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Abstract

Data-driven methods have changed the way we understand and model materials. However,
while providing unmatched flexibility, these methods have limitations such as reduced capac-
ity to extrapolate, overfitting, and violation of physics constraints. Recent developments have
led to modeling frameworks that automatically satisfy these requirements. Here we review,
extend, and compare three promising data-driven methods: Constitutive Artificial Neural
Networks (CANN), Input Convex Neural Networks (ICNN), and Neural Ordinary Differen-
tial Equations (NODE). Our formulation expands the strain energy potentials in terms of
sums of convex non-decreasing functions of invariants and linear combinations of these. The
expansion of the energy is shared across all three methods and guarantees the automatic sat-
isfaction of objectivity and polyconvexity, essential within the context of hyperelasticity. To
benchmark the methods, we train them against rubber and skin stress-strain data. All three
approaches capture the data almost perfectly, without overfitting, and have some capacity
to extrapolate. Interestingly, the methods find different energy functions even though the
prediction on the stress data is nearly identical. The most notable differences are observed
in the second derivatives, which could impact performance of numerical solvers. On the rich
set of data used in these benchmarks, the models show the anticipated trade-off between
number of parameters and accuracy. Overall, CANN, ICNN and NODE retain the flexibility
and accuracy of other data-driven methods without compromising on the physics. These
methods are thus ideal options to model arbitrary hyperelastic material behavior.

Keywords: Physics-informed Machine Learning, Polyconvexity, Nonlinear mechanics,
Neural networks, Constitutive models

Introduction

The frontier of biomedical engineering applications such as personalized surgery requires
accurate mathematical models of material-specific behavior [1]. Similarly, human-engineered
systems based on soft materials also necessitate predictive simulations with high precision
[2]. The materials for these applications are extremely nonlinear and undergo large deforma-
tions, e.g. rubber and skin. Yet, despite decades of effort developing constitutive equations
for these materials, there still isn’t a definitive model for them due to inherent limitations
of expert-constructed models [3]. Traditional material modeling restricts the prediction of
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the mechanical response to a narrow set of functional terms, making it nearly impossible to
fully capture the data. On the other hand, data-driven methods such as neural networks are
universal approximators that can fit mechanical behavior data of complex response almost
perfectly [4, 5]. Data-driven methods, on the other hand, have their own drawbacks. Most
importantly, considering the response of rubbers and many biological materials as hyper-
elastic, the mechanical response is fully specified by a scalar potential that has to satisfy
the conditions of objectivity and polyconvexity [6]. These physics constraints are crucial
for enabling robust large-scale simulations, extrapolate from data, and avoid over-fitting [7].
Yet, off-the-shelf machine learning tools cannot a priori satisfy these conditions. We review
and refine three very recent developments in physics-informed machine learning that aim at
embedding the objectivity and polyconvexity constraints as part of the formulation such that
they can be satisfied a priori. The methods we consider are three: Constitutive Artificial
Neural Netwokrs (CANN) [8], Neural Ordinary Differential Equations (NODE) [9], and Input
Convex Neural Networks (ICNN) [10, 11].

Characterizing nonlinear materials like rubber and skin involves testing them under a wide
set of deformation modes such as uniaxial, biaxial, shear, and sometimes triaxial deformation.
The resulting data collected from these tests are stress-strain curves. The direct approach to
leverage machine learning on these data is to directly map between strains and stresses [12].
One problem with this strategy is that objectivity is not preserved. One way of fixing this
issue has been to augment the data with superimposed arbitrary rotations [13, 10]. This solu-
tion does not fully guarantee objectivity, although, as the space of rotations is sampled more
and more thoroughly the constraint is more closely satisfied. For closed-form constitutive
models, fulfilling objectivity has not been a major hurdle. Experts develop strain energies
in terms of invariants of the deformation to satisfy objectivity by default [14, 15]. Machine
learning methods along these lines have also been proposed [16, 17, 18, 19]. The challenge of
imposing polyconvexity in data-driven methods is more difficult to address. Polyconvexity of
the strain energy (with additional growth conditions) is a sufficient condition for the existence
of solutions for boundary value problems in hyperelasticity [20]. Polyconvexity is a flexible
framework, compatible with unstable material behavior like buckling. This is in contrast with
more restrictive notions like convexity of the strain energy with respect to the deformation
gradient, which can violate objectivity [21]. Laxer conditions such as rank-one convexity are
weaker than polyconvexity and not sufficient for the existence of global minimizers of the
strain energy [22]. Many expert models are based on the notion of polyconvexity (but there
are also many examples of popular models which might violate this condition [23]). Different
notions of convexity have been considered within data-driven frameworks, but the majority
have opted for adding the constraint as a penalty through the loss function [17].

CANNs are a new method for automated model discovery that borrow their architec-
ture from traditional feed-forward neural networks but use activation functions that preserve
convexity. They also prune the connections between the inputs and subsequent nodes such
that the final result is a polyconvex strain energy [8]. ICNNs also build convex functions of
invariant inputs using specific activation functions and non-negative weights [24, 25]. NODEs
tackle the problem differently by leveraging the monotonicity of trajectories of ordinary differ-
ential equations (ODEs) in a single variable to interpolate monotic functions associated with
derivatives of a strain energy rather than the energy directly [9]. Unlike other approaches,
CANNs, ICNNs, and NODEs have physics at the core of the formulation to generate consti-
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tutive models that satisfy objectivity and polyconvexity a priori. Yet, there is a gap in our
understanding of how these different methods perform on benchmark datasets, and a general
need to benchmark machine learning methods in computational mechanics [26, 27].

