechanisms that may

occur when the tissue is loaded in the sub- or supra-

physiological domain, for example, during surgical ma-

nipulation. Motivated by the typical stress softening

or Mullins effect in rubber-like materials, Simo and

Ju [1987] introduced a discontinuous damage model

that allows to capture progressive degradation of an

isotropic material. Balzani et al. [2006] have adapted

this approach to describe damage to arterial tissue

based on the Holzapfel material model. Other ap-

proaches exist to model damage in rubber-like mate-

rials, in a continuous manner [Miehe, 1995], or pseu-

doelastically [Ogden and Roxburgh, 1999]. Hokanson

and Yazdani [1997] incorporated anisotropic damage to

arteries by weighting an Ogden-type strain energy func-

tion with a fourth order damage tensor. Also for arterial

tissue, damage to the collagen fibres has been described

in a stochastic, worm-like chain model by Rodŕıguez

et al. [2006]. From the same group, Calvo et al. [2007]

presented a continuum damage model with discontinu-

ous softening in matrix and collagen fibres. Viscoelas-

ticity was introduced in these damage models by Pena

et al. [2010]. These damage models, however, neither

include the active smooth muscle contribution nor the

damage to the smooth muscle cells. In this paper, dam-

age will be incorporated in analogy to Balzani et al.
[2006], this time including the contributions of healthy

and potentially damaged smooth muscle cells.

Experimental characterization

Every constitutive model introduces a set of material

parameters that needs to be calibrated for the particu-

lar type of tissue. Specific experimental setups, such as

uniaxial and biaxial tensile tests or extension-inflation

tests can be performed to identify the material param-

eters for standard passive hyperelastic models, as de-

scribed, for example, in Sacks and Sun [2003], Holzapfel

and Ogden [2010].

To quantify the active response of the smooth mus-

cle, isometric and/or isotonic contraction experiments

can be performed ex vivo, as described in Barone et al.

[1989], Gleason et al. [2004], Murtada et al. [2010] and

Böl et al. [2011]. Recently, Itoh et al. [2009] and Tsamis

et al. [2011] have reported in vivo experiments to iden-

tify active muscle force in cardiovascular tissue in situ.

Damage is frequently assessed through the evaluation

of histological images of the tissue, for example in

Hsi et al. [2002], Manchio et al. [2005] and De et al.

[2007]. For example, live-dead stains can help to iden-

tify cell viability, and H&E (haematoxylin and eosine)

and Caspase-3 stains can visualize ruptures in the colla-

gen fibres. Unfortunately, most studies of tissue damage

are qualitative in nature, both in the application of the

tissue load to induce the damage and in the subsequent

damage assessment. To identify the damage material

parameters, however, quantitative experiments are es-

sential. De et al. [2007] were the first to characterize

damage quantitatively for porcine liver. For cardiovas-

cular tissue, previous work [Famaey et al., 2010] reports

on a study in which the damage to the smooth muscle

cells of rat abdominal arteries is quantitatively assessed

in an isometric contraction test after in vivo clamping

to well-defined loading levels. In this article, this quan-

titative damage information will be used to identify the

parameters of the new material model.

Outline

Section 2 introduces our new material model, account-

ing for the three major tissue constituents: extracellu-

lar matrix, collagen and smooth muscle cells. In par-

ticular, we allow each constituent to degrade indepen-

dently. The features of the model are first illustrated in

a simple homogeneous uniaxial cyclic extension test in

section 3. Section 4 then demonstrates how the model

can be applied to predict smooth muscle cell damage in

rat abdominal arteries through clamping and how the

damage parameters can be identified using actual ex-

periments. Section 5 discusses the presented model and

suggests further directions for future work.

2 Governing equations for arteries

Through an additive decomposition of the strain en-

ergy, the following constitutive model for active healthy

and degraded arterial tissue characterises the properties

of (i) an isotropic matrix material constituent, (ii) an

anisotropic constituent attributed to the dispersed col-

lagen fibres and (iii) an anisotropic smooth muscle cell

constituent. The first two constituents are motivated by

the Holzapfel-material model as proposed in Holzapfel

et al. [2000], whereas the third component is motivated

by the mechanical smooth-muscle-activation model de-

scribed by Murtada et al. [2010]. The damage accumu-

lating in the different constituents during mechanical

loading is characterised through a strain-energy-driven

damage function for each individual constituent, moti-

vated by the formation by Balzani et al. [2006]. In the
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remainder of the paper, the model will be referred to

as the three-constituent damage model.

