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Abstract. The brain is our softest and most vulnerable organ, and understanding its physics is a
challenging but significant task. Massive efforts have been dedicated at testing the human brain,
and various competing models have emerged to characterize its response to mechanical loading.
However, selecting the best constitutive model remains a heuristic process that strongly depends
on user experience and personal preference. Here we challenge the conventional wisdom to first
select a constitutive model and then fit its parameters to experimental data. Instead, we propose
a new strategy that simultaneously discovers both model and parameters that best describe the
data. Towards this goal, we integrate more than a century of knowledge in thermodynamics and
state-of-the-art machine learning to build a family of Constitutive Artificial Neural Networks that
enable automated model discovery for human brain tissue. Our overall design paradigm is to
reverse engineer a Constitutive Artificial Neural Network from a set of functional building blocks
that are, by design, a generalization of widely used and commonly accepted constitutive models,
including the neo Hooke, Blatz Ko, Mooney Rivlin, Demiray, Gent, and Holzapfel models. By
constraining the input, output, activation functions, and architecture, our network a priori satis-
fies thermodynamic consistency, material objectivity, material symmetry, physical constrains, and
polyconvexity. We demonstrate that our network autonomously discovers both model and param-
eters that best characterize the behavior of human gray and white matter under tension, compres-
sion, and shear. Importantly, our network weights translate naturally into physically meaningful
material parameters, e.g., shear moduli of 1.82kPa, 0.88kPa, 0.94kPa, and 0.54kPa for the cortex,
basal ganglia, corona radiata, and corpus callosum. Our results suggest that Constitutive Artifi-
cial Neural Networks have the potential to induce a paradigm shift in soft tissue modeling, from
user-defined model selection to automated model discovery. Our source code, data, and examples
are available at https://github.com/LivingMatterLab/CANN.
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1 Motivation

Traumatic brain injury is a major cause of death and disability worldwide [21], with a global
annual incidence of 69 million [18]. In the United States alone, 176 people die each day from
traumatic brain injury, and every nine seconds, someone sustains a new injury to the brain. Fortu-
nately, not all concussions are life-threatening; yet, more than 5 million Americans are living with
brain-injury-related disabilities and need long-term assistance in their everyday life [14]. Without
a doubt, understanding the mechanics of the brain during traumatic brain injury is a challenging
but significant task [25]. Throughout the past decade, scientists across the world have made sig-
nificant strides in testing, modeling, and simulating the human brain [5, 10–12, 31, 49, 51, 61, 62].
However, because of its ultrasoft nature, the results vary greatly, both qualitatively and quantita-
tively [13]. This has resulted in a wide selection of competing constitutive models for gray and
white matter tissue, without any real guidance of which model to choose [11,41,42,45]. Through-
out this manuscript, we ask how we can select the best constitutive model for the human brain,
whether the current existing models are really the best, and if not, how we can systematically
search and find a better model.

In machine learning, the process of finding relationships in complex data is known as automated
model discovery [4, 20, 39]. The preface automated implies that model discovery can be performed
entirely without human interaction [9, 54]. Neural networks have emerged as a powerful strat-
egy to discover constitutive models from large data, even in the complete absence of knowledge
about the underlying physics [30]. However, classical neural networks ignore more than a cen-
tury of research in constitutive modeling [1]: They violate thermodynamic constraints [40], neglect
generally accepted physical principles [3], and fail to predict the behavior outside the training
regime [39]. In essence, neural networks perform excellently at fitting a complex function to big
data, but they are not interpretable; they teach us nothing about the underlying physics [50]. So,
really, what we are looking for is a strategy to autonomously discover a physically motivated model.
Two successful but fundamentally different strategies have emerged to integrate physics into neu-
ral network models: Physics-Informed Neural Networks that add physics-based equations as ad-
ditional terms to the loss function [33] and Constitutive Artificial Neural Networks that explicitly
modify the network input, output, and architecture to hardwire physics-based constraints into
the network design [36]. The first type of networks is more general and works well for ordi-
nary [37] or partial [50] differential equations, whereas the second type is specifically tailored
towards constitutive equations [38]. Constitutive Artificial Neural Networks, with strain invari-
ants as input and free energy functions as output, were first proposed for rubber-like materials
almost two decades ago [56], and have recently regained attention in the constitutive modeling
community [3, 24, 34, 63]. They are now also increasingly recognized in the soft tissue biome-
chanics community with applications to skin [57], blood clots [32], arteries [29, 38], and myocar-
dial tissue [32]. A common feature of all these neural networks is to use multiple hidden layers,
generic activation functions, and several hundreds, if not thousands of unknowns. To no surprise,
they perform well at interpolating non-linear stress-stretch relations from tension, compression, or
shear experiments. However, one critical limitation remains: the lack of an intuitive interpretation
of the model and its parameters [34].

Here, instead of using a generic neural network architecture, we reverse-engineer a new family
of Constitutive Artificial Neural Networks from constitutive building blocks that are, by design, a
generalization of widely used and commonly accepted constitutive models, including the neo
Hooke [60], Blatz Ko [8], Mooney Rivlin [44, 52], Demiray [17], Gent [22], and Holzapfel [27]
models. As such, their network weights naturally translate into material parameters with stan-
dard physical units and a clear physical interpretation [39]. We train our network with tension,
compression, and shear tests from the human cortex, basal ganglia, corona radiata, and corpus
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callosum [11–13] and demonstrate that it can simultaneously discover both model and parameters
that best describe the data. Beyond automated model discovery, we show that we can also use our
network for the parameter identification of existing constitutive models. By systematically compar-
ing the goodness of fit of the different models, trained with the different experiments, we not only
discover the model that best describes the experiments, but we also discover the experiment that
best informs the models. Designing informative experiments is particularly significant for human
brain tissue, for which fresh samples are rare, challenging to preserve, and difficult to mount and
test [13].

2 Methods

2.1 Kinematics

To characterize the deformation of the sample, we introduce the deformation map ϕ that maps
material particles X from the undeformed configuration to particles, x = ϕ(X), in the deformed
configuration [2]. We describe relative deformations within the sample using the deformation
gradient F, the gradient of the deformation map ϕ with respect to the undeformed coordinates X,
and its Jacobian J,

F = ∇Xϕ with J = det(F) > 0 . (1)

Multiplying F with its transpose Ft introduces the symmetric right Cauchy Green deformation
tensor C,

C = Ft · F . (2)

In the undeformed state, both tensors are identical to the unit tensor, F = I and C = I, and the
Jacobian is one, J = 1. A Jacobian smaller than one, 0 < J < 1, denotes compression and a
Jacobian larger than one, 1 < J, denotes extension.

Isotropy. To characterize an isotropic material, we introduce the three principal invariants I1, I2, I3
and their derivatives ∂F I1, ∂F I2, ∂F I3,

I1 = F : F ∂F I1 = 2 F
I2 = 1

2 [I2
1 − [ Ft · F ] : [ Ft · F ]] with ∂F I2 = 2 [ I1 F − F · Ft · F ]

I3 = det (Ft · F) = J2 ∂F I3 = 2 I3 F−t .

(3)

In the undeformed state, F = I, the three invariants are equal to three and one, I1 = 3, I2 = 3, and
I3 = 1.

Perfect incompressibility. For isotropic, perfectly incompressible materials, the third invariant al-
ways remains identical to one, I3 = J2 = 1. This reduces the set of invariants to two, I1 and I2.

2.2 Constitutive equations

In solid mechanics, constitutive equations are tensor-valued tensor functions that define the rela-
tion between a stress, for example the Piola or nominal stress, P = limdA→0 (d f /dA ), the force
d f per undeformed area dA, and a deformation measure, for example the deformation gradient
F [28, 58],

P = P(F) . (4)
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At this point, we could use an arbitrary neural network to learn the functional relation between
P and F and many neural networks in the literature do exactly that [23, 40, 55]. However, the
functions P(F) that we learn through this approach generally violate widely-accepted thermody-
namical constraints and their parameters have no physical meaning [24]. For moderate amounts
of data, standard neural networks are also associated with a high risk of overfitting [34]. Our
objective is therefore to build a Constitutive Artificial Neural Network that a priori satisfies ther-
modynamic constraints and introduces parameters with a clear physical interpretation, while, at
the same time, limiting the space of admissible functions to prevent overfitting when available
data are sparse.

Thermodynamic consistency. First, we ensure thermodynamical consistency and guarantee that
the Piola stress P inherently satisfies the second law of thermodynamics, the dissipation inequal-
ity [48],D = P : Ḟ− ψ̇(F) ≥ 0, whereD is the dissipation and ψ is the Helmholtz free energy with
ψ̇ = ∂ψ(F)/∂F : Ḟ. For hyperelastic or Green-elastic materials with D .

= 0, the entropy inequality
defines the Piola stress [59],

P =
∂ψ(F)

∂F
. (5)

This implies that, rather than approximating the nine stress components P(F) as nine generic
functions of the nine components of the deformation gradient F, the network approximates the
free energy function ψ(F) from which we derive the stress P in a post-processing step. Satisfying
thermodynamic consistency according to equation (5) directly affects the output of the neural net-
work.

Material objectivity and frame indifference. Second, we constrain the choice of the free energy
function ψ to satisfy material objectivity or frame indifference and ensure that the constitutive laws
do not depend on the external frame of reference [46]. This implies that the arguments of the free
energy function are independent of rotations and must be functions of the right Cauchy Green
deformation tensor C [58],

P =
∂ψ(C)

∂F
=

∂ψ(C)

∂C
:

∂C
∂F

= 2 F · ∂ψ(C)

∂C
. (6)

This implies that, rather than using the nine independent components of the deformation gradient
F as input, we constrain the input to the six independent components of the symmetric right
Cauchy Green deformation tensor, C = Ft · F. Satisfying material objectivity according to equation
(6) directly affects the input of the neural network.