Rubber modeling was the center of attention for large deformation hyperelasticity in
the past century, with tens of constitutive models proposed [28]. Recently, advances in
soft robotics has renewed the interest in developing improved high-fidelity simulations of
soft robots made of rubbers and other elastomers. For example, applications that aim at
produce complex motion such as tentacle grippers, walking soft robots, and rehabilitation
soft exoskeletons [29], all require precise modeling of the material response.

Soft tissues made of collagen have remarkable mechanical properties. They show exponential-
like stress-strain response and anisotropy. These nonlinearities allow tissues like skin to
protect us against environmental harm while allowing interaction and movement [30]. The
development of constitutive models for soft tissues, and skin in particular, dates to the semi-
nal work by Lanir and Fung [31, 32], and has resulted in a long list of strain energy functions
proposed over the past five decades [3]. New models are being proposed even today [33, 34].
Despite the rich literature on skin and soft tissue modeling, the complexity of the material re-
sponse in these materials has prevented the emergence of a categorically superior constitutive
model.

The manuscript is organized as follows. In the Methods section we first review the basic
equations that describe the mechanical behavior of hyperelastic materials with emphasis on
strain energy function expansions that satisfy objectivity and polyconvexity requirements.
Then, we show how CANN, ICNN and NODE architectures can be used to create material
models within the considered families of elastic potentials. After training the three methods
to datasets on rubber and skin, the Results section explores in detail the ability of the models
to interpolate and extrapolate, their robustness with respect to model initialization, the
regularity of second derivatives of the energy, and the trade-off between number of parameters
and model accuracy. We finally discuss the results in the context of other data-driven efforts
for computational mechanics.

Methods

Polyconvex strain energy density functions

Consider a motion 𝜑, the gradient F = ∇𝜑 contains all the local information about the
deformation. Within the framework of hyperelasticity, the strain energy function 𝜓(F) fully
defines the material response. Polyconvexity implies that the energy 𝜓(F) can be expressed as
a convex function in the extended domain 𝜓(F, cof F, detF). Intuitively, this extended domain
covers different modes of deformation: F measures changes in length, cof F changes in area,
and 𝐽 = detF changes in volume. It is difficult to work directly with the deformation gradient
and its cofactors as inputs to the strain energy. Instead, the right Cauchy-Green deformation
tensor C = F>F is used because it does not contain information about superimposed rigid
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Figure 1: Diagram depicting the training and inference processes of the deep neural network material model.

body rotations. Furthermore, objectivity is enforced by working with the invariants

𝐼1 = trC = C : I

𝐼2 =
1

2

(
(trC)2 − trC2

)
𝐼3 = 𝐽

2 = detC

𝐼4𝑎 = C : a0 ⊗ a0 , 𝐼4𝑠 = C : s0 ⊗ s0 .

(1)

The last two invariants in eq.(1) are only relevant for transversely anisotropic materials
and depend on the deformation of two material unit vectors a0, s0. For soft tissues, the vectors
a0, s0 represent collagen fiber bundle orientations. Furthermore, for nearly incompressible
materials such as rubbers and skin, the split between volumetric and isochoric parts is often
used. The isochoric part of the deformation is F̄ = 𝐽−1/3F, with the corresponding deformation
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tensor C̄ = F̄>F̄. The isochoric invariants follow

𝐼1 = 𝐽
−2/3𝐼1

𝐼2 = 𝐽
−4/3𝐼2

𝐼4𝑎 = 𝐽
−2/3𝐼4𝑎 , 𝐼4𝑠 = 𝐽−2/3𝐼4𝑠 .

(2)

Based on the split between the isochoric and volumetric parts of the deformation, the
energy can be additively decomposed into

𝜓 = 𝜓iso(𝐼1, 𝐼2, 𝐼4𝑎, 𝐼4𝑠) + 𝜓vol(𝐽) . (3)

For polyconvexity to be satisfied in this additive split, one requirement is convexity of
𝜓vol and growth conditions 𝜓vol → ∞ as 𝐽 → 0 or 𝐽 → ∞. In the case of fully incompressible
materials, the volumetric part of the strain energy is replaced by 𝑝(𝐽 − 1), where 𝑝 is a
Lagrange multiplier field that enforces 𝐽 = 1. In simple loading cases such as uniaxial or
biaxial deformation, 𝑝 can be directly determined from boundary conditions. In addition,
for incompressible behavior the isochoric part of the energy becomes a function of the original
invariants defined in eq. (1).

To ensure polyconvexity of 𝜓iso, recall that this condition implies a function 𝜓 convex on
(F, cof F, detF). The invariant 𝐼1 is convex in F, while 𝐼2 is convex in cof F. The anisotropic
invariants 𝐼4𝑎, 𝐼4𝑠 are also convex on F. Moreover, the isochoric split preserves polyconvexity
of 𝐼1, 𝐼4𝑎, 𝐼4𝑠, and a simple scaling with a power of 𝐽 is enough to maintain polyconvexity of
𝐼2. Thus, a sufficient large family of polyconvex functions has the form

𝜓 = 𝜓1(𝐼1) + 𝜓2(𝐼2) + 𝜓4𝑎 (𝐼4𝑎) + 𝜓4𝑠 (𝐼4𝑠) + 𝜓𝑣𝑜𝑙 (𝐽) , (4)

with each of the 𝜓𝑖 a convex non decreasing function of its argument, while, as mentioned
previously, 𝜓vol has to be convex and grow to infinity appropriately with changes in 𝐽. Again,
for incompressibility, the last term in (4) is replaced with the Lagrange multiplier constraint,
and the 𝜓𝑖 terms can be considered as functions of the invariants in eq. (1).