2.1 Kinematic prerequisites

Since soft biological tissues can undergo large physiolo-

gical deformations, the key kinematic quantity to char-

acterize the deformation process is the deformation gra-

dient F, i.e., the gradient of the deformation map ϕ

with respect to the undeformed position X:

F = ∇Xϕ and J = det(F). (1)

Here, J denotes its Jacobian J , which is close to one,

J ≈ 1, for nearly incompressible materials. In that case,

it proves convenient to decompose the deformation gra-

dient into a deviatoric part, F̄, and a volumetric part,

J1/3I,

F = J1/3F̄. (2)

Typically, the deformation of incompressible materials

is characterised in terms of the invariants of the devia-

toric part C̄ of the right Cauchy-Green tensor C, with

C = FTF and C̄ = F̄TF̄. (3)

The basic deviatoric invariants Ii take the following ex-

plicit representation:

I1 = tr(C̄),

I2 = 1
2 [ tr2(C̄)− tr(C̄2) ],

I3 = det(C̄).

(4)

While the basic invariants characterize the isotropic

material behaviour, the anisotropic invariants Ifib
4 , Ifib

6 ,

and Ismc
4 characterize the stretches along the fibre and

smooth muscle cell directions, see [Gasser et al., 2006]:

Ifib
4 = λ2

θ cos2αfib + λ2
z sin2αfib,

Ifib
6 = λ2

θ cos2αfib + λ2
z sin2αfib,

Ismc
4 = λ2

θ cos2αsmc + λ2
z sin2αsmc

(5)

Here, λθ and λz are the stretches in the circumferential

and axial directions, respectively. Moreover, αfib and

αsmc denote the angles between the circumference and

the mean directions of the fibre and smooth muscle fam-

ilies. In the case of arteries, two fibre families are ori-

ented symmetrically with respect to the cylinder axis,

so that I4 = I6. Finally, the pseudo-invariants Ifib?
4 and

Ifib?
6 are introduced to account for dispersion,

Ifib?
4 = κ I1 + [ 1− 3κ ] Ifib

4 ,

Ifib?
6 = κ I1 + [ 1− 3κ ] Ifib

6 ,
(6)

where the fibre dispersion κ characterises the degree of

anisotropy varying from κ = 0 in the anisotropic non-

disperse state to κ = 1
3 in the isotropic state.

2.2 Constitutive equations

Since the tissue is assumed to be nearly incompressible,

it is common to additively decompose the strain-energy

function Ψ,

Ψ = Ψvol+Ψdev = Ψvol+Ψmat+Ψfib4+Ψfib6+Ψsmc, (7)

into a volumetric Ψvol and a deviatoric Ψdev part. The

latter consists of an isotropic contribution of the ma-

trix material Ψmat, an anisotropic contribution of two

families of collagen fibres Ψfib4 and Ψfib6 , and a contri-

bution of the smooth muscle cells Ψsmc. The individual

contributions will be specified in detail in the sequel. All

deviatoric components are allowed to undergo degrada-

tion in the case of physiological overload. Simo and Ju

[1987] in general and Balzani et al. [2006] for arteries

have described the approach of weighting the strain en-

ergy with a scalar valued damage variable [ 1−d ]. This

model builds upon the classical damage concept, and

introduces an independent damage variable for each in-

dividual constituent.

Volumetric bulk material

The volumetric free energy Ψvol can, for example, be

expressed as follows:

Ψvol = Λ [ 1
2 [ J2 − 1 ]− ln(J) ]. (8)

The penalty parameter Λ is chosen to Λ = 5.0 after a

sensitivity analysis demonstrating that this value was

low enough to ensure near-incompressibility. Since this

term is handled separately in an incompressible finite

element formulation, we will now focus on the four con-

tributions to the deviatoric energy Ψdev, which are the

primary descriptors of the material behaviour.

Extracellular matrix

The extracellular matrix is characterised through an

isotropic free energy Ψmat, which is allowed to degrade

according to the classical damage concept:

Ψmat = [ 1− dmat ] Ψ̂mat. (9)

Here, Ψ̂mat denotes the elastic energy of the extracellu-

lar matrix:

Ψ̂mat = 1
2 c [ I1 − 3 ], (10)

where c > 0 characterises the matrix stiffness. The evo-

lution of the damage variable of the extracellular matrix

dmat is driven by the undamaged elastic extracellular

matrix energy:

dmat = γmat[ 1− exp(−βmat/mmat) ]. (11)
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The weighting factor γmat can be used to turn damage

on, γmat ∈ ]0, 1], or off, γmat = 0, and mmat is a pa-

rameter of the damage model. The variable βmat is an

internal variable keeping track of the maximum elastic

strain energy experienced so far, within the time inter-

val 0 ≤ t ≤ τ :

βmat = max
0≤t≤τ

( Ψ̂mat(t)−Ψmat
0 ). (12)

Since it can be assumed that no damage occurs in the

physiological range, the damage threshold Ψmat
0 is ini-

tialised with the strain energy in the extracellular ma-

trix at systolic pressure. For heterogeneous problems,

Ψmat
0 may therefore differ for each material point, and

is thus not strictly a material property.

Collagen fibres

Collagen fibres will only contribute when under tension.