Material symmetry and isotropy. Third, we can further constrain the choice of the free energy
function ψ to include material symmetry and assume that the material response remains unchanged
under transformations of the reference configuration. Here we consider the special case of isotropy,
for which the free energy function is a function of the strain invariants, ψ(I1, I2, I3), and the Piola
stress takes the following explicit representation,

P =
∂ψ(I1, I2, I3)

∂F
=

∂ψ

∂I1

∂I1

F
+

∂ψ

∂I2

∂I2

F
+

∂ψ

∂I3

∂I3

F
= 2

[
∂ψ

∂I1
+ I1

∂ψ

∂I2

]
F− 2

∂ψ

∂I2
F · Ft · F + 2I3

∂ψ

∂I3
F−t .

(7)

This implies that, rather than using the six independent components of the symmetric right
Cauchy Green deformation tensor C as input, we constrain the input to our set of three invari-
ants I1, I2, I3. Considering materials with known symmetry classes according to equations (7)
directly affects, and ideally reduces, the input of the neural network.
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Perfect incompressibility. Fourth, we can further constrain the choice of the free energy function
ψ for the special case of perfect incompressibility for which the Jacobian remains constant and equal
to one, I3 = J2 = 1. The condition of perfect incompressibility implies that equation (7) simplifies
to an expression in terms of only the first two invariants I1 and I2, supplemented by a term of the
hydrostatic pressure, p = − 1

3 P : F, that we determine from the boundary conditions,

P =
∂ψ

∂I1

∂I1

F
+

∂ψ

∂I2

∂I2

F
= 2

[
∂ψ

∂I1
+ I1

∂ψ

∂I2

]
F − 2

∂ψ

∂I2
F · Ft · F − p F . (8)

This implies that, rather than using the set of three invariants, I1, I2, I3, as input, we reduce the in-
put to a set of only two invariants, I1 and I2. Considering materials with perfect incompressibility
according to equation (8) reduces the input of the neural network.

Physically reasonable constitutive restrictions. Fifth, we can further constrain the functional
form of the free energy ψ by including additional constitutive restrictions that are both physically
reasonable and mathematically convenient [2]:

(i) The free energy ψ is non-negative for all deformation states F,

ψ(F) ≥ 0 ∀ F . (9)

(ii) The free energy ψ and the stress P are zero in the reference configuration, F = I,

ψ(F) .
= 0 and P(F) .

= 0 for F = I . (10)

(iii) The free energy ψ is infinite for infinite compression, J → 0, and infinite expansion, J → ∞,

ψ(F)→ ∞ for J → 0 or J → ∞ . (11)

To facilitate a stress-free reference configuration according to equation (10), instead of using the
invariants I1, I2, I3 themselves as input, we use their deviation from the energy- and stress-free
reference state, [ I1 − 3 ], [ I2 − 3 ], [ I3 − 1 ], as input. In addition, from all possible activation func-
tions, we select activation functions that a priori comply with conditions (i), (ii), and (iii). Satisfy-
ing physical considerations according to equations (9), (10), and (11) directly affects the activation
functions of the neural network.

Polyconvexity. Sixth, to guide the selection of the functional forms for the free energy function
ψ, and ultimately the selection of appropriate activation functions, we consider polyconvexity re-
quirements [6]. From the general representation theorem we know that in its most generic form,
the free energy of an isotropic material can be expressed as an infinite series of products of powers
of the invariants [53], ψ(I1, I2, I3) = ∑∞

j,k,l=0 ajk [I1− 3]j[I2− 3]k[I3− 1]l , where ajkl are material con-
stants. Importantly, mixed products of convex functions are generally not convex, and it is easier
to show that the sum of specific convex subfunction usually is [26]. This motivates a special sub-
class of free energy functions in which the free energy is the sum of three individual polyconvex
subfunctions ψ1, ψ2, ψ3, such that ψ(F) = ψ1(I1) + ψ2(I2) + ψ3(I3), is polyconvex by design and
the stresses take the following form,

P =
∂ψ

∂F
=

∂ψ1

∂I1

∂I1

∂F
+

∂ψ2

∂I2

∂I2

∂F
+

∂ψ3

∂I3

∂I3

∂F
. (12)

This implies that we can either select polyconvex activation functions from a set of algorithmically
predefined activation functions [39], or custom-design our own activations functions from known
polyconvex subfunctions ψ1, ψ2, ψ3 [3]. Here we select first and second powers of the invariants
for the first hidden layer and linear, exponential, and logarithmic functions of these powers for the
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second hidden layer, all with non-negative coefficients. In addition, we abandon the fully-connected
network architecture, in which mixed products of the invariants I1, I2, I3 emerge naturally. Instead,
we decouple the inputs I1, I2, I3 and only combine them additively in the free energy function,
ψ = ψ1 + ψ2 + ψ3. Satisfying polyconvexity, for example according to equation (12), can imply
enforcing non-negative network weights [3], and directly affects the architecture of the neural network
[34].

2.3 Constitutive Artificial Neural Networks

Motivated by these considerations, we build a family of Constitutive Artificial Neural Networks
that satisfy the conditions of thermodynamic consistency, material objectivity, material symmetry,
incompressibility, constitutive restrictions, and polyconvexity by design. This guides our selec-
tion of network input, output, architecture, and activation functions to a priori satisfy the fundamen-
tal laws of physics. Special members of this family represent well-known constitutive models,
including the neo Hooke [60], Blatz Ko [8], Mooney Rivlin [44, 52], Demiray [17], Gent [22], and
Holzapfel [27] models, for which the network weights gain a clear physical interpretation.

Figure 1: Constitutive Artificial Neural Network. Family of a feed forward Constitutive Artificial Neural Networks with
two hidden layers to approximate the single scalar-valued free energy function ψ(I1, I2, I3) as a function of the scalar-
valued invariants I1, I2, I3 of the deformation gradient F. The first layer generates powers (◦), (◦)2, (◦)3 of the network
input and the second layer applies thermodynamically admissible activation functions f (◦) to these powers. Constitutive
Artificial Neural Networks are typically not fully connected by design to a priori satisfy the condition of polyconvexity.

Constitutive Artificial Neural Network input and output. To ensure thermodynamical consis-
tency, rather than directly approximating the stress P as a function of the deformation gradient F,
the Constitutive Artificial Neural Network approximates the scalar-valued free energy function
ψ as a function of the scalar-valued invariants I1, I2, I3. The Piola stress P then follows naturally
from the second law of thermodynamics as the derivative of the free energy ψ with respect to
the deformation gradient F according to equation (7). Figure 1 illustrates a Constitutive Artificial
Neural Network with the invariants I1, I2, I3 as input and the the free energy ψ as output.

Constitutive Artificial Neural Network architecture. To model a hyperelastic history-independent
material, we select a feed forward architecture in which information only moves in one direction,
from the input nodes, without any cycles or loops, to the output nodes. To ensure polyconvex-
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ity, we choose a selectively connected architecture according to equation (12), such that the free
energy function does not contain mixed terms in the invariants. Figure 1 illustrates one possible
network architecture that a priori decouples the individual invariants. Its free energy function,

ψ(I1, I2, I3) = w2,1 f1(w1,1 [ I1 − 3 ]1) + w2,2 f2(w1,2 [ I1 − 3 ]1) + w2,3 f3(w1,3 [ I1 − 3 ]1)

+ w2,4 f1(w1,4 [ I1 − 3 ]2) + w2,5 f2(w1,5 [ I1 − 3 ]2) + w2,6 f3(w1,6 [ I1 − 3 ]2)

+ w2,7 f1(w1,7 [ I1 − 3 ]3) + w2,8 f2(w1,8 [ I1 − 3 ]3) + w2,9 f3(w1,9 [ I1 − 3 ]3)

+ w2,10 f1(w1,10 [ I2 − 3 ]1) + w2,11 f2(w1,11 [ I2 − 3 ]1) + w2,12 f3(w1,12 [ I2 − 3 ]1)

+ w2,13 f1(w1,13 [ I2 − 3 ]2) + w2,14 f2(w1,14 [ I2 − 3 ]2) + w2,15 f3(w1,15 [ I2 − 3 ]2)

+ w2,16 f1(w1,16 [ I2 − 3 ]3) + w2,17 f2(w1,17 [ I2 − 3 ]3) + w2,18 f3(w1,18 [ I2 − 3 ]3)

+ w2,19 f1(w1,19 [ I3 − 1 ]1) + w2,20 f2(w1,20 [ I3 − 1 ]1) + w2,21 f3(w1,21 [ I3 − 1 ]1)

+ w2,22 f1(w1,22 [ I3 − 1 ]2) + w2,23 f2(w1,23 [ I3 − 1 ]2) + w2,24 f3(w1,24 [ I3 − 1 ]2)

+ w2,25 f1(w1,25 [ I3 − 1 ]3) + w2,26 f2(w1,26 [ I3 − 1 ]3) + w2,27 f3(w1,27 [ I3 − 1 ]3),

(13)

introduces 3 × 3 × 3 + 3 × 3 × 3 = 54 weights. The first set of 27 weights, w1,1..27, weighs the
powers of the invariants and the second set of 27 weights, w2,1..27, weighs the contributions of the
functions f1, f2, f3.

Activation functions. To ensure that our network satisfies basic physically reasonable constitu-
tive restrictions, rather than selecting from a set of pre-defined activation functions such as the bi-
nary step, soft step, hyperbolic tangent, inverse tangent, or soft plus functions, we custom-design
our own activation functions to reverse-engineer a free energy function that captures popular forms
of constitutive terms. Specifically, we select linear and quadratic powers of the first and second
invariants for the first layer of the network, and linear, exponential, or logarithmic functions for
the second layer.

Figure 2: Activation functions for Constitutive Artificial Neural Networks. We use custom-design activation func-
tions f (x) along with their derivatives f ′(x) that include linear and quadratic mappings, left, linear and quadratic expo-
nentials, middle, and linear and quadratic logarithmic functions, right, to reverse engineer a free energy function that
captures popular functional forms of constitutive terms.