Stress predictions from a strain energy potential

Given a strain energy function, the second Piola-Kirchhoff stress follows from the standard
Coleman-Noll procedure [6],

S = 2
𝜕𝜓

𝜕C
. (5)

Other stress tensors can be easily obtained with push-forward operations, for instance
the nominal or first Piola-Kirchhoff stress P = FS, or the Cauchy stress 𝜎 = 𝐽−1FSF>,
which appear in the strong form of linear momentum balance in the reference or deformed
configurations respectively. Since the energy is in terms of the invariants, computing the
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stress requires the standard derivatives

𝜕𝐼1
𝜕C

= I

𝜕𝐼2
𝜕C

=
1

2
(𝐼1I − C)

𝜕𝐼3
𝜕C

= 𝐼3C
−1

𝜕𝐼4𝑎
𝜕C

= a0 ⊗ a0 ,
𝜕𝐼4𝑠
𝜕C

= s0 ⊗ s0 .

(6)

The same derivatives as in eq. (6) apply to the the derivatives of the isochoric invariants
with respect to C̄. However, when using the split into volumetric and isochoric parts, we
need the projection

𝜕C̄

𝜕C
= P = 𝐽−2/3

(
I − 1

3
C ⊗ C−1

)
. (7)

The tensor I in eq.(7) denotes the fourth order identity. Bringing it all together, the
second Piola-Kirchhoff stress takes the form

S = 2
𝜕𝜓

𝜕C
= 2

𝜕𝜓

𝜕C̄
: P + Svol = S̄ : P + Svol , (8)

with

S̄ = 2
𝜕𝜓1

𝜕𝐼1
I + 2

𝜕𝜓2

𝜕𝐼2
(𝐼1I − C̄−1) + 2

𝜕𝜓4𝑎

𝜕𝐼4𝑎
a0 ⊗ a0 + 2

𝜕𝜓4𝑠

𝜕𝐼4𝑠
s0 ⊗ s0 . (9)

It is possible to extend eq. (4) to capture even a wider class of materials. Convex
linear combinations of the invariants maintain polyconvexity with respect to F. Therefore,
in addition to the invariants in eq.(1) or their isochoric counterparts eq.(2), we can consider
the mixed invariants

𝐾𝑖 𝑗 = 𝛼𝑖 𝑗 𝐼𝑖 + (1 − 𝛼𝑖 𝑗 )𝐼 𝑗 , (10)

and the corresponding isochoric versions 𝐾𝑖 𝑗 . The family of strain energies considering
these mixed terms has the following structure

𝜓 =
∑︁

𝜓𝑖 (𝐼𝑖) +
∑︁

𝜓𝑖 𝑗 (𝐾𝑖 𝑗 ) + 𝜓𝑣𝑜𝑙 (𝐽) . (11)

The expression for S̄ in this more general case is analogous to eq. (9) but with additional
terms to account for the 𝜓𝑖 𝑗 contributions.

Uniaxial, pure shear, and biaxial loading

For the specific case of isotropic uniaxial deformation of a perfectly incompressible mate-
rial, the deformation depends on the single stretch _, and the stress in the direction of the
applied stretch is

𝑃 = 2(_ − _−2)
(
𝜕𝜓

𝜕𝐼1
+ 1

_

𝜕𝜓

𝜕𝐼2

)
. (12)
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For pure shear deformation of a wide but thin specimen, the nominal stress in the direction
of the applied stretch _ is

𝑃 = 2(_ − _−3)
(
𝜕𝜓

𝜕𝐼1
+ 𝜕𝜓

𝜕𝐼2

)
. (13)

The third loading case of interest for thin incompressible isotropic materials is equibiaxial
tension defined by the stretch _. For this loading, the nominal stress in the two principal
directions of applied stretch is the same and equal to

𝑃 = 2(_ − _−5)
(
𝜕𝜓

𝜕𝐼1
+ _2 𝜕𝜓

𝜕𝐼2

)
. (14)

Lastly we consider an incompressible transversely anisotropic material under arbitrary
biaxial loading specified by the two stretches _𝑥, _𝑦. Without loss of generality we set
a0 = [1, 0, 0], s0 = [0, 1, 0]. The in plane nominal stresses are

𝑃𝑥𝑥 =
𝜕𝜓

𝜕𝐼1
_𝑥 + 𝜕𝜓

𝜕𝐼2
(𝐼1_𝑥 − _3𝑥) +

𝜕𝜓

𝜕𝐼4𝑎
_𝑥 − 𝑝_−1𝑥

𝑃𝑦𝑦 =
𝜕𝜓

𝜕𝐼1
_𝑦 + 𝜕𝜓

𝜕𝐼2
(𝐼1_𝑦 − _3𝑦) +

𝜕𝜓

𝜕𝐼4𝑠
_𝑦 − 𝑝_−1𝑦 ,

(15)

with the pressure Lagrange multiplier solved from the plane stress condition

𝑝 =
𝜕𝜓

𝜕𝐼1
_2𝑧 +

𝜕𝜓

𝜕𝐼2
(𝐼1_2𝑧 − _4𝑧 ) , (16)

and the normal stretch obtained from the incompressibility constraint

_𝑧 =
1

_𝑥_𝑦
. (17)

CANN models

To construct convex non-decreasing functions to represent the energy in eq. (11), one
way is to borrow from the architecture of feed forward neural networks but using only convex
non-decreasing activation functions on a polynomial expansion. The method is illustrated in
Fig. 1a. Starting from F, the invariants eq.(1) are computed in a pre-processing step. For
ease of implementation and to improve the optimization step during model training, consider
the normalized invariants

𝐼𝑖 = (𝐼𝑖 − 𝑎𝑖)/𝑏𝑖 (18)

where 𝑎1 = 𝑎2 = 3, 𝑎4𝑎 = 𝑎4𝑠 = 1, and 𝑏𝑖 is a normalizing constant such that the range
of 𝐼𝑖 is approximately [0, 3]. Note that in the case of full incompressibility as assumed
from now on, the normalized invariants strictly satisfy 𝐼𝑖 ≥ 0. For compressible or nearly
incompressible materials, simply replace 𝐼𝑖 with the isochoric counterpart 𝐼𝑖 in eq.(18). For
the mixed invariants, the normalized version is