Similar to the free energy of the matrix, the free energy

of the collagen fibres accounts for both an elastic and a

degrading response,

Ψfibi = [ 1− dfibi ] Ψ̂fibi i = 4, 6, (13)

where the energy contributions of the two families of

collagen fibres are formulated according to Holzapfel

et al. [2000]:

Ψ̂fibi
=

k1

2 k2
exp( k2 [ I∗i − 1 ]2 )− 1. (14)

Here, k1 > 0 characterises the fibre stiffness and k2 > 0

is a dimensionless parameter. Damage of the two fibre

families dfibi can again be described in terms of the

elastic fibre energies Ψ̂fibi :

dfibi = γfib[ 1− exp(−βfibi/mfib) ], (15)

where γfib and mfib are the two fibre damage param-

eters and βfibi are the internal variables of each fibre

family keeping track of the maximum value of the elas-

tic fibre energies experienced so far:

βfibi = max
0≤t≤τ

( Ψ̂fibi(t)−Ψfib
0 ). (16)

Again, the damage threshold Ψfib
0 is initialised with the

strain energy of the fibres at systolic pressure, and may

therefore differ for each material point. Since the inter-

nal variables βfibi are driven by the elastic strain en-

ergies Ψ̂fibi , material degradation will only take place

when the fibres are under tension, as the strain energy

is zero when in compression.

Smooth muscle cells

The smooth muscle cells form an integral part of the

matrix constituent, even in their passive state. There-

fore, their degradation is assumed to depend on both

the passive damage dsmc
pas in the surrounding matrix

and the active damage dsmc
pas in the smooth muscle cells

themselves:

Ψsmc = [ 1− dsmc
pas ][ 1− dsmc

act ] Ψ̂smc. (17)

In the undamaged state, the energy of the smooth mus-

cle cells Ψ̂smc can be expressed as follows:

Ψ̂smc = 1
2 µ

smc [nIII + nIV ][
√
Ismc
4 + urs − 1 ]2, (18)

where µsmc characterises the stiffness of the actin-myo-

sin filament apparatus. The kinetics of the actin-myosin

powerstroke are modelled through a four-state model

described by Hai and Murphy [1988] and adopted by

Murtada et al. [2010], Kroon [2010] and St̊alhand et al.

[2011]. This model describes the transitions between the

four states nI, nII, nIII and nIV of the myosin heads as

a function of the calcium concentration as follows:
ṅI

ṅII

ṅIII

ṅIV

 =


−κ1 κ2 0 κ7

κ1 −(κ2 + κ3) κ4 0

0 κ3 −(κ4 + κ5) κ6

0 0 κ5 −(κ6 + κ7)



nI

nII

nIII

nIV


(19)

Here, n are the fractions of the four states, which sum

up to one,
∑
ni = 1. The κi are the rate constants of the

model, where κ1 and κ7 are a function of the calcium

concentration. In particular, nI and nII, are the frac-

tions of dephosphorylated and phosphorylated myosin

heads that are not attached to the actin filament, and

thus not mechanically contributing. nIII and nIV are

the fractions of phosphorylated and dephosphorylated

myosin heads, or cross-bridges, attached to the actin

filaments, and thus contributing to the stiffness. The

power-stroke occurs through a conformational change

in state III, after which the myosin heads transform

back into state II. As long as the myosin heads re-

main phosphorylated, they cycle back and forth be-

tween states II and III, thus generating contraction.

In state IV, the myosin heads are still attached to the

actin filament but dephosphorylated and thus unable

to perform a power stroke.

In equation (18), urs is the average normalised relative

sliding between the myosin and the actin filaments. It

follows a viscous evolution law:

u̇rs =
1

η
[P smc − Pmat ], (20)

where η is a viscosity parameter, P smc denotes the ac-

tive stress exerted by the attached myosin heads and

Pmat denotes the stress from the surrounding matrix.
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The active stress P smc can be approximated by the fol-

lowing step function:

P smc =


κc nIII for Pmat < κcnIII

Pmat else

κc[nIII + nIV] for κc[nIII + nIV] < Pmat,

(21)

where κc is a material parameter related to the driving

force per myosin head, see Murtada et al. [2010] and

Kroon [2010] for details. Smooth muscle cell degrada-

tion is governed by two damage variables, dsmc
pas char-

acterizing the damage to the surrounding matrix and

dsmc
act characterizing the damage to the smooth muscle

cells themselves:

dsmc
pas = γsmc

pas [ 1− exp(−βmat/msmc
pas ) ],

dsmc
act = γsmc

act [ 1− exp(−βsmc/msmc
act ) ].

(22)

The internal variable for matrix damage βmat is defined

in equation (12), and the internal variable for smooth

muscle cell damage βsmc is defined as:

βsmc = max
0≤t≤τ

( Ψ̂smc(t)−Ψsmc
0 ). (23)

Both keep track of the loading history through the max-

imum value of the elastic matrix and smooth muscle cell

energies experienced so far.