Figure 2 illustrates the six activation functions f (x) along with their derivatives f ′(x) that we
use throughout the remainder of this work. Notably, in contrast to the activation functions for
classical neural networks, all six functions are not only monotonic, f (x + ε) ≥ f (x) for ε ≥ 0,
such that increasing deformations result in increasing stresses, but also continuous at the origin,
f (−0) = f (+0), continuously differentiable and smooth at the origin, f ′(−0) = f ′(+0), and zero
at the origin, f (0) = 0, to ensure an energy- and stress-free reference configuration according to
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equation (10), and unbounded, f (−∞) → ∞ and f (+∞) → ∞, to ensure an infinite energy and
stress for extreme deformations according to equation (11).

Figure 3: Constitutive Artificial Neural Network. Isotropic, perfectly incompressible Constitutive Artificial Neural Net-
work with with two hidden layers to approximate the single scalar-valued free energy function ψ(I1, I2) as a function of
the first and second invariants of the deformation gradient F using twelve terms. The first layer generates powers (◦)1

and (◦)2 of the network inputs, [I1 − 3] and [I2 − 3] and the second layer applies the identity (◦), the exponential func-
tion, (exp((◦))− 1), and the natural logarithm, (−ln(1− (◦))), to these powers. The networks is selectively connected
by design to a priori satisfy the condition of polyconvexity.

Figure 3 illustrates our isotropic, perfectly incompressible Constitutive Artificial Neural Network
with two hidden layers and four and twelve nodes. The first layer generates powers (◦)1 and
(◦)2 of the network inputs, [I1 − 3] and [I2 − 3], and the second layer applies the identity, (◦), the
exponential function, (exp((◦))− 1), and the natural logarithm, (−ln(1− (◦))), to these powers.
The set of equations for this networks takes the following explicit form,

ψ(I1, I2) = w2,1 w1,1 [ I1 − 3 ] +w2,2 [ exp(w1,2 [ I1 − 3 ] )− 1 ]−w2,3 ln( 1− w1,3 [ I1 − 3 ] )

+ w2,4 w1,4 [ I1 − 3 ]2+w2,5 [ exp(w1,5 [ I1 − 3 ]2 )− 1 ]−w2,6 ln( 1− w1,6 [ I1 − 3 ]2)

+ w2,7 w1,7 [ I2 − 3 ] +w2,8 [ exp(w1,8 [ I2 − 3 ] )− 1 ]−w2,9 ln( 1− w1,9 [ I2 − 3 ] )

+ w2,10 w1,10 [ I2 − 3 ]2+w2,11 [ exp(w1,11 [ I2 − 3 ]2 )− 1 ]−w2,12 ln( 1− w1,12[ I2 − 3 ]2) .

(14)

For this particular format, one of the first two weights of each row becomes redundant, and we
can reduce the set of network parameters from 24 to 20, w = [ (w1,1 w2,1), w1,2, w2,2, w1,3, w2,3,
(w1,4 w2,4), w1,5, w2,5, w1,6, w2,6, (w1,7 w2,7), w1,8, w2,8, w1,9, w2,9, (w1,10 w2,10), w1,11, w2,11, w1,12, w2,12 ].
Using the second law of thermodynamics, we can derive an explicit expression for the Piola stress
from equation (5), P = ∂ψ/∂F, or, more specifically, for the case of perfect incompressibility from
equation (8), P = ∂ψ/∂I1 · ∂I1/∂F + ∂ψ/∂I2 · ∂I2/∂F,

P = [w2,1 w1,1 + w2,2 w1,2 exp(w1,2 [ I1 − 3 ] ) + w2,3 w1,3 / [ 1− w1,3 [ I1 − 3 ] ]

+ 2 [ I1 − 3 ][w2,4 w1,4 + w2,5 w1,5 exp(w1,5 [ I1 − 3 ]2)] + w2,6 w1,6 / [ 1− w1,6 [ I1 − 3 ]2 ]] ∂I1/∂F
+ [w2,7 w1,7 + w2,8 w1,8 exp(w1,8 [ I2 − 3 ] ) + w2,9 w1,9 / [ 1− w1,9 [ I2 − 3 ] ]

+ 2 [ I2 − 3 ][w2,10w1,10+ w2,11w1,11 exp(w1,11 [ I2 − 3 ]2)] + w2,12w1,12 / [ 1− w1,12 [ I2 − 3 ]2 ]] ∂I2/∂F,

(15)

corrected by the pressure term, − 1
3 P : F. The stress definition (15) suggests that our model is a
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generalization of many popular constitutive models for incompressible hyperelastic materials. It
seems natural to ask whether and how its network parameters w1..2,1..12 relate to the parameters of
these models.

Special types of constitutive equations. To demonstrate that the family of Constitutive Artifi-
cial Neural Networks in Figure 1 and its specific example in Figure 3 are generalizations of popular
constitutive models, we consider six widely used models and systematically compare their mate-
rial parameters to our network weights w1..2,1..12:

The neo Hooke model [60], the simplest of all models, has a free energy function that is a constant
function of only the first invariant, [ I1 − 3 ], scaled by the shear modulus µ,

ψ = 1
2 µ [ I1 − 3 ] where µ = 2 w1,1w2,1 . (16)

The Blatz Ko model [8], has a free energy function that depends only the second and third invari-
ants, [ I2 − 3 ] and [ I3 − 1 ], scaled by the shear modulus µ as ψ = 1

2 µ [ I2/I3 + 2
√

I3 − 5 ]. For
perfectly incompressible materials, I3 = 1, it simplifies to the following form,

ψ = 1
2 µ [ I2 − 3 ] where µ = 2 w1,7w2,7 . (17)

The Mooney Rivlin model [44, 52] is a combination of both and accounts for the first and second
invariants, [ I1 − 3 ] and [ I2 − 3 ], scaled by the moduli µ1 and µ2 that sum up to the overall shear
modulus, µ = µ1 + µ2,

ψ = 1
2 µ1 [ I1 − 3 ] + 1

2 µ2 [ I2 − 3 ] where µ1 = 2 w1,1w2,1 and µ2 = 2 w1,7w2,7 . (18)

The Demiray model [17] or Delfino model [16] uses linear exponentials of the first invariant, [I1 − 3],
in terms of two parameters a and b,

ψ =
1
2

a
b
[ exp( b [ I1 − 3 ] )− 1 ] where a = 2 w1,2w2,2 and b = w1,2 . (19)

The Gent model [22] uses linear logarithms of the first invariant, [I1− 3], in terms of two parameters
α and β,

ψ = −1
2

α

β
ln( 1− ( β [ I1 − 3 ] ) where α = 2 w1,3w2,3 and β = w1,3 . (20)

The Holzapfel model [27] uses quadratic exponentials, typically of the fourth invariant, which we
adapt here for the the first invariant, [ I1 − 1 ], in terms of two parameters a and b,

ψ =
1
2

a
b
[ exp( b[ I1 − 1 ]2 )− 1 ] where a = 2 w1,5w2,5 and b = w1,5 . (21)

These simple examples demonstrate that we can recover popular constitutive functions for which
the network weights gain a well-defined physical meaning.

Loss function. The objective of our Constitutive Artificial Neural Network is to learn the network
parameters θ = {wij} , the network weights, by minimizing a loss function L that penalizes the
error between model and data. Similar to classical neural networks, we characterize this error as
the mean squared error, the L2-norm of the difference between model P(F i) and data P̂i, divided
by the number of training points ntrn,

L(θ; F) =
1

ntrn

ntrn

∑
i=1
||P(F i)− P̂i ||2 → min . (22)
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To reduce potential overfitting, we also study the effects of Lasso or L1 regularization and L2
regularization,

L(θ; F) =
1

ntrn

ntrn

∑
i=1
||P(F i)− P̂i ||2 + α1 ||W||1 +

1
2

α2 ||W||22 → min , (23)

by enhancing the loss function by the weighted L1 norm, ||W||1 = ∑i ∑j |wij |, or the weighted
Euclidian or L2 norm, ||W||22 = ∑i ∑j w2

ij, where α1 and α2 are the weighting coefficients. We
train the network by minimizing the loss function (22) or (23) and learn the network parameters
θ = {wij} using the ADAM optimizer, a robust adaptive algorithm for gradient-based first-order
optimization, and constrain the weights to always remain non-negative, wij ≥ 0.

2.4 Data

To illustrate the automated model discovery with our Constitutive Artificial Neural Network, we
perform a systematic study using widely-used benchmark data for human brain tissue [11–13].
Specifically, we train our two-layer Constitutive Artificial Neural Network for isotropic, perfectly
incompressible materials from Figure 3, discover a material model and its parameters, and com-
pare the model and parameters against six traditional constitutive models for soft biological tis-
sues [8,17,22,27,44,52,60]. We consider two training scenarios, single-mode training and multi-mode
training, for the homogeneous deformation modes of uniaxial tension, uniaxial compression, and
simple shear.