𝐾𝑖 𝑗 = 𝛼𝑖 𝑗 𝐼𝑖 + (1 − 𝛼𝑖 𝑗 )𝐼 𝑗 , (19)
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which also satisfies 𝐾𝑖 𝑗 ≥ 0 as along as 𝛼𝑖 𝑗 ∈ [0, 1]. For the general case including
anisotropy, the strain energy can be summarized as

𝜓CANN =
∑︁
𝑖,𝑎,𝑏

𝜓𝑖,𝑎𝑏 +
∑︁

𝑖, 𝑗 ,𝑎,𝑏,𝑖≠ 𝑗

𝜓𝑖 𝑗 ,𝑎𝑏

=
∑︁
𝑖,𝑎,𝑏

𝑔𝑖,𝑎𝑏 𝑓𝑏 (𝑤𝑖,𝑎𝑏𝑃𝑎 (𝐼𝑖)) +
∑︁

𝑖, 𝑗 ,𝑎,𝑏,𝑖≠ 𝑗

𝑔𝑖 𝑗 ,𝑎𝑏 𝑓𝑏 (𝑤𝑖,𝑎𝑏𝑃𝑎 (𝐾𝑖 𝑗 )) ,
(20)

where 𝑃𝑎 (𝑥) = 𝑥𝑎 is a basic polynomial expansion with 𝑎 ∈ {1, 2, 3} in our implementation,
𝑓𝑏 (◦) is the activation function choice in our case either identity 𝑓1(𝑥) = 𝑥 or exponential
𝑓2(𝑥) = exp(𝑥) − 1. The notation is the same for the mixed invariants. The weights 𝑔𝑖,𝑎𝑏,
𝑤𝑖,𝑎𝑏, 𝑔𝑖 𝑗 ,𝑎𝑏, 𝑤𝑖 𝑗 ,𝑎𝑏 are the trainable parameters of the model and need to be non-negative to
maintain the convex non-decreasing output.

For the rubber examples below, we only use the two main invariants 𝐼1, 𝐼2. For the skin
example we have two ansatz. The simpler model includes contributions from 𝐼1, 𝐼2, 𝐾4𝑎 4𝑠.
The second option for the skin examples takes inputs 𝐼1, 𝐼2, 𝐾1 2, 𝐾1 4𝑎, 𝐾1 4𝑠, 𝐾4𝑎 4𝑠.

Our choice of polynomials and activation functions guarantee the interpolation of convex
non-decreasing functions of the inputs 𝐼𝑖, 𝐾𝑖 𝑗 in the domain 𝐼𝑖, 𝐾𝑖 𝑗 ≥ 0 provided that only non-
negative weights are used which is easy to enforce. The non-negative condition on the domain,
𝐼𝑖, 𝐾𝑖 𝑗 ≥ 0, is trivially satisfied for incompressible materials, and satisfied for compressible or
nearly incompressible materials if the isochoric invariants are used in eq. (18). Thus, CANNs
a priori result in polyconvex strain energy functions.

ICNN models

This algorithm also relies on building convex functions of the normalized invariants and
linear combinations of them. Let 𝑋 be the input to the first layer, and Z𝑖−1 the output of
layer 𝑖 − 1. Then, for layer 𝑖 the output is

Z𝑖 = softplus2(exp(W>
𝑧,𝑖)Z𝑖−1 + 𝑋 exp(W𝑥,𝑖) + b𝑖) , (21)

parameterized by the weights W𝑧,𝑖, W𝑥,𝑖 and biases b𝑖. For the first layer we have

Z1 = softplus2(𝑋 exp(W𝑥,1) + b1) , (22)

while for the last layer

𝑍𝑛 = exp(W>
𝑧,𝑛)Z𝑛−1 + 𝑋 exp(𝑊𝑥,𝑛) + b𝑛 . (23)

This architecture retains convexity because softplus2(◦) is a convex non-decreasing func-
tion evaluated on linear combinations of the original input and the intermediate layer outputs
using non-negative weights (enforced with the exp(◦) function). Therefore, ICNNs can be
used to create convex non-decreasing functions of the same normalized invariants 𝐼𝑖 and nor-
malized mixed invariants 𝐾𝑖 𝑗 defined in eqs. (18),(19) for the CANN models. The general
expansion is

𝜓ICNN =
∑︁
𝑖

𝜓𝑖 (𝐼𝑖) +
∑︁
𝑖, 𝑗 , 𝑖≠ 𝑗

𝜓𝑖 𝑗 (𝐾𝑖 𝑗 ) . (24)
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Similarly to the CANNs, for the rubber examples using ICNNs we only consider two
functions 𝜓1(𝐼1), 𝜓2(𝐼2). For the anisotropic examples we have two models. The simpler
one uses three functions 𝜓1(𝐼1), 𝜓2(𝐼2), 𝜓4𝑎 4𝑠 (𝐾4𝑎 4𝑠). The second anisotropic model also
includes the mixed terms 𝜓1 4𝑎 (𝐾1 4𝑎), 𝜓1 4𝑠 (𝐾1 4𝑠), 𝜓1 2(𝐾1 2).