3 Computational modeling of arteries

This section addresses the implementation of the arte-

rial model into the finite element program Abaqus.

3.1 Implementation

The constitutive model is implemented in the Abaqus

user subroutine UANISOHYPER INV, a family of subrou-

tines designed for anisotropic, hyperelastic material

models, in which the strain energy density function Ψ

is formulated as a function of the strain invariants. This

subroutine can handle and update solution-dependent

internal variables and requires that the derivatives of

the strain-energy function are defined with respect to

the scalar invariants I1, I2, I3, Ifib
4 , Ifib

6 , Ismc
4 , which

are provided as input. It is called at each integration

point during each load increment to calculate the total

strain energy Ψ and its first and second derivatives

with respect to the invariants ∂Ψ/∂Ii and ∂2Ψ/∂Ii∂Ij

for i, j = 1, 2, 3, 4fib, 6fib, 4smc.

Through the input file, a local coordinate system must

be set, containing the local directions αfib for the

collagen fibres and αsmc for the smooth muscle cells.

When defining the material, memory must be allocated

for nine solution-dependent state variables, namely the

damage driving forces βmat, βfib4 , βfib6 , and βsmc, and

the damage thresholds Ψmat
0 , Ψfib4

0 , Ψfib6
0 , and Ψsmc

0 .

The ninth state dependent variable is the relative

sliding urs in the actin-myosin complex, which needs

to be stored because of its viscous nature.

The anisotropic, hyperelastic, user-defined mate-

rial model must be specified with all the material

parameters described above, choosing the options

‘formulation = invariant’, ‘local directions

= 3’ and ‘type = incompressible’. A conceptual

drawback of the UANISOHYPER INV subroutine is that it

does not provide access to the time step of the solution

process, which should be known for correct program-

ming of the viscous evolution law described in equation

(20). This implies that the exact time step is only

known if a fixed time increment is set, by adding the

option ‘direct’ to the keyword ‘static’ in the

inputfile. Otherwise, only the minimum and maximum

allowable time step can be externally prescribed.

3.2 Model problem of cyclic uniaxial tension

Fig. 1 Strain profile for homogeneous cyclic uniaxial tension
test. ε11, ε22 and ε33 are the strains in the three principal
directions. The lines in the block depict the average direction
of the two collagen fibre families and the smooth muscle cells.

The new constitutive model was tested for the simple

model problem of cyclic uniaxial tension using a hex-

ahedral C3D8H element. Homogeneous boundary condi-

tions were applied, namely a gradually increasing, saw-

tooth stretch pattern, as shown in Figure 1. To explore

the parameter sensitivity of the model, three different

sets of material parameters were compared by altering

the smooth muscle cell stiffness µsmc and the damage

weighting factor γi, see Table 1. All other parameters
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Table 1 Parameter sets for cyclic uniaxial tension test in
Section 3.2. All other material parameters can be found in
Table 2.

Parameter Variation 1 Variation 2 Variation 3
µsmc 0.0 kPa 0.2 kPa 0.2 kPa
γi 0.0(−) 0.0(−) 0.9(−)
i = mat,fib4, fib6, smcpas, smcact

were selected according to the rationale explained in

Section 4.2 as shown in Table 2.

As a first benchmark test, the three-constituent dam-

age model was compared to the Abaqus implementation

of the standard Holzapfel-Gasser-Ogden model, where

the smooth muscle cell stiffness µsmc and the damage

weighting factors γi were set to zero (variation 1). Both

simulations yielded exactly the same results, verifying

the correct implementation of the baseline model. Next,

different features of the model were gradually added

and evaluated for consistency. Figure 2 shows the stress-

strain curves for the prescribed loading pattern from

Figure 1 for three variations of the new material model.

By turning off the smooth muscle contribution µsmc and

the damage γi = 0 in variation 1, the model captures

the Holzapfel-Gasser-Ogden material by Abaqus as a

special case. When the smooth muscle stiffness µsmc

is increased to a value of 0.2 MPa in variation 2, the

solid green curve is obtained. It shows how, in the fully

contracted state, the smooth muscle cells actively con-

tribute to the stiffness. When the damage material pa-

rameter γi is increased to 0.9 (-) in variation 3, the solid

red curve with arrows is obtained, clearly demonstrat-

ing the progressive smooth muscle cell degradation. By

increasing or decreasing the damage weighting factor γi

within the range 0 < γi < 1, the solid red curve with ar-

rows decreases or increases, respectively, bounded from

above and below by the solid green and dashed blue

lines.

4 Smooth muscle cell damage through clamping

The three-constituent damage model is put to use

to simulate the damage process occurring during the

clamping of a rat abdominal artery. To test the realism

of the model, the results were compared to actual ex-

periments, more thoroughly described in Famaey et al.

[2010], in which the abdominal arteries of rats were

clamped up to a defined clamping force. Subsequently,

to quantify the degradation of the smooth muscle cells,

the contracting capability of the clamped segment was

measured in a myograph as explained in Section 4.1.