Tension and compression. For the case of uniaxial tension and compression, we stretch the
specimen in one direction, F11 = λ1 = λ. For an isotropic, perfectly incompressible material with
I3 = λ2

1λ2
2λ2

3 = 1, the stretches orthogonal to the loading direction are identical and equal to the
square root of the stretch, F22 = λ2 = λ−1/2 and F33 = λ3 = λ−1/2. From the resulting deforma-
tion gradient, F = diag { λ, λ−1/2, λ−1/2 }, we calculate the first and second invariants and their
derivatives,

I1 = λ2 +
2
λ

and I2 = 2λ +
1

λ2 with
∂I1

∂λ
= 2

[
λ− 1

λ2

]
and

∂I2

∂λ
= 2

[
1− 1

λ3

]
, (24)

to evaluate the nominal uniaxial stress P11 using the general stress-stretch relationship for perfectly
incompressible materials, Pii = [∂ψ/∂I1] [∂I1/∂λi] + [∂ψ/∂I2] [∂I2/∂λi] − [1/λi] p, for i = 1, 2, 3.
Here, p denotes the hydrostatic pressure that we determine from the zero stress condition in the
transverse directions, P22 = 0 and P33 = 0, as p = [2/λ] ∂ψ/∂I1 + [2λ + 2/λ2] ∂ψ/∂I2. This results
in the following explicit uniaxial stress-stretch relation for perfectly incompressible, isotropic materials,

P11 = 2
[

∂ψ

∂I1
+

1
λ

∂ψ

∂I2

] [
λ− 1

λ2

]
. (25)

Shear. For the case of simple shear, we shear the specimen in one direction, F12 = γ. For an
isotropic, perfectly incompressible material with F11 = F22 = F33 = 1, we calculate the first and
second invariants and their derivatives,

I1 = 3 + γ2 and I2 = 3 + γ2 with
∂I1

∂λ
= 2 γ and

∂I2

∂λ
= 2 γ , (26)

to evalute the nominal shear stress P12 using the general stress-stretch relationship for perfectly
incompressible materials. This results in the following explicit shear stress-strain relation for perfectly
incompressible, isotropic materials,

P12 = 2
[

∂ψ

∂I1
+

∂ψ

∂I2

]
γ . (27)
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Table 1: Gray matter data. Cortex and basal ganglia tested in tension, compression, and shear; stresses are reported
as means from the loading and unloading curves of n samples [11].

cortex cortex cortex basal ganglia basal ganglia basal ganglia
tension compression shear tension compression shear
n = 15 n = 17 n = 35 n = 15 n = 15 n = 29

λ P11 λ P11 γ P12 λ P11 λ P11 γ P12
[-] [kPa] [-] [kPa] [-] [kPa] [-] [kPa] [-] [kPa] [-] [kPa]

1.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000 0.0000 1.0000 0.0000 0.0000 0.0000
1.0063 0.0251 0.9938 -0.0308 0.0125 0.0147 1.0063 0.0149 0.9938 -0.0174 0.0125 0.0070
1.0125 0.0462 0.9875 -0.0659 0.0250 0.0294 1.0125 0.0251 0.9875 -0.0358 0.0250 0.0140
1.0188 0.0666 0.9812 -0.1040 0.0375 0.0486 1.0188 0.0345 0.9812 -0.0534 0.0375 0.0210
1.0250 0.0838 0.9750 -0.1479 0.0500 0.0633 1.0250 0.0446 0.9750 -0.0778 0.0500 0.0305
1.0312 0.1010 0.9688 -0.1908 0.0625 0.0814 1.0312 0.0540 0.9688 -0.1021 0.0625 0.0397
1.0375 0.1175 0.9625 -0.2375 0.0750 0.0983 1.0375 0.0619 0.9625 -0.1265 0.0750 0.0488
1.0437 0.1324 0.9563 -0.2920 0.0875 0.1186 1.0437 0.0705 0.9563 -0.1479 0.0875 0.0579
1.0500 0.1488 0.9500 -0.3504 0.1000 0.1412 1.0500 0.0791 0.9500 -0.1752 0.1000 0.0703
1.0562 0.1661 0.9437 -0.4127 0.1125 0.1649 1.0562 0.0862 0.9437 -0.2102 0.1125 0.0805
1.0625 0.1856 0.9375 -0.4866 0.1250 0.1942 1.0625 0.0963 0.9375 -0.2414 0.1250 0.0930
1.0688 0.2091 0.9313 -0.5684 0.1375 0.2292 1.0688 0.1050 0.9313 -0.2842 0.1375 0.1088
1.0750 0.2366 0.9250 -0.6579 0.1500 0.2698 1.0750 0.1151 0.9250 -0.3270 0.1500 0.1257
1.0813 0.2710 0.9187 -0.7630 0.1625 0.3227 1.0813 0.1277 0.9187 -0.3776 0.1625 0.1449
1.0875 0.3125 0.9125 -0.8837 0.1750 0.3791 1.0875 0.1426 0.9125 -0.4321 0.1750 0.1686
1.0938 0.3650 0.9062 -1.0005 0.1875 0.4557 1.0938 0.1582 0.9062 -0.4905 0.1875 0.1969
1.1000 0.4151 0.9000 -1.1484 0.2000 0.5435 1.1000 0.1778 0.9000 -0.5528 0.2000 0.2262

Table 2: White matter data. Corona radiata and corpus callosum tested in tension, compression, and shear; stresses
are reported as means from the loading and unloading curves of n samples [11].

corona radiata corona radiata corona radiata corpus callosum corpus callosum corpus callosum
tension compression shear tension compression shear
n = 18 n = 18 n = 36 n = 19 n = 20 n = 39

λ P11 λ P11 γ P12 λ P11 λ P11 γ P12
[-] [kPa] [-] [kPa] [-] [kPa] [-] [kPa] [-] [kPa] [-] [kPa]

1.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000 0.0000 1.0000 0.0000 0.0000 0.0000
1.0063 0.0157 0.9938 -0.0193 0.0125 0.0079 1.0063 0.0078 0.9938 -0.0096 0.0125 0.0036
1.0125 0.0235 0.9875 -0.0387 0.0250 0.0159 1.0125 0.0149 0.9875 -0.0164 0.0250 0.0072
1.0188 0.0345 0.9812 -0.0543 0.0375 0.0238 1.0188 0.0196 0.9812 -0.0300 0.0375 0.0109
1.0250 0.0423 0.9750 -0.0800 0.0500 0.0318 1.0250 0.0251 0.9750 -0.0427 0.0500 0.0170
1.0312 0.0509 0.9688 -0.1040 0.0625 0.0409 1.0312 0.0298 0.9688 -0.0564 0.0625 0.0217
1.0375 0.0572 0.9625 -0.1305 0.0750 0.0488 1.0375 0.0337 0.9625 -0.0730 0.0750 0.0319
1.0437 0.0642 0.9563 -0.1674 0.0875 0.0601 1.0437 0.0376 0.9563 -0.0895 0.0875 0.0342
1.0500 0.0721 0.9500 -0.2024 0.1000 0.0681 1.0500 0.0415 0.9500 -0.1051 0.1000 0.0422
1.0562 0.0791 0.9437 -0.2453 0.1125 0.0817 1.0562 0.0454 0.9437 -0.1363 0.1125 0.0468
1.0625 0.0869 0.9375 -0.2959 0.1250 0.0964 1.0625 0.0486 0.9375 -0.1596 0.1250 0.0558
1.0688 0.0940 0.9313 -0.3543 0.1375 0.1133 1.0688 0.0533 0.9313 -0.1946 0.1375 0.0627
1.0750 0.1050 0.9250 -0.4127 0.1500 0.1347 1.0750 0.0580 0.9250 -0.2297 0.1500 0.0751
1.0813 0.1151 0.9187 -0.4827 0.1625 0.1596 1.0813 0.0634 0.9187 -0.2764 0.1625 0.0853
1.0875 0.1292 0.9125 -0.5723 0.1750 0.1878 1.0875 0.0697 0.9125 -0.3270 0.1750 0.1011
1.0938 0.1418 0.9062 -0.6657 0.1875 0.2227 1.0938 0.0775 0.9062 -0.3854 0.1875 0.1192
1.1000 0.1582 0.9000 -0.7591 0.2000 0.2611 1.1000 0.0862 0.9000 -0.4555 0.2000 0.1429

Testing and training data. Tables 1 and 2 summarize our benchmark data of gray matter tissue
from the cortex and basal ganglia and white matter tissue from the corona radiata and corpus
callosum tested in tension, compression, and shear [11–13]. We report each data set as 17 pairs
of stretches and nominal uniaxial stresses, {λ, P11} or shear strains and nominal shear stresses,
{γ, P12}, where the stretches and shear strains range from 0.9 ≤ λ ≤ 1.1 and 0.0 ≤ γ ≤ 0.2,
and the stresses are the means of the loading and unloading curves of n samples. Throughout
the remainder of this study, we perform single-mode training with one mode used as training data
and the remaining two modes as test data, and multi-mode training with all three modes used as
training data.
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3 Results

Table 3 and Figure 4 summarize and illustrate the discovered models for the human cortex for the
tension, compression, and shear data from Table 1 using the isotropic, perfectly incompressible
Constitutive Artificial Neural Network with two hidden layers from Figure 3. Table 3 summa-
rizes the 24 weights w1:2,1:12 and the goodness of fit R2 for single-mode training with the three
individual modes and for multi-mode training with all three modes combined. Figure 4 directly
compares the data and model in terms of the nominal stress as a function of the stretch and shear
strain, where the dots indicate the measured data and the color-coded regions highlight the indi-
vidual contributions of the twelve network nodes to the discovered free energy function ψ. Warm
red-type colors are associated with the first invariant, [I1− 3] and cold blue-type colors are associ-
ated with the second invariant, [I2− 3]. First, for single-mode training with the individual modes,
the Constitutive Artificial Neural Network succeeds in interpolating or fitting the three individual
sets of training data: The learned network parameters define stress functions that fit the individual
tension, compression, and shear data excellently with R2

train values of 0.99, 1.00, and 1.00. Second,
for single-mode training, we observe that the network performs moderately at extrapolating or pre-
dicting data outside the training regime: The network parameters trained individually for each
mode do not predict the other modes well, with R2

test values ranging from 0.00 for the tension pre-
diction with compression training to 0.93 for the shear prediction with tension training. Third, for
multi-mode training with all data sets combined, we find that the goodness of fit R2

train of the in-
dividual tests decreases to 0.36, 0.90, and 0.99, while the sum of the three R2 values, the collective
fit of all three tests, increases. Fourth, for single-mode training, all twelve terms of the model are
activated as indicated through the full color spectrum in the first three columns. At the same time,
for for multi-mode training, the Constitutive Artificial Neural Network discovers a model with
only four terms, while the weights of the other terms train to zero. Strikingly, these four terms are
all functions of the second invariant, [I2 − 3], as indicated through the cold blue-type colors.