NODE models

In contrast to the two previous methods, NODEs avoid interpolation of the energy and
interpolate the derivative functions directly. In the end, the derivatives with respect to the
invariants are the ones that enter the definition of the stress, see eq. (9). Consider the
normalized invariant 𝐼𝑖, the NODE is a feed-forward neural network with weights W and
biases b that define the function 𝑓 (◦) of the ODE

𝑑𝑦𝑖 (𝜔)
𝑑𝜔

= 𝑓 (𝑦𝑖, 𝜔) , 𝑦𝑖 (0) = 𝐼𝑖 , (25)

where 𝜔 is a pseudo-time auxiliary variable. The output of interest is the solution of the
ODE at a fixed pseudo-time. In this implementation we choose 𝜔 = 1,

𝜕𝜓

𝜕𝐼𝑖
= 𝑦𝑖 (1) . (26)

Note that the output is directly the derivative of the strain energy. The key observation

is that trajectories of ODEs do not intersect, thus for two initial conditions 𝑦 (𝑎)𝑖 (0) ≥ 𝑦 (𝑏)𝑖 (0),
the ensuing trajectories continue to satisfy 𝑦 (𝑎)𝑖 (𝜔) ≥ 𝑦 (𝑏)𝑖 (𝜔). This implies

𝜕𝜓

𝜕𝐼𝑖

����
𝐼1=𝐼

(𝑎)
1

≥ 𝜕𝜓

𝜕𝐼𝑖

����
𝐼1=𝐼

(𝑏)
1

⇐⇒ 𝐼 (𝑎)1 ≥ 𝐼 (𝑏)1 . (27)

The monotonicity of the output eq.(27) is equivalent to convexity of the underlying 𝜓.
For the mixed invariants, the NODE defines the derivative

𝜕𝜓

𝜕𝐾𝑖 𝑗
= 𝑦𝑖 𝑗 (1) , (28)

for an ODE analogous to eq. (25). Therefore, when using NODE models we do not
recover an analytical expression for 𝜓NODE. Nevertheless, the energy can be integrated if
needed

𝜓NODE =
∑︁
𝑖

∫
𝐼𝑖

𝜕𝜓

𝜕𝐼𝑖
+

∑︁
𝑖, 𝑗 𝑖≠ 𝑗

∫
𝐾𝑖 𝑗

𝜕𝜓

𝜕𝐾𝑖 𝑗
(29)

along a given trajectory over 𝐼𝑖, 𝐾𝑖 𝑗 . Even though convexity of 𝜓NODE with respect to the
invariants is ensured by eq.(27), to construct convex non-decreasing functions the additional
restriction of zero biases b = 0 is applied. With this last correction, the energy 𝜓NODE is
automatically polyconvex.
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Benchmark datasets and test cases

We consider two datasets in this study, a classicall rubber dataset including uniaxial
tension (UT), pure shear (PS), and equibiaxial tension (ET) nominal stress-stretch data
from [8]. The other dataset is from porcine skin and consists of three biaxial tests: strip
biaxial in the 𝑥 direction (SX), i.e. _𝑥 = _ is applied and the orthogonal direction is kept at
_𝑦 = 1, strip biaxial in 𝑦 direction (SY), and equibiaxial tension (EB). Data from the skin
data comes from [7], and is also nominal stress-stretch data.

Results

Performance on rubber dataset

The rubber dataset contains three mechanical tests as described in the Methods Section.
To test the ability of the data-driven methods to extrapolate we trained first against one of
the three tests and compared against the other two. Results are depicted in the first three
columns of Fig. 2. Not surprisingly, all three methods perfectly capture the loading curve on
which they are trained on (Fig 2a,f,k). However, the methods have difficulty extrapolating.
Depending on which test was used for training, the performance on the validation data varies.
When trained on uniaxial data, predictions on the other two tests are inaccurate, with stiffer
predictions in all cases compared to the data (Fig 2e,i). The ICNN trained on pure-shear data
is still able to capture the response in biaxial and uniaxial loading (Fig 2c,g). In contrast, the
CANN model trained on PS data can predict UT and ET data up to an intermediate stretch
after which the prediction exponential increases and diverges from the data. The NODE
trained on PS data performs well on the UT dataset but not on the ET dataset. Equibiaxial
training appears to be the best for extrapolating for all three methods. The prediction for
ET data matches closely the experiments, see Fig.2f, and the predictions for uniaxial and
pure shear qualitatively match the observed response albeit with some error (Fig.2b,j). To
verify that the methods are indeed able to capture the entire response of the material, the
last column of Fig. 2 shows predictions when CANN, NODE, ICNN models are trained on
all data at once. All three methods flawlessly interpolate the entire dataset (Fig.2d,h,l).

Results in Fig. 2 are representative, yet, they correspond to single fit from the CANN,
NODE and ICNN models. To show the robust performance of the data-driven methods, we
repeat the training 50 times and compute 𝑅2 values for each trained model. The 𝑅2 values
are shown in Fig. 4 in a layout analogous to the representative training Fig. 2. The 𝑅2

values confirm the previous observations from Fig. 2. For uniaxial training, 𝑅2 values on UT
data are approximately one always (Fig. 4a) but there is little predictive performance on the
other two tests (Fig. 4e,i). For PS training we confirm that NODE and ICNN are able to
capture the PS response (Fig. 4k), the UT response (Fig. 4c), but not the ET data (Fig.
4g). CANN models can capture the pure shear response just as well (Fig. 4k), but unable to
extrapolate to the other two loading cases (Fig. 4c,g). With 50 instances of model fitting, we
can confidently state that equibiaxial tests are indeed the ones that allow the three machine
learning models to better extrapolate to other loading cases. 𝑅2 values in Fig. 4b,f,j are
always greater than 0.656, with narrow standard deviations. Fig. 4d,h,l also confirms that
when trained on all data at once, CANN, ICNN and NODE have no trouble fitting the data,
achieving 𝑅2 on average 0.971, 0.997, 0.997 for each of the methods respectively.
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Figure 2: Performance of CANN, NODE and ICNN moddels on rubber nominal stress-stretch data. Trained
on uniaxial tension (UT), models are compared against UT data (a) but also against equibiaxial tension
(ET) data (e) and pure shear (PS) data (i). Trained on ET, models are evaluated on UT, ET, PS data (b,f,j)
respectively. Similarly, trained on PS data, comparison against UT, ET, PS curves (c,g,k). All three models
can capture all three datasets when trained on all data simultaneously (d,h,l).