Both experimental processes, i.e., arterial clamping and

subsequent myograph testing, were simulated numeri-

Fig. 2 Stress-strain curve for homogeneous cyclic uniaxial
tension test. Curves correspond to healthy smooth muscle
(solid green), progressively damaging smooth muscle (solid
red with arrows), and no smooth muscle (dashed blue). The
prescribed loading profile is shown in Figure 1. The different
sets of material parameters. and are summarised in Table 1.

cally using the three-constituent damage model as de-

scribed in Section 4.2.

4.1 Experimental model

Arterial clamping

In order to correlate the degree of damage to the degree

of mechanical loading to which the tissue was previously

subjected, loading should be applied in a controllable

way. Ideally, loading should be applied in vivo, so that

the induced damaged can be solely attributed to the
loading and not to non-physiological ex vivo conditions.

Since subsequent damage quantification requires exci-

sion of tissue, undamaged control segments should also

be excised and tested as controls, to rule out damage

due to the excision process. To clamp the artery in a

controlled way, a hand-held mechanical device, shown

in Figure 3, was designed that allows clamping of a

rat abdominal artery in an in vivo setting to a known

force, measured with strain gauges on the clamping

arms [Famaey et al., 2010].

Functional damage assessment

One damage quantification method is to compare the

degree of functionality of a damaged tissue to that of

an intact one. For the specific case of arterial tissue,

functionality refers to the vasoregulating capability of

the tissue, i.e., the potential of the smooth muscle cells

to contract or relax in order to regulate the blood pres-

sure. This vasoregulating capability can be quantified

in an experimental setup, known as a ‘myograph’.
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Fig. 3 Mechanical clamping device.

Schematically shown in Figure 4, the myograph consists

of a water-jacketed organ chamber in which an excised

cylindrical section of an artery can be mounted. Two

rods slide into the lumen of the sample, whereby one

rod is connected to the base of the setup, and the other

to a load cell suspended above the setup, so that iso-

metric tension can be recorded. The height of the load

cell can be manually adjusted to set an optimal preload

on the sample. The sample is immersed in a Krebs

buffer at 37 ◦C and continuously gassed with a mixture

of 95% oxygen and 5% carbon dioxide. After stabiliza-

tion at the optimal preload level, Phenylephrine (PE)

at 10−6M is added to the solution to induce contrac-

tion. PE is a contracting agent that acts directly on

the smooth muscle cells. Sodium nitroprusside (SNP)

(10−6M) induces an endothelium-independent relax-

ation so consequently an adequate level of SNP-induced

relaxation will indicate intactness of the smooth muscle

cells [Callera et al., 2000]. Absolute values of relaxation

as well as the percentage of relaxation relative to the

amount of contraction are recorded and provide a quan-

titative measure of the damage to the smooth muscle

cells when comparing these values to those of an in-

tact sample. More details on the experimental setup

can be found in Famaey et al. [2010]. A similar custom-

designed device to test active force generation in re-

sponse to electrical stimulation is reported in Böl et al.

[2011].

4.2 Computational model

Arterial clamping

A three dimensional finite element model was built in

Abaqus/Standard 6.10-2. Here, an idealised cylindrical

geometry was used with an outer radius of 0.58 mm, a

wall thickness of 0.14 mm and an initial length of 0.1

mm. For the generation of real patient-specific models,

Force 

cell

O2 / CO2

Fig. 4 Custom made functional testing device. Two rods
slide into the lumen of the sample, one rod is connected to
the base of the setup, the other to a load cell suspended above
the setup, so that isometric tension can be recorded. The
sample is immersed in water-jacketed organ chamber filled
with Krebs buffer.

we refer to Kuhl et al. [2007] or Balzani et al. [2011].

C3D8H elements were assigned to the mesh. The numer-

ical implementation of arterial clamping is subdivided

into two steps, (i) the setting of the initial damage level

and (ii) the clamping process. Figure 5 shows all steps

of the clamping simulation.

In the first part, an opened cylindrical segment with

an opening angle of 60◦ is closed to account for the

circumferential residual stresses [Balzani et al., 2007].

Next, the segment is longitudinally stretched by 50%,

to account for residual stresses in the longitudinal di-

rection. In the third step, the segment is inflated to an

internal pressure of 16 kPa. The material model used

in this step is the undamaged three-constituent damage

model, however, without accumulation of damage. At

the end of the third step, the undamaged elastic strain

energy of each of the four constituents is written into a

matrix of internal or ‘solution dependent variables’ for

each integration point, using Python scripting. These

are the initial damage threshold levels Ψ i0, described in

equations (12), (16) and (23) to be used in step 4.