Table 4 and Figure 5 summarize and illustrate the discovered models for the human corona radi-
ata for the tension, compression, and shear data from Table 2. The white matter results from the
corona radiata confirm the trends of the gray matter results for the cortex in Table 3 and Figure 4.
First, for single-mode training, our neural network succeeds in interpolating or fitting the individ-
ual training data: The learned network parameters define stress functions that fit the individual
tension, compression, and shear data excellently with R2

train values of 0.99, 1.00, and 1.00. Second,
the network performs moderately at extrapolating or predicting data outside the training regime:
The network parameters trained for each individual mode fail to predict the other modes equally
well, with R2

test values ranging from 0.0 for the tension predictions with both compression and
shear training to 0.83 for the shear prediction with tension training. Third, we find that, for all
tests combined, the goodness of fit R2

train of the tensile test remains 0.00 and decreases to 0.79 and
0.93 for compression and shear, but the collective fit increases. Fourth, similar to the gray matter
results in Figure 4, the white matter model trained with the individual tests in Figure 5 activates
seven, eight, and eleven terms as indicated through the broad color spectrum in the first three
columns. Interestingly, for all three tests combined, the Constitutive Artificial Neural Network
discovers a model with only four terms, which are again all functions of the second invariant,
[I2 − 3], as indicated through the cold blue-type colors.

Table 5 and Figure 6 summarize and illustrate the discovered models for the human cortex, basal
ganglia, corona radiata, and corpus callosum for multi-mode training with the tension, compres-
sion, and shear data from Tables 1 and 2. First and foremost, for multi-mode training, the fit of
the shear data with R2

train values of 0.99, 0.97, 0.93, and 0.92 is uniformly the best across all four
brain regions. Second, the model universally underestimates the compressive stresses with R2 val-
ues ranging from 0.78 to 0.90, and overestimates the tensile stresses with R2 values from 0.00 to 0.36,
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Table 3: Gray matter model. Cortex parameters learned for tension, compression, and shear data from Table 1 using
the isotropic, perfectly incompressible Constitutive Artificial Neural Network with two hidden layers, and twelve nodes
from Figure 3. Summary of the 24 weights w1:2,1:12 and the goodness of fit R2 for training with the three individual tests
and for all three tests combined.

cortex cortex cortex cortex
tension compression shear ten+com+shr
n = 15 n = 17 n = 35 n = 15, 17, 35

w1,• w2,• w1,• w2,• w1,• w2,• w1,• w2,•
[-] [kPa] [-] [kPa] [-] [kPa] [-] [kPa]

w•,1 0.3135 0.3456 0.4027 0.1979 0.6628 0.1796 0.0000 0.0000
w•,2 0.1576 0.1094 0.0628 0.7898 0.2422 0.2599 0.0000 0.0000
w•,3 0.0000 0.0000 0.0000 0.0000 0.7662 0.1840 0.0000 0.0000
w•,4 1.1303 0.6813 2.3725 1.1085 1.4402 1.4200 0.0000 0.0000
w•,5 1.4721 1.5618 1.1856 2.1032 1.3360 1.7106 0.0000 0.0000
w•,6 0.5017 0.4345 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
w•,7 0.9522 0.1690 1.8534 0.2897 0.3725 0.1899 0.0000 0.0000
w•,8 0.2275 0.2072 0.0587 0.0585 0.2607 0.3574 0.0000 0.0000
w•,9 0.6824 0.1727 1.9469 0.1144 0.0000 0.0000 0.9875 0.6339
w•,10 2.2641 0.8482 2.2740 1.1302 0.8798 1.9874 2.7738 1.3702
w•,11 0.0382 0.3571 1.2234 2.0668 1.7350 1.5506 1.6495 1.8880
w•,12 0.9325 0.4734 0.0000 0.0000 0.8817 1.4250 1.4026 1.6663

R2
t R2

s R2
t R2

s R2
t R2

s R2
t R2

s
R2

c R2
tc R2

c R2
tc R2

c R2
tc R2

c R2
tc

0.9875 0.9282 0.0000 0.8176 0.6209 0.9985 0.3560 0.9852
0.4366 0.7829 0.9999 0.8602 0.7297 0.8785 0.8972 0.9306

Figure 4: Gray matter data vs. model. Nominal stress as a function of stretch and shear strain for the isotropic,
perfectly incompressible Constitutive Artificial Neural Network with two hidden layers, and twelve nodes from Figure
3. Dots illustrate the tension, compression, and shear data of the human cortex [11] from Table 1; color-coded areas
highlight the twelve contributions to the discovered stress function according to Figure 3 from Table 3.

indicating a poor fit of the tensile data. Third, and most importantly, the side-by-side comparison
of all four brain regions confirms the trends of the cortex and the corona radiata: Our Constitutive
Artificial Neural Network uniquely discovers a family of models that is parameterized in terms
of the second invariant only, while the weights of the first invariant terms consistently train to zero.
The blue color spectrum in Figure 6 underscores this observation.
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Table 4: White matter model. Corona radiata parameters learned for tension, compression, and shear data from Table
2 using the isotropic, perfectly incompressible Constitutive Artificial Neural Network with two hidden layers, and twelve
nodes from Figure 3. Summary of the 24 weights w1:2,1:12 and the goodness of fit R2 for training with the three individual
tests and with all three tests combined.

corona radiata corona radiata corona radiata corona radiata
tension compression shear ten+com+shr
n = 18 n = 18 n = 33 n = 18, 18, 33

w1,• w2,• w1,• w2,• w1,• w2,• w1,• w2,•
[-] [kPa] [-] [kPa] [-] [kPa] [-] [kPa]

w•,1 0.0000 0.0000 1.7357 0.2807 0.3643 0.2492 0.0000 0.0000
w•,2 0.0000 0.0000 0.0000 0.0000 0.1032 0.2404 0.0000 0.0000
w•,3 0.0000 0.0000 0.0000 0.0000 0.0369 0.3070 0.0000 0.0000
w•,4 0.8932 0.1474 1.5473 1.0767 1.3942 0.6520 0.0000 0.0000
w•,5 0.3760 0.2325 1.1415 1.2150 1.3600 1.1027 0.0000 0.0000
w•,6 1.3081 0.4295 1.2115 1.1480 0.4401 0.8310 0.0000 0.0000
w•,7 1.0042 0.0717 0.0000 0.0000 0.0349 0.2945 1.3862 0.1598
w•,8 0.0867 0.0717 0.0029 0.0295 0.0550 0.3905 0.2398 0.4900
w•,9 0.8403 0.2065 0.0000 0.0000 0.7680 0.1179 0.0000 0.0000
w•,10 0.0000 0.0000 1.0083 1.4130 1.0552 0.8552 0.0000 0.0000
w•,11 0.0000 0.0000 1.2191 1.1331 0.9990 1.0740 1.8893 1.6859
w•,12 1.1048 0.0030 2.6478 0.8233 0.0000 0.0000 1.1789 1.9113

R2
t R2

s R2
t R2

s R2
t R2

s R2
t R2

s
R2

c R2
tc R2

c R2
tc R2

c R2
tc R2

c R2
tc

0.9875 0.8250 0.0000 0.0620 0.0000 0.9989 0.0000 0.9349
0.0460 0.5471 0.9998 0.6251 0.4837 0.7271 0.7898 0.8361

Figure 5: White matter data vs. model. Nominal stress as a function of stretch and shear strain for the isotropic,
perfectly incompressible Constitutive Artificial Neural Network with two hidden layers, and twelve nodes from Figure 3.
Dots illustrate the tension, compression, and shear data of the human corona radiata [11] from Table 1; color-coded
areas highlight the twelve contributions to the discovered stress function according to Figure 3 from Table 4.

Table 6 and Figure 7 highlight the effects of the L2 regularization according to equation (23). As
expected, the regularization reduces the number of non-zero terms, in our case from six in Table
5 and Figure 6, to two for the cortex, the corona radiata, and the corpus callosum, and only one
for the basal ganglia. The associated non-zero weights, w1,8, w2,8, w1,9, w2,9, activate the linear
exponential term, exp([I2 − 3]) − 1, and the linear logarithmic term, ln(1 − [I2 − 3]), which are
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Table 5: Gray and white matter models. Cortex, basal ganglia, corona radiata, and corpus callosum parameters
learned for combined tension, compression, and shear data from Tables 1 and 2 using the isotropic, perfectly incom-
pressible Constitutive Artificial Neural Network with two hidden layers, and twelve nodes from Figure 3. Summary of
the 12 non-zero weights w1:2,7:12 and the goodness of fit R2 for training with all three tests combined.

cortex basal ganglia corona radiata corpus callosum
ten+com+shr ten+com+shr ten+com+shr ten+com+shr
n = 15, 17, 35 n = 15, 15, 29 n = 18, 18, 36 n = 19, 20, 39
w1,• w2,• w1,• w2,• w1,• w2,• w1,• w2,•
[-] [kPa] [-] [kPa] [-] [kPa] [-] [kPa]

w•,7 0.0000 0.0000 1.7880 0.1927 1.3862 0.1598 0.5635 0.1067
w•,8 0.0000 0.0000 0.0000 0.0000 0.2398 0.4900 0.2363 0.1383
w•,9 0.9875 0.6339 0.0000 0.0000 0.0000 0.0000 0.8398 0.1135
w•,10 2.7738 1.3702 0.9396 0.8143 0.0000 0.0000 0.9210 1.1218
w•,11 1.6495 1.8880 1.6193 1.1867 1.8893 1.6859 1.0628 1.0185
w•,12 1.4026 1.6663 0.9666 0.7932 1.1789 1.9113 0.7282 1.2621

R2
t R2

s R2
t R2

s R2
t R2

s R2
t R2

s
R2

c R2
tc R2

c R2
tc R2

c R2
tc R2

c R2
tc

0.3560 0.9852 0.0000 0.9739 0.0000 0.9349 0.0000 0.9209
0.8972 0.9306 0.8646 0.9135 0.7898 0.8361 0.7847 0.8303

Figure 6: Gray and white matter data vs. model. Nominal stress as a function of stretch and shear strain for the
isotropic, perfectly incompressible Constitutive Artificial Neural Network with two hidden layers, and twelve nodes from
Figure 3. Dots illustrate the tension, compression, and shear data of all four brain regions [11] from Table 1; color-coded
areas highlight the six contributions to the discovered stress function according to Figure 3 from Table 5.

highlighted in turquoise and light blue in Figure 7. The general trends are the same for the dis-
covered six-term model without regularization and two-term model with L2 regularization: Both
models depend on the second invariant only and their fits are best for the shear data with R2 val-
ues well above 0.90 and worst for the tension data with R2 values ranging from 0.00 to 0.48.