Performance on skin dataset

The anisotropy of skin leads to poorer capacity of the three algorithms for extrapolation.
Trained with either strip biaxial in 𝑥, strip biaxial 𝑦, or equibiaxial tension, the three methods
can capture the response they are trained on but unable to extrapolate, as illustrated in the
first three columns of Fig. 3. To capture the transversely anisotropic response of skin, the
number of parameters and flexibility of the functional space available to the three data-
driven methods enables them to produce complex response, but at the same time it leads
to unconstrained and poor predictions outside of the training region. For instance, trained
on SX data, predictions under SX loading are remarkably accurate (Fig. 3a), but CANN
models tend to predict stiffer responses in EB and SY loading (Fig. 3e,i); NODE predics
stiffer response in SY loading (Fig. 3i) but accurate response in EB loading (Fig. 3e), and
ICNN performs well in EB loading (Fig. 3e) but predicts soft response compared to the
data in SY loading (Fig. 3i). To verify if the models are able to capture the entire dataset
we trained CANN, NODE, ICNN modes with all the data simultaneously and show the
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Figure 3: Performance of the data-driven constitutive models in terms of average 𝑅2 values from XX train-
ing with different initialization. CANN, NODE and ICNN moddels trained on uniaxial tension (UT) are
compared against UT data (a), equibiaxial tension (ET) data (e), and pure shear (PS) data (i). Trained on
ET, models are evaluated on UT, ET, PS data (b,f,j) respectively. Trained on PS data, comparison is done
against UT, ET, PS curves (c,g,k). All three models have 𝑅2 values near one for all data when trained on
all data simultaneously (d,h,l).

fits in Fig. 3d,h,l. All three methods can capture the response when trained on all data,
however, fits are not perfect compared to the individual test fitting in Fig. 3a,f,k. The poorer
performance in the simultaneous fitting is consistent between all three methods and suggests
that the data themselves might be inconsistent with the assumption of hyperelasticity, that
there are experimental errors, or that the functional space available to the data-driven models
needs to be even richer.

A more quantitative analysis of the performance is reported in Fig. 5, which shows 𝑅2

values computed after 10 instances of model training with different, random initialization.
Just as observed in the representative fits of Fig. 3, the 𝑅2 scores on the loading used for
training are near one (Fig. 5a,f,k), but they are low or even near zero for the validation cases
(Fig. 5b,c,e,g,i,j). Surprisingly, there is still some information from the equibiaxial test (Fig.
5f) that is useful for extrapolation to the strip biaxial loading cases (Fig. 5b,j). Training on
the strip biaxial tests, SY has no information for the SX or EB data (Fig. 5c,g), whereas SX
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Figure 4: Performance of CANN, NODE and ICNN models against the skin mechanics dataset. Trained on
strip 𝑥 (SX) data, the three models were compared to SX (a), equibiaxial (EB) (e) and strip 𝑦 (SY) data (i).
Trained on EB data, comparison to SX, EB, SY data is shown in (b,f,j). Trained on SY data, comparison to
SX, EB, SY is shoin in (c,g,k). Trained on all data simultaneously, the three methods can capture SX (d),
EB(h) and SY response (l).

training does lead to some 𝑅2 > 0 for EB (Fig. 5e) but not SY data (Fig. 5i). The methods
are able to consistently interpolate the entire data from all three tests regardless of random
initialization (Fig. 5d,h,l).

Regularity of second derivatives

Thus far we have focused on the performance of the data-driven models to capture stress-
stretch data, which directly relates to strain energy derivatives. However, using these highly
nonlinear model in large scale physics solvers, either implicit dynamics or equilibrium, re-
quires computation of second derivatives of the energy. Therefore, even though second deriva-
tives are not related to any data, we are interested in the regularity of the second derivatives
for CANN, ICNN and NODE models.

For the rubber benchmark the models are based on the interpolation of two functions
𝜕𝜓(𝐼1)/𝜕𝐼1, 𝜕𝜓(𝐼2)/𝜕𝐼2. Fig. 6 shows the second derivatives 𝜕2𝜓(𝐼1)/𝜕𝐼21 , 𝜕2𝜓(𝐼2)/𝜕𝐼22 with
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Figure 5: Performance of the data-driven methods on the skin dataset in terms of 𝑅2 scores for data from
three type of tests: strip biaxial 𝑥 (SX), equibiaxial (EB), strip biaxial in 𝑦 direction (SY). Trained on SX
data (a), the models are tested agains EB (e) and SY (i) data. Trained on EB data (f), the models are tested
on SX (b) and SY (j) loading. When trained on SY data (k), the models cannot capture SX (c) or EB (g)
response. When trained on all data simultaneously, CANN, ICNN, and NODE models can capture all three
types of loading: SX (d), EB (h), SY (l).

the same layout as Fig. 2 and Fig. 4. It is surprising that even though all three methods
capture the stress data quite well, they differ substantially in terms of their second derivatives.
This reflects that there are many strain energy functions 𝜓(𝐼1, 𝐼2) that are polyconvex and
that can capture the stress-stretch data under uniaxial, pure shear, and equibiaxial loading.
The CANN, ICNN and NODE are suited to capture different functions within the large space
of functions available to each method. The consistent trend in Fig. 6 is that the CANN
models lead often to exponential second derivatives because one of the two key activation
functions is the exponential. In contrast, the NODE model is the one with the smallest
second derivatives in all cases. For all the three methods, the second derivatives are smooth
functions.