Step 4 starts with a new input file, in which the state of

the artery after the first three steps is imported. By im-

porting, the deformations are included as ‘initial values’

for the model. The solution dependent variables defined

above contain the damage threshold levels Ψ i0 specified

as ‘initial conditions’ in the input file. The material

model is now updated to enable damage accumulation,

γi > 0, and four extra solution dependent variables,

representing the βi described in equations (12), (16)
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Fig. 5 Schematic overview of the seven steps to represent
the loading history of arterial clamping in the FE simulation.

and (23) are added. In addition, two extra parts are

added to the assembly of the system, namely an upper

and lower clamp, which are gradually moved towards

each other during step 4, until a clamping force of 5

mN is reached. A friction coefficient of µclamp = 0.5 is

used between the clamp and the outer arterial surface.

Finally, also the internal pressure boundary conditions

are modified to a pulsating pressure between 10 and

16 kPa, that gradually decays to zero when the vessel

is completely closed. To keep track of the maximum

energy level reached for each constituent at every inte-

gration point of the system, the four extra solution de-

pendent variables are updated and stored at each step

as internal variables βi. At the end of the simulation,

these solution dependent variables are again written to

a matrix using Python scripting to inform the next step.

Functional damage assessment

After clamping, damage has accumulated in the dif-

ferent constituents. For the smooth muscle cells, this

amount of damage can be calibrated and validated in

a myograph, as explained in Section 4.1. The simula-

tion starts from the same mesh as in step 1 of Section

4.2. This time, however, the initial conditions are spec-

ified for the solution dependent variables taking into

account the earlier loading history through the internal

variables βi. The material model is adapted, such that

damage due to the energy accumulation of clamping is

present, but no further damage is induced. Similar to

step 1 of Section 4.2, the segment is closed to form a

half cylinder in step 5, thus incorporating the circum-

ferential residual stress. To reproduce the experimental

situation, this time, no longitudinal stretch or internal

pressure was added. Next, in step 6, a rod is translated

radially from inside the section, pulling it until it ex-

erts a certain load, corresponding to the experimentally

measured value after complete relaxation due to the ad-

dition of SNP. A friction coefficient of µrod = 0.5 is used

between the rod and the outer arterial surface. Up to

the end of step 6, no smooth muscle cell contribution is

added in the material model. This is accomplished by

multiplying the fractions nIII and nIV with a switch

function that is set to zero in steps 5 and 6.

After reaching the relaxed state, in the final step, the

switch function is smoothly ramped to one, so that the

smooth muscle cells reach the completely contracted

state. Physiologically, this situation corresponds to the

state after the addition of PE. In this step only, because

of the time dependence of the evolution law for the rel-

ative sliding urs, the time step of the implicit solution

scheme is fixed to dt = 10−5. Figure 5 gives a schematic

overview of all seven steps of the simulation.

Parameter selection

Table 2 gives an overview over all parameters of the

material model. The first set of parameters are related

to the extracellular matrix with two embedded fibre

families. For the rat abdominal aorta, the main direc-

tion of the collagen fibres αfib is set to ±5◦, i.e., it is

almost aligned with the circumferential direction, see

O’Connell et al. [2008]. The four remaining parameters

are set to κ = 0.16 (-), k1 = 32.51 kPa, k2 = 3.05 (-)

and c = 23.63 kPa, by using experimental data from

extension-inflation tests as described in Famaey et al.

[2011]. Alternatively, a parameter set from human ar-

teries can be found in St̊alhand [2009].

The next set of parameters are the rate constants of the

chemical model defining the fractions nIII and nIV in

equation (see equation 19). They are chosen according

to Hai and Murphy [1988]. These values led to the frac-

tions of nIII = 0.164 and nIV = 0.547, which were used

as fixed input values into the mechanical model. Addi-

tional parameters are related to the mechanical model

of the smooth muscle cell contribution. According to

O’Connell et al. [2008], the smooth muscle cells of rat

abdominal arteries are oriented circumferentially with

αsmc = 0◦. The parameter µsmc depending on the stiff-

ness of the actin-myosin filament structure and the pa-
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rameter κc related to the driving force per cross-bridge

were both calibrated using the experimental contrac-

tion measured in the myograph due to addition of PE

for a previously undamaged segment, as described in

Section 4.1. The viscous damping constant η was set to

60 MPas, corresponding to the value used in Murtada

et al. [2010].

To characterize damage progression appropriately, two

parameters need to be calibrated for each constituent,

plus two additional ones for the smooth muscle cells, to-

talling ten parameters. Since the myograph experiment

only allows for damage quantification in the smooth

muscle cells, with the current setup, no reasonable dam-

age parameters can be defined for the extracellular ma-

trix and the collagen fibres. Additional complementary

experiments will be needed for this task, as discussed

in Section 5. Accordingly, here, γmat and γfib were set

to zero, such that mmat and mfib can take any arbi-

trary value. Secondly, the assumption was made that,

during clamping, the smooth muscle cells were com-

pletely passive, and thus not contributing to the stiff-

ness. Consequently, no damage could accumulate here,

so that γsmc
act could also be set to zero, and msmc

act to

an arbitrary value. The two remaining parameters γsmc
pas

and msmc
pas were then calibrated using the experimental

data. For a systematic approach to identify damage ma-

terial parameters in a heterogeneous setting, the reader

is referred to Mahnken and Kuhl [1999].