Table 7 and Figure 8 demonstrate an application of our Constitutive Artificial Neural Network
beyond model discovery, the parameter identification and comparison of special cases of the gen-
eralized network according to equations (16) to (21). The first set of models, the neo Hooke, Blatz
Ko, and Mooney Rivlin models, are all linear in terms of the first invariant, second invariant, or
both; the second set, the Demiray, Gent, and Holzapfel models, contain linear exponential, lin-
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Table 6: Gray and white matter models. Cortex, basal ganglia, corona radiata, and corpus callosum parameters
learned for combined tension, compression, and shear data from Tables 1 and 2 using the isotropic, perfectly incom-
pressible Constitutive Artificial Neural Network with two hidden layers, and twelve nodes from Figure 3 with additional
L2 regularization for the weights. Summary of the four non-zero weights w1:2,8:9 and the goodness of fit R2 for training
with all three tests combined.

cortex basal ganglia corona radiata corpus callosum
ten+com+shr ten+com+shr ten+com+shr ten+com+shr
n = 15, 17, 35 n = 15, 15, 29 n = 18, 18, 36 n = 19, 20, 39
w1,• w2,• w1,• w2,• w1,• w2,• w1,• w2,•
[-] [kPa] [-] [kPa] [-] [kPa] [-] [kPa]

w•,8 0.4957 0.4442 0.0000 0.0000 0.4560 0.4351 0.2409 0.2367
w•,9 0.9840 0.7064 0.6802 0.6250 0.5614 0.4987 0.4739 0.4551

R2
t R2

s R2
t R2

s R2
t R2

s R2
t R2

s
R2

c R2
tc R2

c R2
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c R2
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c R2
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0.4590 0.9477 0.4778 0.9699 0.0000 0.9551 0.0000 0.9620
0.7425 0.8788 0.6696 0.8588 0.5143 0.7418 0.5109 0.7276

Figure 7: Gray and white matter data vs. model. Nominal stress as a function of stretch and shear strain for the
isotropic, perfectly incompressible Constitutive Artificial Neural Network with two hidden layers, and twelve nodes from
Figure 3 with additional L2 regularization for the weights. Dots illustrate the tension, compression, and shear data of all
four brain regions [11] from Table 1; color-coded areas highlight the two contributions to the discovered stress function
according to Figure 3 from Table 6.

ear logarithmic, or quadratic exponential terms. Table 7 shows that each model, except for the
Mooney Rivlin model, activates only one term of our network, either the first, second, third, fifth,
or seventh. For all six models, we can convert the weights into a stiffness-like parameter with
units [kPa]; the linear Mooney Rivlin model has an additional stiffness-like parameter, and the
three nonlinear models have an additional coefficient of nonlinearity. Figure 8 shows the behavior
of the neo Hooke, Blatz Ko, Demiray, and Holzapfel models when simultaneously trained for the
tension, compression, and shear data of the human cortex. Notably, for the small stretch and shear
strain ranges of 0.9 ≤ λ ≤ 1.1 and 0.0 ≤ γ ≤ 0.2, only the Holzapfel model displays a marked
strain stiffening, while the neo Hooke, Blatz Ko, and Demiray models remain is their predomi-
nantly linear regimes. This allows the Holzapfel model to perform best not only in shear, with an
R2 values of 0.96, but also in tension with a value of 0.48, where most other models fail.
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Table 7: Special cases of neo Hooke, Blatz Ko, Mooney Rivlin, Demiray, Gent, and Holzapfel models. Cortex,
basal ganglia, corona radiata, and corpus callosum parameters learned for combined tension, compression, and shear
data from Tables 1 and 2. Summary of the non-zero weights, the physics parameters µ, µ1, µ2, a, b, α, β, and the
goodness of fit R2 for training with all three tests combined.

neo Hooke Blatz Ko Mooney Rivlin Demiray Gent Holzapfel
ten+com+shr ten+com+shr ten+com+shr ten+com+shr ten+com+shr ten+com+shr
n = 15, 17, 35 n = 15, 17, 35 n = 15, 17, 35 n = 15, 17, 35 n = 15, 17, 35 n = 15, 17, 35

cortex cortex cortex cortex cortex cortex
w1,• w2,• w1,• w2,• w1,• w2,• w1,• w2,• w1,• w2,• w1,• w2,•
[-] [kPa] [-] [kPa] [-] [kPa] [-] [kPa] [-] [kPa] [-] [kPa]

w•,1 0.7880 1.1522 – – 0.0026 0.4128 – – – – – –
w•,2 – – – – – – 1.0529 0.8760 – – – –
w•,3 – – – – – – – – 1.8399 0.4782 – –
w•,5 – – – – – – – – – – 4.1833 4.7548
w•,7 – – 1.4156 0.6726 2.2122 0.4253 – – – – – –

µ = 1.8159kPa µ = 1.9043kPa µ1 = 0.0021kPa a = 1.8447kPa α = 1.7597kPa a = 39.7815kPa
µ2 = 1.8817kPa b = 1.0529 β = 1.8399 b = 4.1833

R2
t R2

s R2
t R2

s R2
t R2

s R2
t R2

s R2
t R2

s R2
t R2

s
R2

c R2
tc R2

c R2
tc R2

c R2
tc R2

c R2
tc R2

c R2
tc R2

c R2
tc

0.2817 0.9394 0.3627 0.9457 0.4021 0.9446 0.1360 0.9499 0.2875 0.9502 0.4845 0.9560
0.6066 0.8195 0.7588 0.8809 0.7477 0.8784 0.6544 0.8314 0.6239 0.8264 0.5325 0.8001

basal ganglia basal ganglia basal ganglia basal ganglia basal ganglia basal ganglia
w1,• w2,• w1,• w2,• w1,• w2,• w1,• w2,• w1,• w2,• w1,• w2,•
[-] [kPa] [-] [kPa] [-] [kPa] [-] [kPa] [-] [kPa] [-] [kPa]

w•,1 0.4138 1.0624 – – 0.0000 0.0000 – – – – – –
w•,2 – – – – – – 0.5829 0.7362 – – – –
w•,3 – – – – – – – – 1.3991 0.2960 – –
w•,5 – – – – – – – – – – 1.9013 4.7958
w•,7 – – 0.2628 1.6856 1.0851 0.4132 – – – – – –

µ = 0.8792kPa µ = 0.8860kPa µ1 = 0.0000kPa a = 0.8385kPa α = 0.8283kPa a = 18.2365kPa
µ2 = 0.8967kPa b = 0.5829 β = 1.3991 b = 1.9013

R2
t R2

s R2
t R2

s R2
t R2

s R2
t R2

s R2
t R2

s R2
t R2

s
R2

c R2
tc R2

c R2
tc R2

c R2
tc R2

c R2
tc R2

c R2
tc R2

c R2
tc

0.0425 0.9684 0.3557 0.9687 0.3033 0.9689 0.1191 0.9700 0.2267 0.9719 0.2195 0.9269
0.5812 0.8112 0.6969 0.8649 0.7104 0.8683 0.5688 0.8091 0.5494 0.8054 0.4162 0.7553
corona radiata corona radiata corona radiata corona radiata corona radiata corona radiata
w1,• w2,• w1,• w2,• w1,• w2,• w1,• w2,• w1,• w2,• w1,• w2,•
[-] [kPa] [-] [kPa] [-] [kPa] [-] [kPa] [-] [kPa] [-] [kPa]

w•,1 0.5157 0.91250 – – 0.0200 0.4208 – – – – – –
w•,2 – – – – – – 0.5924 0.7693 – – – –
w•,3 – – – – – – – – 1.0545 0.4548 – –
w•,5 – – – – – – – – – – 3.2397 3.1842
w•,7 – – 0.6742 0.7087 0.5359 0.9047 – – – – – –

µ = 0.9412kPa µ = 0.9556kPa µ1 = 0.0168kPa a = 0.9115kPa α = 0.9592kPa a = 20.6317kPa
µ2 = 0.9697kPa b = 0.5924 β = 1.0545 b = 3.2397

R2
t R2

s R2
t R2

s R2
t R2

s R2
t R2

s R2
t R2

s R2
t R2

s
R2

c R2
tc R2

c R2
tc R2

c R2
tc R2

c R2
tc R2

c R2
tc R2

c R2
tc

0.0000 0.9509 0.0000 0.9520 0.0000 0.9528 0.0000 0.9517 0.0000 0.9573 0.0000 0.9373
0.3770 0.6699 0.4977 0.7355 0.5158 0.7414 0.3567 0.6643 0.3840 0.6737 0.3604 0.6702
corpus callosum corpus callosum corpus callosum corpus callosum corpus callosum corpus callosum

w1,• w2,• w1,• w2,• w1,• w2,• w1,• w2,• w1,• w2,• w1,• w2,•
[-] [kPa] [-] [kPa] [-] [kPa] [-] [kPa] [-] [kPa] [-] [kPa]

w•,1 0.6521 0.4131 – – 0.0053 0.4231 – – – – – –
w•,2 – – – – – – 0.3625 0.7162 – – – –
w•,3 – – – – – – – – 0.3682 0.6894 – –
w•,5 – – – – – – – – – – 1.6928 3.4100
w•,7 – – 0.4124 0.6932 0.7495 0.3731 – – – – – –

µ = 0.5388kPa µ = 0.5718kPa µ1 = 0.0045kPa a = 0.5192kPa α = 0.5077kPa a = 11.5449kPa
µ2 = 0.5593kPa b = 0.3625 β = 0.3682 b = 1.6928

R2
t R2

s R2
t R2

s R2
t R2

s R2
t R2

s R2
t R2

s R2
t R2

s
R2

c R2
tc R2

c R2
tc R2

c R2
tc R2

c R2
tc R2

c R2
tc R2

c R2
tc

0.0000 0.9603 0.0000 0.9577 0.0000 0.9590 0.0000 0.9606 0.0000 0.9587 0.0000 0.9199
0.3871 0.6579 0.5485 0.7391 0.5328 0.7339 0.3570 0.6487 0.3331 0.6407 0.3739 0.6618
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Figure 8: Special cases of neo Hooke, Blatz Ko, Mooney Rivlin, Demiray, Gent, and Holzapfel models. Nominal
stress as a function of stretch and shear for special cases of the isotropic, perfectly incompressible Constitutive Artificial
Neural Network from Figure 3. Dots illustrate the tension, compression, and shear data of the human cortex [11] from
Table 1; color-coded areas highlight the terms of the stress function according to Figure 3 from Table 7.