For the skin benchmark, there are more functions being interpolated by the three data-
driven frameworks. As a result, Fig. 7 shows the second derivatives 𝜕2𝜓/𝜕𝐼21 , 𝜕2𝜓/𝜕𝐼22 ,
𝜕2𝜓/𝜕𝐼24𝑎, and 𝜕2𝜓/𝜕𝐼24𝑏. Consistent with the rubber data NODE second derivatives are the
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Figure 6: Second derivatives of strain energy functions predicted by the data-driven models trained with
rubber data. Training with UT only, predictions are done for CANN (a), ICNN (e) and NODE (i) models.
Similarly, second derivatives for the three methods are shown for ET training only (b,f,j), PS training only
(c,g,k) and tained against all data (d,h,l).

smallest out of the three methods. The second derivatives might increase for some initial
range of deformation but tend to smaller values toward the end of the testing ranges (Fig. 7i-
l). The CANN (Fig. 7a-d) and ICNN methods ((Fig. 7e-h) have increasing second derivatives
over the range of the invariants. Also similar to the rubber benchmark, here we see that even
though all three methods perform similarly on the stress-stretch predictions (see Fig. 3),
they do so by interpolating different functions 𝜓(𝐼1, 𝐼2, 𝐼4𝑎, 𝐼4𝑠).

Model efficiency

A key question and common criticism of data-driven models, particularly neural network-
based models, is that increasing the number of trainable parameters logically allows the
methods to capture the limited data better and better, but at the risk of over-fitting. The
polyconvexity constraint, enforced exactly for CANN, ICNN and NODE models, prevents
nonphysical extrapolation, much like expert models. On the other hand, expert models and
some non-parametric data-driven methods [35] are generally very efficient and capture the
data reasonably well with very few parameters. We test how efficiently can the data-driven
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Figure 7: Second derivatives of strain energy when trained with skin data. CANN predictions (a-d), ICNN
predictions (e-h), and NODE predictions (d-l). Columns correspond to the data used in training. First three
columns correspond to either SX, EB, or SY data only. Last column shows predictions when models are
trained on all data simultaneously.

models interpolate the data, i.e. we ask how does the error decrease as a function of the
number of trainable parameters.

Fig. 8 shows the efficiency plots for the rubber benchmark. The structure of the CANN
model is between that of a neural network and an expert model. As a result, there is a
single point for the CANN model for each of the plots in Fig. 8. For ICNN and NODE
models, the error decays with increasing number of parameters, as expected. When there are
52 trainable parameters, the NODE and ICNN show similar performance in all the training
cases. However, the drop in the error is more pronounced for the ICNN compared to the
NODE framework. This suggests that the NODE model can capture the data well even with
very few parameters.

The efficiency trends are not preserved for the anisotropic skin data as shown in Fig. 9.
In this case, in order to explore the effect of the number of parameters on the accuracy of the
methods we follow two strategies: reducing the ansatz by interpolating only the functions in
(4), or using the full expansion (11) but changing the number of trainable parameters. For the
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Figure 8: Model efficiency for the rubber dataset depicted in terms of mean absolute error (MAE) against
number of trainable parameters. Columns correspond to the type of data used for training: UT (a), ET (b),
PS (c), or all data used simultaneously during training (d). Note that for the CANN model the number of
parameters is fixed and a single point is shown for the CANN model in each panel. The ICNN and NODE
are neural network-based models and the number of trainable parameters increases with number of layers
and layer depth.

CANN model, which has a fixed number of parameters when considering either (4) or (11),
we observe that the full ansatz has lower errors than the reduced one for all training cases.
The flexibility of the framework increases by including the mixed terms, which helps with
capturing the data better. This is consistent with the development of mixed invariant terms
in popular closed-form constitutive equations such as the Gasser-Ogden-Holzapfel model [36].
The ICNN and NODE also show decreasing errors when going from the reduced model (4)
to the model including mixed invariants (11). The improvement is much more pronounced
for the NODE model compared to the ICNN one. In contrast to the rubber dataset, for skin,
increasing the number of parameters of the neural networks used in the NODE models leads
to a large decrease in error. The ICNN model error decreases only slightly with increasing
number of parameters. At the upper end of the range considered, i.e. approaching 200
parameters, both ICNN and NODE perform similarly. The most efficient of the methods
for skin data is the CANN, which achieves the lowest errors with the lowest number of
parameters.

Discussion

This manuscript analyzes the performance of three data-driven methods for isotropic and
anisotropic hyperelastic materials that automatically satisfy objectivity and polyconvexity of
the strain energy. Traditional closed-form models rely on selecting few functional terms to
capture the response of a material in a parsimonious way with few parameters to fit. Closed-
form expressions are an elegant solution but also have the major downside of sacrificing
accuracy. Data-driven methods have the flexibility to perfectly interpolate data. However,
a paucity in their adoption is the difficulty to guarantee basic physics constraints that are
front and center in the design of expert models [15, 37]. Objectivity and polyconvexity are
the key requirements to represent realistic materials. The CANN, ICNN, and NODE models
studied here are constructed in such a way that they a priori satisfy these essential physics
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Figure 9: CANN, ICNN and NODE model efficiency for the skin benchmark shown as mean absolute er-
ror (MAE) against number of trainable parameters and model complexity. For each of the three models,
two ansatz are used: a reduced expansion based on ((4), or a full expansion (??). Plots show efficiency
corresponding to different training cases: SX (a), EB (b), SY (c), or all data simultaneously (d).

constraints. Therefore, these three methods have the potential to revolutionize modeling and
simulation of highly nonlinear materials. We show that the three methods can interpolate
rubber and skin benchmark datasets for isotropic and anisotropic hyperelasticity. They
capture the data almost perfectly and have some capacity to extrapolate when trained on
part of the data. The second derivatives are smooth, which is needed for equilibrium and
implicit dynamic solvers. The models show the expected trade-off between accuracy and
number of parameters. Overall, either of the three modeling frameworks is suitable for fully
data-driven material modeling.