4.3 Results

The top image in Figure 6a shows the maximum prin-

cipal stress in an arterial segment in the systolic physi-

ological state. This state defines the damage threshold

above which damage is initiated. In the lower image

of Figure 6a, the maximum principal stress is shown

for the same arterial segment when clamped up to a

clamping force of 5 mN. Figure 6b shows the same set

of images, this time displaying the elastic strain energy

in the matrix material, Ψ̂mat, i.e., the driving force for

both isotropic matrix damage dmat and passive smooth

muscle cell damage dsmc
pas . As shown in the lower image of

Figure 6c, the clamping has induced an inhomogeneous

damage pattern to the smooth muscle cells. Even when

the segment returns to its reference state (top image in

Figure 6)c, this damage is irreversible and remains.

Figure 7 shows snapshots of the myograph experiment,

with the color code depicting the maximum principal

stress. The left graph of Figure 8 shows the force mea-

sured in the rods of the myograph as a function of

time, for a previously undamaged segment, solid line,

and for a segment that was previously clamped at 5

Table 2 Parameters used in the finite element model.

matrix material
Parameter Value Source
c 23.63 kPa Famaey et al. [2011]
γmat 0 (-) Not studied
mmat 1 kPa Not studied
collagen fibres
Parameter Value Source
αfib ±5◦ O’Connell et al. [2008]
k1 32.51 kPa

Famaey et al. [2011]k2 3.05 (-)
κ 0.16 (-)
γfib 0 (-) Not studied
mfib 1 kPa Not studied
smooth muscle cells - chemical rate constants
Parameter Value Source
κ1, κ6 0.14 s−1

Hai and Murphy [1988]
κ2, κ5 0.5 s−1

κ3, 4κ4 0.44 s−1

κ7 0.01 s−1

smooth muscle cells - mechanical constants
Parameter Value Source
µsmc 0.25 MPa Fitted to experiments
κc 0.93 MPa Fitted to experiments
η 60 MPa s Murtada et al. [2010]
αsmc 0◦ O’Connell et al. [2008]
γsmc
act 0 (-) Not studied
msmc

act 1 kPa Not studied
γsmc
pas 0.9 (-) Fitted to experiments
msmc

pas 0.03 MPa Fitted to experiments

mN, dashed. The letters along the curve correspond to

the stages shown in Figure 7. The first section of the

graph corresponds to step 6 of the simulation, i.e., the
pulling of the rod to the passive state. After 2 seconds,

the smooth muscle cells are activated, corresponding to

step 7.

The right graph of Figure 8 shows the force measured in

the rod for a segment that was previously clamped with

the device described in Section 4.1 to a level of 5 mN,

normalised to the width of the numerical model, and

for a segment that was undamaged. The force in the

rod was also normalised to the width of the numerical

model. Again, in the first section of the graph, the rod is

gradually pulled to reach the passive preload state. At

the point indicated with the arrow, PE is added to the

Krebs solution, triggering the activation of the smooth

muscle cells. Note that the time scales in the two graphs

do not agree. To calibrate the model appropriately, an

additional time parameter would have to be included

into the model. Here, however, we were only interested

in the end result of the curve, rather than in calibrating

the model to real physical times.
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Fig. 6 (a). Maximum principal stress in an arterial segment in systolic physiological state (top image), and when clamped
up to a clamping force of 5 mN (lower image). (b). Strain energy in the same two segments as in (a). (c). Damage variable
dsmc
pas in the same arterial segment as in Figure 6, when clamped up to a clamping force of 5 mN (lower image). This damage

remains, even when the segment returns to its reference state (top image).

(MPa)

a b c d e f

Fig. 7 Different stages of the myograph experiment, with the color code depicting the maximum principal stress. In stages
a,b and c, the rods are being pulled to the preload force (step 6 of the numerical simulation). In stages d, e and f, the rods
remain in position and the smooth muscle cells are activated (step 7 of the numerical simulation).

activate

a

b

c

d

e

f

activate

Fig. 8 The left graph shows the force measured in the rod of the myograph as a function of time, for a previously undamaged
segment (solid line) and for a segment that was previously clamped at 5 mN (dashed). The letters along the curve correspond
to the snapshots shown in Figure 7. The right graph shows the force measured in the rod during an experiment, for a segment
that was previously clamped with the device described in Section 4.1 to a level of 5 mN and for a segment that was undamaged,
both normalised to the width of the numerical model.
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5 Discussion

In this paper, a three-constituent damage constitutive

model was proposed to simulate the damage process in

arterial tissue. After testing the model in a homoge-

neous model problem under cyclic uniaxial tension, it

was used in a finite element simulation for the clamp-

ing of an artery and the subsequent damage evalua-

tion in a myograph. The model enables the analysis of

the inhomogeneous damage profile in the artery due to

loading, quantitatively showing which constituents and

which sections are overloaded, compared to the phys-

iological state. In response to overload, driven by the

free energy, anisotropic damage develops in the smooth

muscle cells. The three-constituent damage model and

numerical simulation provide a useful tool to explore

safe loading of arterial tissue. Being able to reliably

predict loading regimes which initiate tissue damage is

important in view of robotic surgery, which lacks the

natural feedback of human touch, by which the experi-

enced surgeon today guarantees safe tissue loading.