Figure 9 summarizes and compares the performance of all models, the Constitutive Artificial Neu-
ral Network without and with L2 regularization and its special cases, the neo Hooke, Blatz Ko,
Demiray, Gent, and Holzapfel models. The graphs in the first three columns result from single-
mode training with the individual tension, compression, and shear data [11] from Tables 1 and
2; the last column results from multi-mode training with all three data sets combined. The three
rows highlight the coefficients of determination for tension R2

t , compression R2
c , and shear R2

s . The
color-coded blocks and error bars represent the means and standard deviations of the R2 value
from 50 training runs with varying with varying random weight initializations. First, in the three
graphs on the diagonal that reflect the training of the models, the R2

train values of all seven models
are close to one, with only three models training poorly, the neo Hooke and Holzapfel models in
tension and the Blatz Ko model in compression. Notably, our non-regularized Constitutive Artifi-
cial Neural Network outperforms all other models and has the largest R2

train values when trained
individually for tension, compression, and shear. Second, from the six off-diagonal graphs that re-
flect the testing of the models, we conclude that the model and parameters trained for tension are
generally incapable of predicting the compression behavior and vice versa. However, the tension
parameters are reasonably well suited to characterize the shear behavior, with our Constitutive
Artificial Neural Network and the Holzapfel model performing best; vice versa, the shear param-
eters are moderately suited to characterize the tensile behavior, with our Constitutive Artificial
Neural Network and the Blatz Ko model performing best. Finally, from the right column that
reflects training with all three data sets combined, we conclude that our Constitutive Artificial
Neural Network performs best for all three modes, followed by its L2 regularized counterpart,
and the Blatz Ko model. Interestingly, we observe large R2 values across the entire bottom row,
indicating that, of all three tests, the shear tests are generally the easiest to fit and predict for all
seven models. Taken together, our non-regularized Constitutive Artificial Neural Network per-
forms best in eight of all twelve cases, second best in two, and fifths in one suggesting that our
proposed neural network successfully discovers both model and parameters that best describe the data.
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Figure 9: Goodness of fit for all models. Coefficients of determination R2 of our Constitutive Artificial Neural Network,
without and with L2 regularization, and its special cases, the neo Hooke, Blatz Ko, Demiray, Gent, and Holzapfel models,
trained with the tension, compression, and shear data [11] from Tables 1 and 2; color-coded blocks and error bars
highlight the means and standard deviations of the goodness of fit R2 from 50 training runs with varying random weight
initializations for each model, with colors and terms according to Figure 3.

4 Discussion

Characterizing human brain tissue is a challenging but important task. Throughout the
past decade, driven by the need to improve diagnostic and predictive clinical tools, neuroscience
has seen an enormous, growing interest in accurately characterizing and modeling the human
brain [25]. Numerous research groups have proposed competing constitutive models to best
characterize the behavior of gray and white matter tissue and calibrate the model parameters
in response to mechanical loading [13]. Amongst the wide variety of possible models, the neo
Hooke [60], Blatz Ko [8], Mooney Rivlin [44,52], Demiray [17], Gent [22], and Holzapfel [27] mod-
els have emerged as the most successful candidates to approximate the stress-stretch relations in
the human brain. The gold standard strategy of all these approaches is to first select a constitutive
model, either from the above list or beyond, and then tune its parameters by fitting the model to
data. Often, these data are collected for a single loading mode–tension [43], compression [51], or
shear [19]–and the parameters that fit one type of loading fail to predict the behavior for the other
modes [11,45]. This simplification can have fatal consequences; for example, it could overestimate
the stiffness of the brain in injury simulations. To address these limitations, our group has recently
performed a comprehensive set of human brain tissue experiments in tension, compression, and
shear and calibrated the neo Hooke, Mooney Rivlin, Demiray, and Gent models for four different
brain regions, the cortex, basal ganglia, corona radiata, and corpus callosum [11–13]. While this
approach is valuable to generate the best sets of parameters for existing models, some natural
follow-up questions to ask are: How good are these models in the first place? Which one of them
performs best? Are there other models that perform equally well, or even better? And, if so, how
can we find them?

Constitutive Artificial Neural Networks are a family of neural networks that a priori satisfy
thermodynamic constraints. When searching for generic models that could outperform tradi-
tional constitutive models, neural networks are a natural first choice [30]. Neural networks have
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advanced as a powerful strategy to approximate data by cleverly combining nested and weighted
activation functions with several thousand unknowns [35]. They have become the go-to strat-
egy to interpolate data within a well-defined domain when the underlying physics are completely
unknown [1]. At the same time, classical neural networks typically fail to predict the behavior out-
side the training domain, they violate common physical constraints, and their parameters have no
real physical interpretation [37]. This has sparked the recent trend to integrate physical informa-
tion into classical neural networks [36]. In the spirit of this idea, we propose a new family of neu-
ral networks that a priori satisfy common kinematic, thermodynamic, and physical constraints.
Towards this goal we consult the non-linear field theories of mechanics [2, 58, 59] and constrain
the network output to enforce thermodynamic consistency; the network input to enforce mate-
rial objectivity, and, if desired, material symmetry and incompressibility; the activation functions
to implement physically reasonable constitutive restrictions; and the network architecture to en-
sure polyconvexity. These ideas are not entirely new. Several recent network models are designed
around enforcing thermodynamic constraints [3,24], for example through additional terms in their
loss function [15]. However, the problem of overfitting sparse data with a large set of physically
meaningless parameters remains [34]. This raises the questions: How do we harness decades of
knowledge in constitutive modeling to create a neural network,from easy-to-understand modular
building blocks, with well-defined physical parameters, that we can constrain with our domain
knowledge?

Constitutive Artificial Neural Networks can be made up of building blocks that feature
prominent constitutive models. At a closer look, most popular constitutive models for human
brain tissue have a similar functional structure. Here we propose to hardwire this structure into
our neural network architecture. The underlying design paradigm is to reverse-engineer a Consti-
tutive Artificial Neural Network that is, by design, a generalization of widely used and commonly
accepted constitutive models including the neo Hooke, Blatz Ko, Mooney Rivlin, Demiray, Gent,
and Holzapfel models. In Figure 3, we prototype this idea for an isotropic perfectly incompress-
ible feed forward network with two hidden layers and four and twelve nodes. This network takes
the scalar-valued first and second invariants of the deformation gradient, [ I1 − 3 ] and [ I2 − 3 ],
as input and approximates the scalar-valued free energy function, ψ(I1, I2), as output. The first
layer generates the first and second powers, ( ◦ )1 and ( ◦ )2, of the input, and the second layer ap-
plies the identity ( ◦ ), the exponential, (exp((◦))− 1), and the natural logarithm (−ln(1− (◦))) to
these powers. This results in twelve building blocks that additively feed into the final free energy
function ψ from which we derive the Piola stress, P = ∂ψ/∂F, following standard arguments of
thermodynamics. It is easy to show that our network is a generalization of popular constitutive
models with the neo Hooke [60], Blatz Ko [8], Mooney Rivlin [44, 52], Demiray [17], Gent [22],
and Holzapfel [27] models as special cases. More importantly, through a direct comparison with
these models in equations (16) to (21), the weights of our network gain a clear physical interpre-
tation. Table 7 and Figure 8 show, for example, that we recover the classical neo Hooke model
with shear moduli of µ =1.82kPa, 0.88kPa, 0.94kPa, 0.54kPa for simultaneous training with the
tension, compression, and shear data of the cortex, basal ganglia, corona radiata, and corpus cal-
losum, which agree well with the reported values of µ =2.07kPa, 0.99kPa, 1.15kPa, 0.65kPa [11].
Interestingly, both our network and the parameter fit in the literature find that one of the two shear
moduli of the Mooney Rivlin model is consistently zero in all four regions, while the other is µ2 =
1.88kPa, 0.90kPa, 0.97kPa, 0.56kPa for our approach compared to µ1 =2.08kPa, 1.00kPa, 1.16kPa,
0.65kPa in the literature [11]. This agrees well with other studies in which one of the Mooney
Rivlin shear moduli was also significantly smaller than the other across all brain regions [45]. Fig-
ure 8 reveals several additional universal trends for human brain tissue: First, tension is not only
the most challenging test to perform [43], but also the most difficult test to fit, with R2 values
ranging from 0.14 to 0.48, followed by compression with 0.53 to 0.76, and shear with 0.94 to 0.96.
Second, when trained simultaneously for tension, compression, and shear, all models consistently
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overestimate the tensile stiffness and underestimate the compression stiffness, highlighting the
tension-compression asymmetry of all four types of human brain tissue [45]. Third, of all existing
models, only the Holzapfel model captures the nonlinear stress response [27], suggesting that the
classical invariant-based models struggle to reproduce the nonlinear behavior of human brain tis-
sue for small deformations with 0.9 ≤ λ ≤ 1.1 and 0.0 ≤ γ ≤ 0.2. This raises the question: Can
we design a Constitutive Artificial Neural Network that not only learns the best set of parameters
for a given constitutive model, but also learns the model itself?