The methods we analyze here stand in contrast to other recent developments in data-
driven computational mechanics. The most obvious way of leveraging machine learning tools
is to directly interpolate strain-stress data. There are methods along those lines developed in
recent years [38]. One limitation of these approaches is the inability to extrapolate. Another
problem of dealing with stress data is that objectivity and polyconvexity are not satisfied a
priori. Data-driven models that capture the strain energy function are more similar to expert
models [18]. CANN, ICNN and NODE fall on this category. For the data-driven models that
interpolate the strain energy, one option to impose polyconvexity is through the loss function.
These methods have had some success but have to carefully balance between imposing the
constraint or achieving a higher accuracy [7, 39]. Another approach is to select the best
model out of a wide library of available models [40]. CANN, ICNN and NODE models have
been recently developed to automatically satisfy polyconvexity which is a sufficient condition
for the solution of boundary value problems in hyperelasticty. The original version of these
methods was introduced in recent publications [10, 41, 8]. However, benchmarking of the
original formulations is challenging because different expansions of the energy were used in
each case. In this work we have re-formulated the methods such that the same invariants
and energy terms are used consistently across the three models. With this implementation
we show that, because the constraints are embedded in the methods, there is no trade-off
between model accuracy and enforcing the physics. The three methods can get accurate
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representation of the data, show positive second derivatives of the energy with respect to the
invariants, and perform robustly even with random initialization.

The ideas behind each method are different and this translates into slight differences
in their performance. CANN leverages the structure of feed-forward neural networks but
uses a fixed number of available terms. Fitting a CANN involves finding the weights of
the different terms. As a result, CANNs produce parsimonious models but are inherently
limited by the number of functional terms. Despite the fixed structure, CANNS perform
well on the benchmark datasets of this study. ICNNs rely on building convex functions
by using nested linear combinations of convex non-decreasing functions in every layer of an
otherwise conventional feed-forward neural network structure. NODEs deal directly with the
energy derivative functions and leverage monotonicity of ODEs to get monotonic derivative
functions (which implies convex functions). Because ICNNs and NODEs have an inner
structure that resembles standard neural networks, they have more freedom to adjust the
number parameters by changing the number of layers or the depth within a layer. The
efficiency plots reflect the trade-off between accuracy and number of parameters. As the
number of parameters increases, the difference between NODE and ICNN models vanishes.
Thus, all three methods can accurately and efficiently capture the data.

The other notable difference between the methods is in the prediction of second derivatives
of the strain energy. CANN and ICNN models tend to predict increasing second derivative
functions. The NODE, in contrast with the other two methods, tends to predict smaller or
vanishing second derivatives towards the end of the training region. This difference likely
stems from the fact that ODEs have fixed points. In other words, the derivative predictions
converge to a single value, consequently producing vanishing second derivatives. In all cases
the second derivatives are smooth functions which is ideal for equilibrium and implicit dy-
namic solvers [9]. This is in contrast with other data-driven methods that require additional
regularization of the derivatives [42]. Another strategy to work with the derivatives of the
energy but avoid solving an ODE would be to explore integrable neural networks [43].

The methods we benchmark here are have been designed to capture hyperelasticity. Even
within the context of hyperelastic materials, the expansion of the energy can be done in
different ways, potentially giving access to even wider classes of behavior [44]. More complex
material response beyond hyperelasticity can also benefit from the flexibility of data-driven
methods. There is still a gap in the development of physics-informed machine learning
methods for dissipative materials such as plasticity and viscoelasticity [45]. There have
been data-driven methods in this direction, but without a complete set of built-in physics
constraints [46, 47]. Therefore, this is a central area for future work that can leverage the
three existing frameworks reviewed and refined here. A second extension that is needed is
modeling uncertainty in the material response. This is particularly relevant to biological
tissue [1]. Neural network-based frameworks can capture perfectly the response of a single
material and can easily retrained with new data, but a fully Bayesian approach would allow
deeper understanding of population distribution. For example, it would allow us to model
how skin properties change with age, sex, or ethnicity. A Bayesian framework would also
allow monitoring of epistemic uncertainty to guide data collection and produce trustworthy
simulations. The third item we want to highlight is the extension to multi-modality data.
The three methods we explore are still based on stress-stretch data. In contrast, some
expert models are built around the idea of microstructure modeling, multiscale simulations,
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or micromechanics arguments [36]. These ideas have started to permeate intro data-driven
modeling [48, 49]. Alternatively, inferring material behavior from full-field displacements and
global force data without relying on stress-stretch pairs has also gained attention recently
[50, 51]. Physics-informed machine learning methods that can build on CANN, ICNN or
NODE frameworks but also leverage images of the tissue microstructure or information about
material composition are a natural next step.

Conclusions

We present three fully data-driven and physics-constrained methods for nonlinear mate-
rial modeling: CANNs, ICNNs, and NODEs. The methods capture hyperelastic material
response perfectly on benchmark datasets of rubber and skin under three different loading
cases. Evaluating their capacity to extrapolate, their efficiency, and the regularity of their
second derivatives, we conclude that even though the methods have different features, they
all have comparable low errors which decay with parameter and model complexity, have
smooth second derivatives, and have some capacity to extrapolate. In summary, these meth-
ods hold the key for high-fidelity modeling of arbitrary material behavior without the need to
select closed-form expressions. Code and data are available with this submission and we are
confident that these resources complement our detailed analysis and will favor the ongoing
development and refinement of data-driven computational mechanics.
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