The material model described in Section 2 introduces

a large set of parameters, which need to be experimen-

tally defined for each tissue type. Extensive experimen-

tal data from a range of different experiments is re-

quired to correctly identify all parameters. Section 4.2

comments on the rationale behind the parameter selec-

tion for this study. The goal of this study was to demon-

strate the feasibility of the proposed model and to illus-

trate a conceptual methodology for the damage charac-

terization in smooth muscle cells. Accordingly, less em-

phasis was placed on the exact parameter identification

for the other model parameters. As explained in sec-

tion 2.2, four damage processes can be captured by the

model, one for each constituent. Each damage process

is assumed to be driven by the individual free energy

of that constituent. For smooth muscle cells, passive

damage is also affected by the energy in the matrix con-

stituent. Here, we focus in particular on this last passive

part of damage, assuming that smooth muscle cells are

inactive during the real clamping process. The damage

parameters were chosen to correspond to the results of

an ex vivo experiment. In the future, further experi-

ments will be performed with different clamping force

levels to calibrate the model for a wider loading range.

To enable numerical comparison with higher clamping

force levels, it might become relevant to remesh the the

clamped segment to avoid excessive element distortion.

However, remeshing would require the mapping of the

solution, both from the node points and from the inte-

gration points, onto the new mesh, a feature currently

still lacking for anisotropic materials in Abaqus 6.10.

In order to define the damage parameters for all con-

stituents, different experiments are required that en-

able the extraction of this specific information. A pos-

sible way to study damage to the collagen fibres in

tension is to acquire microscopic images of the tissue

at different stages in the stretching process and assess

the images for collagen rupture. In fact, the extension-

inflation tests that were used here to identify the un-

damaged baseline parameters of the Holzapfel model

most probably already induced damage to the matrix

and the collagen fibres in the higher pressure regimes.

Ideally, damage to the matrix and collagen constituents

should therefore be included in the parameter identifi-

cation process of the extension-inflation tests.

Although the three-constituent damage model already

Fig. 9 Uniaxial tensile test on a circumferentially oriented
strip of a sheep carotid artery. The loading profile was such
that each strain level was cycled five times, for six increasing
levels of strain.

captures a number of typical features of cardiovascular

tissue, some features are still not included, or simplified.

When qualitatively comparing the homogeneous cyclic

tension test described in Section 3.2 to the results of

a uniaxial tensile test on a sheep carotid artery, shown

in Figure 9, aspects such as nonlinearity and discontin-

uous softening are nicely represented. However, in the

tensile test on the sheep carotid artery, cycling up to

a certain strain level was performed five times before

the next strain level was reached, and clearly softening

does continue in these cycles, even though the maxi-

mum energy level, the parameter β in our model, is not

increased. This continuous damage behaviour was not

captured with the damage model used here. Moreover,

the damage variables introduced in this model mainly

capture acute effects, while chronic effects such as re-

pair and/or remodelling have not been considered for

the time being. These effects should be investigated,
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keeping in mind the trade-off between realism of the

model and its usability. The correct identification of

the material parameters becomes obviously more chal-

lenging the more effects are incorporated in the model.

The ultimate goal of this research project is to min-

imize tissue trauma during surgery, for which dam-

age thresholds need to be identified. These thresholds

should be defined in close collaboration with surgeons

and biomedical researchers, experimentally assessing

the level of damage due to loading and defining which

damage levels are still acceptable, taking into account

long-term effects of damage accumulation but also self

healing. These critical damage levels can then be cor-

related to the internal damage variables d. Once the

damage variable of a constituent has reached a certain

level, the damage is set to be unacceptable, and robotic

loading should be stopped automatically. Future re-

search will therefore also be directed towards algorithm

speed-up, e.g., through parallelised implementation in

the GPU with NVIDIA Compute Unified Device Archi-

tecture.

Predictive computational modeling of tolerable damage

thresholds is clinically relevant in two ways: on the one

hand, in the short term, the proposed model can be used

as a simulation tool to optimize surgical tools, for exam-

ple, to improve clamp design to minimize tissue dam-

age. On the other hand, in the long term, the proposed

model could enable the prediction of surgically-induced

damage evolution in real-time. This would allow to im-

pose loading thresholds on surgical instruments during

an operation in a robotic teleoperation setting.
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