Constitutive Artificial Neural Networks simultaneously discover both model and parame-
ters. In essence, we propose a radically different approach towards soft tissue modeling and
abandon the common strategy to first select a constitutive model and then tune its parameters
by fitting the model to data [39]. Instead, we propose a family of Constitutive Artificial Neural
Networks, with the general architecture in Figure 1, specified for soft tissues in Figure 3, to simul-
taneously discover both, model and parameters that best describe the data. Probing our network with
the tension, compression, and shear experiments from the gray matter cortex in Table 3 and Fig-
ure 4 and from the white matter corona radiata in Table 4 and Figure 5, reveals several interesting
trends: When trained with all three experiments individually, the network activates all its twelve
terms, and fails to discover a single best model. Nonetheless, with these twelve terms, it succeeds
in interpolating or fitting the training data from one experiment; however, it only performs mod-
erately at extrapolating or predicting the test data from the other two experiments. This suggests
that the data from a single loading mode are not sufficient to characterize the entire breadth of the
mechanical response of human brain which agrees well with observations in the literature [11,45].
Notably, when trained with all three experiments simultaneously, the Constitutive Artificial Neural
Network robustly discovers a single model that best approximates the data: For the cortex, in the
last columns of Table 3 and Figure 4, the network discovers four relevant terms, while the weights
of the other eight terms train to zero,

ψ(I2) =
1
2

µ2[I2− 3]2 +
1
2

a2

b2
[exp(b2[I2− 3]2)− 1]− 1

2
α1

β1
ln(1− β1[I2− 3])− 1

2
α2

β2
ln(1− β2[I2− 3]2).

(28)

The non-zero weights translate into physically meaningful cortex parameters with well-defined
physical units, the four stiffness-like parameters, µ2 = 7.60kPa, a2 = 6.23kPa, α1 = 1.25kPa,
α2 = 4.67kPa, and the three nonlinearity parameters, b2 = 1.65, β1 = 0.99, β2 = 1.40. For the
corona radiata, in the last columns of Table 4 and Figure 5, the network discovers four relevant
terms, while the weights of the other eight terms train to zero,

ψ(I2) =
1
2

µ1[I2− 3]+
1
2

a1

b1
[exp(b1[I2− 3])− 1]+

1
2

a2

b2
[exp(b2[I2− 3]2)− 1]− 1

2
α2

β2
ln(1− β2[I2− 3]2).

(29)

The non-zero weights translate into physically meaningful parameters with well-defined physical
units, the four stiffness-like parameters, µ1 = 0.44kPa, a1 = 0.24kPa, a2 = 6.37kPa, α2 = 4.51kPa,
and the three nonlinearity parameters, b1 = 0.24, b2 = 1.89, β2 = 1.18. Notably, of all seven
models in Figure 9, the Constitutive Artificial Neural Network performs best in eight of all twelve
cases, second best in two, and fifths in one, suggesting that it successfully discovers the model
and parameters that best describe the data. Since the network autonomously self-selects both model
and parameters, the human user no longer needs to decide which model to choose. This could
have enormous implications, for example in finite element simulations: Instead of selecting a spe-
cific material model from a library of available models, finite element solvers could be designed
around a single generalized model, the Constitutive Artificial Neural Network, which would au-
tonomously discover the model from experimental data, populate the model parameters, and activate
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the relevant terms. This brings up the final and probably most interesting question: Can we learn
anything from the discovery process itself?

For human brain tissue, the Constitutive Artificial Neural Network robustly discovers I2
based models. Our Constitutive Artificial Neural Network combines the advantages of both,
our knowledge of constitutive modeling [2, 6, 28, 46–48, 58] and the efficiency of neural network
algorithms [33,35,50]. For insufficient training data that only probe individual modes, in the three
left columns of Figures 4 and 5, our network approximates the overall function ψ(I1, I2) robustly
with R2 values well above of 0.99, but similar to classical neural networks, the contributions of
the individual activation functions are non-unique. Enriching the training data by multi-mode
training for tension, compression, and shear in Table 5 and Figure 6 eliminates this limitation. For
sufficiently rich data that probe all three modes combined, in the right columns of Figures 4 and
5, our network successfully captures the behavior of both gray and white matter, and consistently
identifies the same unique subset of activation functions, without overfitting the data. The reduced
color spectra in Figure 6 confirm that the network self-selects only a subset of activation func-
tions, while most of its weights train to zero. For classical neural networks, a common approach
to prevent overfitting is to enrich the loss function by L1 or L2 regularization as we suggest in
equation (23). For L1 regularization, the discovered model and parameters are virtually identical
to the plain model in Table 5 and Figure 6. For L2 regularization, the network robustly discovers a
reduced model with only two terms, a subset of the non-regularized models in equations (28) and
(29), while the weights of the other terms train to zero,

ψ(I2) =
1
2

a
b
[ exp( b[ I2 − 3 ])− 1

2
α

β
ln( 1− β[ I2 − 3 ]) . (30)

Table 6 and Figure 7 summarize the model and parameters for the regularized network with two
stiffness-like parameters, a and α, and two nonlinearity parameters b and β. Strikingly, in multi-
mode training, both the standard and L2 regularized Constitutive Artificial Neural Network con-
sistently discover models in terms of the second invariant only, while all terms of the first invariant
train to zero. We can easily see this selective activation in the color-coded stress terms in Figures
6 and 7, which only cold blue-type colors associated with the second invariant [I2 − 3]. The domi-
nance of the second invariant is consistent with observations in the literature [45]. We hypothesize
that the second invariant term [I2− 3], that ranges from 0.0264 in tension to 0.0346 in compression
is better suited to model the characteristic tension-compression asymmetry of human brain tissue
than the first invariant term [I1 − 3], that only ranges only from 0.0282 to 0.0322 for our experi-
mental range. In addition to discovering the best model and parameters, the goodness of fit in Figure
9 also teaches us something about the best experiment. If we had to select a single one experiment,
tension, compression, or shear, Figure 9 suggests that the tension experiment, with the largest R2

values overall, would provide the richest data and the best insight into the behavior of human
brain tissue.

Current limitations and future applications. In the present work, we demonstrate the use of
Constitutive Artificial Neural Networks for human brain under the assumption of perfect incom-
pressibility and isotropy. The general concept extends naturally to compressibily or near incompress-
ibility and to materials with other symmetry classes, transverse isotropy or orthotropy, by expanding
the network input to other sets of strain invariants. A more dedicate extension would be to in-
corporate viscous effects [12], or rather history-dependence or inelasticity in general, for example,
by replacing the feed forward architecture through a long short-term memory network with feed-
back connections [7], while still keeping the same overall network input, output, activation func-
tions, and selectively connected architecture. Another limitation, which involves more complex
changes, is the additive architecture of our network, which facilitates incorporating polyconvexity.
Especially for human brain tissues that display a pronounced Poynting effect with shear softening
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in tension and shear stiffening in compression [5], it could be beneficial to introduce a multiplicative
coupling between the individual invariants. Expressing the free energy as a truncated infinite se-
ries of products of powers of the invariants, instead of a sum of individual invariant terms, would
result in a fully connected feed forward network architecture for which polyconvexity is cumbersome
to include a priori [26]. Another technical limitation we foresee for these more complex networks,
is that the majority of weights might no longer train to zero and that a more involved L1 or L2
regularization could become necessary. This could artificially bias the training towards a subset
of physical parameters. One interesting future direction along these lines, especially in view of
human brain tissue, would be to compare invariant-based and principal-stretch-based Constitutive
Artificial Neural Networks [47]. Several recent studies suggest that principal-stretch-based mod-
els outperform invariant-based models, especially in the context of combined loading and strain-
stiffening [11,41,45]. Finally, an important extension would be to embed the network in a Bayesian
inference to supplement the analysis with uncertainty quantification [37]. Instead of simple point
estimates for the network parameters, a Bayesian Constitutive Artificial Neural Network would
learn parameter distributions with means and credible intervals. In contrast to classical Bayesian
Neural Networks, here, these distributions would have a clear physical interpretation, since our
network weights have a well-defined physical meaning.

5 Conclusion

Human brain is an ultrasoft material that is difficult to test and challenging to model. Numer-
ous competing constitutive models for human brain tissue exist in the literature, but selecting the
most appropriate model remains a matter of user experience and personal preference. The un-
derlying idea of this manuscript is to automate the process of model selection. Towards this goal,
we formulate the problem of autonomous model discovery as a neural network and harness the
power of gradient-based adaptive optimizers for deep learning to train the network on human
brain data. However, rather than using conventional fully-connected feed-forward networks, we
reverse engineer a family of Constitutive Artificial Neural Networks with a sparsely-connected
architecture from a set of modular building blocks. We rationalize these building blocks from
commonly accepted and widely used constitutive models for soft biological tissues, including the
neo Hooke, Mooney Rivlin, Demiray, Gent, and Holzapfel models. This strategy guarantees ther-
modynamic consistency, material objectivity, material symmetry, physical restrictions, and poly-
convexity by design. Probably even more importantly, the weights of our Constitutive Artificial
Neural Networks gain a clear physical interpretation and translate naturally into common me-
chanical parameters. When trained with tension, compression, and shear experiments of gray and
white matter tissue, the network simultaneously discovers both model and parameters, and de-
scribes the data better than any of the commonly used invariant-based models. When constrained
to its individual building blocks, the network learns weights that translate into shear moduli of
1.82kPa, 0.88kPa, 0.94kPa, and 0.54kPa for the human cortex, basal ganglia, corona radiata, and
corpus callosum which agree well with the reported shear moduli in these four brain regions.
Taken together, Constitutive Artificial Neural Networks have the potential to enable automated
model discovery and could induce a paradigm shift in soft tissue modeling, from user-defined to
automated model selection and parameterization.

Data availability

Our source code, data, and examples will be available at https://github.com/LivingMatter
Lab/CANN.
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